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Preface

This book provides brief introduction to the fractional derivatives and preliminaries
of local fractional calculus and presents an overview of wavelets in mathematical
preliminaries. The need of the present work for the scientific and engineering
community also has been discussed succinctly in the book.

In Chap. 1, various analytical and numerical methods for solving partial and
fractional differential equations have been discussed along with some numerical
methods for solving stochastic point kinetics equations. In Chap. 2, the utilization
of new approaches of decomposition method in getting solutions for partial and
fractional differential equations has been discussed. In this regard, a modified
decomposition method has been newly applied for solving coupled Klein–Gordon–
Schrödinger equations. In Chap. 3, the generalized order operational matrix of Haar
wavelet has been used for finding the numerical solution of Bagley–Torvik equa-
tion. Next, the solutions of the Haar wavelet method are compared with OHAM as
well as with the exact solutions for the fractional Fisher-type equation. The gen-
eralized order operational matrix of the Haar wavelet has been proposed for first
time by the author for finding the numerical solution of Bagley–Torvik equation. In
Chap. 4, an investigation into solutions of Riesz space fractional differential
equations by using various numerical methods has been presented. In application,
the solution of inhomogeneous fractional diffusion equation with Riesz space
fractional derivative has been presented by utilizing an explicit finite difference
scheme with shifted Grünwald approximation technique.

In Chap. 5, the exact solutions of fractional differential equations have been
reported. Methods like first integral method, classical Kudryashov method, modi-
fied Kudryashov method, and mixed dn-sn method have been utilized here for
getting new exact solutions of fractional differential equations. Also, the fractional
complex transform with the local fractional derivatives has been used here for the
reduction of fractional differential equations to integer-order ordinary differential
equations. In Chap. 6, the generalized Jacobi elliptic function expansion method has
been used for getting new exact solutions of the coupled Schrödinger–Boussinesq
equations (CSBEs). Moreover, by numerical results, it has been shown that the
nature of the solutions is doubly periodic. For justifying the nature of the solutions
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as doubly periodic, the numerical results have also been presented in this work. In
Chap. 7, new techniques, viz. modified fractional reduced differential transform
method (MFRDTM) and coupled fractional reduced differential transform method
(CFRDTM), are proposed for the first time for solving fractional differential
equations. In view of that, the fractional KdV equation has been solved by using the
modified fractional reduced differential transform method (MFRDTM).
Furthermore, convergence analysis and error estimate for MFRDTM and CFRDTM
have been presented in this chapter. The main advantages of the methods emphasize
the fact that they provide explicit analytical approximate solutions and also
numerical solutions elegantly.

In Chap. 8, Riesz fractional coupled Schrödinger–KdV equations have been
solved by implementing a new approach, viz. time-splitting spectral method. In
order to verify the results, it has been also solved by an implicit finite difference
method by using fractional centered difference approximation for Riesz fractional
derivative. The obtained results manifest that the proposed time-splitting spectral
method is very effective and simple for obtaining approximate solutions of Riesz
fractional coupled Schrödinger–KdV equations. In the last chapter, the stochastic
point kinetics equations in nuclear reactor dynamics have been solved by using
Euler–Maruyama and strong order 1.5 Taylor numerical methods. From the
obtained results, it has been concluded that Euler–Maruyama and strong order 1.5
Taylor numerical methods perform an effective calculation in comparison with
stochastic piecewise constant approximations method. So the proposed method is
efficient and a powerful tool for solving the stochastic point kinetics equations. This
work has been universally recognized as a benchmark work of the author in this
field.

Rourkela, India Santanu Saha Ray
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Chapter 1
Mathematical Preliminaries

1.1 Overview

The main objective is to propose novel analytical and numerical techniques to find
the solutions of partial, stochastic, and fractional-order differential equations arising
in physical problems. Most of the physical phenomena that arise in mathematical
physics and engineering fields can be best described by the nonlinear partial dif-
ferential equations. The problems arise in different areas of applied mathematics,
physics, and engineering, including fluid dynamics, nonlinear optics, solid
mechanics, plasma physics, quantum field theory, and condensed-matter physics,
can be modeled by partial differential equations [1–3]. Many problems of physical
interest are described by partial differential equations. The usual procedures nec-
essarily change the actual problems in essential ways in order to make it mathe-
matically tractable by the conventional methods. Unfortunately, these changes
necessarily deviate the actual solutions; therefore, they can differ, sometimes seri-
ously, from the actual physical behavior. Physically accurate and correct solutions
can be obtained by avoiding these limitations, which would add an important
advancement to our insights into the natural behavior of physical systems.
Consequently, it would potentially enhance the scientific and technological
breakthroughs for solving nonlinear physical problems.

Nowadays, the subject of fractional calculus and its applications has gained
considerable popularity and importance during the past three decades or so, mainly
due to its demonstrated applications in various seemingly diverse and widespread
fields of science and engineering [4–12]. It deals with derivatives and integrals of
arbitrary orders. In many cases, the real physical processes could be modeled in a
reliable manner using fractional-order differential equations rather than
integer-order equations [4–6].

In this context, the local fractional calculus theory is very important for mod-
eling problems for fractal mathematics and engineering on Cantorian space in
fractal media [13–15]. Most nonlinear physical phenomena that appear in many
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areas of scientific fields, in particular in modeling anomalous dynamics of complex
systems, neutron diffusion and transport, control theory, viscoelasticity, rheology,
signal processing, biomechanics, plasma physics, solid state physics, fluid dynamics,
optical fibers, mathematical biology, and chemical kinetics, can be best modeled by
nonlinear fractional partial differential equations.

Various important phenomena in electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, advection-diffusion models, biological population
models, optics and signals processing are well described by fractional differential
equations [4–6, 9–12]. But it is quite difficult to get the exact solutions of nonlinear
fractional differential equations. For that reason, we need a reliable and efficient
technique for the solution of fractional differential equations.

Stochastic differential equations (SDEs) [16–20] occur where a system described
by differential equations is influenced by random noise. Typically, SDEs contain a
variable which represents random white noise calculated as the derivative of
Brownian motion or the Wiener process. However, other types of random behavior
are possible. Stochastic differential equation (SDE) models play a prominent role in
a range of application areas, including biology, chemistry, epidemiology,
mechanics, microelectronics, economics, and finance.

The aim of this book is to develop and improve significantly analytical and
numerical techniques in order to have advanced approaches to reinforce and
complement classical methods. The improved and developed techniques have been
examined to be reliable, accurate, effective, and efficient in both the analytic and
numerical purposes.

The present research work focuses on new development of valuable analytical
and numerical techniques that have been examined for effectiveness and reliability
over other existing methods.

1.2 Introduction to Fractional Calculus

Fractional differential operators have a long history, having been mentioned by
Leibniz in a letter to L’Hospital in 1695. Referring to the question of
fractional-order differentiation, Leibniz wrote, “It will lead to a paradox, from
which one-day useful consequences will be drawn.” Early mathematicians who
contributed to the study of fractional differential operators include Liouville,
Riemann, and Holmgrem (See [8] for a history of the development of fractional
differential operators). A number of definitions for the fractional derivative have
been emerged over the years: Grünwald–Letnikov fractional derivative, Riemann–
Liouville fractional derivative, and the Caputo fractional derivative [4–6, 8].

The fractional differential equations appear more and more frequently in dif-
ferent research areas and engineering applications. An effective and easy-to-use
method for solving such equations is needed. It should be mentioned that from the
viewpoint of fractional calculus applications in physics, chemistry, and engineering,
it was undoubtedly the book written by Oldham and Spanier [6] which played an
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outstanding role in the development of this subject. Moreover, it was the first book
that was entirely devoted to a systematic presentation of the ideas, methods, and
applications of the fractional calculus.

Later, there appeared several fundamental works on various aspects of the
fractional calculus including an extensive survey on fractional differential equations
by Podlubny [4], Miller and Ross [5], and others. Furthermore, several references to
the books by Oldham and Spanier [6], Podlubny [4], and Miller and Ross [5] show
that applied scientists need first of all an easy introduction to the theory of fractional
derivatives and fractional differential equations, which could help them in their
initial steps to adopting the fractional calculus as a method of research.

1.2.1 Fractional Derivative and Integration

Fractional calculus has been used to model physical and engineering processes
which are found to be best described by fractional differential equations. For that
reason, we need a reliable and efficient technique for the solution of fractional
differential equations. The fractional calculus has gained considerable importance
during the past decades mainly due to its applications in diverse fields of science
and engineering.

Definition 1 A real function f ðtÞ, t[ 0 is said to be in the space Cc, c 2 R if there
exists a real number pð[ cÞ, such that f ðtÞ ¼ tpf1ðtÞ, where f1ðtÞ 2 C½0; 1� and it
is said to be in the space Cm

c iff f ðmÞ 2 Cm, m 2 N.

Riemann–Liouville Integral and Derivative Operator

The most frequently encountered definition of an integral of fractional order is the
Riemann–Liouville integral [4].

The fractional-order Riemann–Liouville integral of order a(>0), of a function
f 2 Cc, c��1 is defined as

Jaf ðtÞ ¼ 1
CðaÞ

Z t

0

ðt � sÞa�1f ðsÞ ds; t[ 0; a 2 Rþ : ð1:1Þ

where Rþ is the set of positive real numbers.

Remark 1 For f 2 Cc, c��1, we have the following property

Jatb ¼ C bþ 1ð Þ tbþ a

C bþ aþ 1ð Þ ; b[�1; a[�1� b:
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Definition 2 The left-hand side and right-hand side Riemann–Liouville fractional
integral of a function f 2 Cc, ðc� � 1Þ are defined as

�1Jat f ðtÞ ¼
1

C m� að Þ
Z t

�1
t � sð Þm�a�1f sð Þ ds; m � 1\a\m ; m 2 N; ð1:2Þ

and

tJ
a
1f ðtÞ ¼ ð�1Þm

C m� að Þ
Z1
t

s� tð Þm�a�1f sð Þ ds; for m � 1\a\m ; m 2 N ð1:3Þ

respectively.

Definition 3 Riemann–Liouville fractional derivative of order a (a > 0 and
a 2 Rþ ) is defined as

Daf ðtÞ ¼ DmJm�af ðtÞ

¼
1

Cðm�aÞ
dm

d tm

Rt
0
ðt � sÞðm�a�1Þf ðsÞds; ifm� 1\a\m;m 2 N

dm
f ðtÞ

dtm ; if a ¼ m; m 2 N

8><>: ð1:4Þ

Definition 4 The left Riemann–Liouville fractional derivative of order
aðm� 1\a\m; m 2 NÞ can be defined as

�1Da
t f tð Þ ¼ 1

C m� að Þ
dm

dtm

Z t

�1
t � sð Þm�a�1f sð Þds; m� 1\a\m ; m 2 N ð1:5Þ

Definition 5 The right Riemann–Liouville fractional derivative of order
aðm� 1\a\m; m 2 N) can be defined as

tD
a
1f ðtÞ ¼ ð�1Þm

C m� að Þ
dm

dtm

Z1
t

s� tð Þm�a�1f sð Þds; m� 1\a\m ; m 2 N: ð1:6Þ

Remark 2 One of the interesting properties of the Riemann–Liouville fractional
derivative is the derivative of a constant which is not zero. So mathematically, it can
be written as

Da
t C ¼ Ct�a

Cð1� aÞ ; ð1:7Þ

where C is a constant.
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The Semi-group Property of the Fractional Integral Operator

If ReðaÞ[ 0 and ReðbÞ[ 0 then the equation JaJbgðtÞ ¼ JbJagðtÞ ¼ Jaþ bgðtÞ is
satisfied at almost every point t 2 ½a; b� for f ðtÞ 2 Lp½a; b�(1� p� a). If aþ b[ 1,
then JaJbgðtÞ ¼ JbJagðtÞ ¼ JaþbgðtÞ held at any point of ½a; b�.
Caputo Fractional Derivative

The fractional derivative, introduced by Caputo [4] in the late sixties, is called
Caputo fractional derivative. The fractional derivative of f(t) in the Caputo sense is
defined by

Da
t f ðtÞ ¼ Jm�aDmf ðtÞ

¼
1

Cðm�aÞ
Rt
0
ðt � sÞðm�a�1Þ dm

f ðsÞ
d sm

ds; if m� 1\a\m ; m 2 N;

dm
f ðtÞ
dtm ; if a ¼ m;m 2 N;

8><>: ð1:8Þ

where the parameter a is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive a will be considered.

For the Caputo’s derivative, we have

DaC ¼ 0; ðC is a constantÞ ð1:9Þ

Datb ¼ 0; b� a� 1;
Cðbþ 1Þtb�a

Cðb�aþ 1Þ ; b[ a� 1:

(
ð1:10Þ

Similar to integer-order differentiation, Caputo’s derivative is linear.

Daðc f ðtÞ þ dgðtÞÞ ¼ cDa f ðtÞ þ dDagðtÞ; ð1:11Þ

where c and d are constants, and satisfies so-called Leibnitz’s rule.

DaðgðtÞ f ðtÞÞ ¼
X1
k¼0

a

k

 !
gðkÞðtÞDa�kf ðtÞ; ð1:12Þ

if f ðsÞ is continuous in [0,t] and gðsÞ has continuous derivatives sufficient number
of times in ½0; t�.
Lemma 1: Let ReðaÞ[ 0 and let n ¼ ReðaÞ½ � þ 1 for a 62 N0 ¼ f0; 1; 2; . . .g; n ¼
a for a 2 N0. If f ðtÞ 2 ACn½a; b�(the space of functions f ðtÞ which are absolutely
continuous and possess continuous derivatives up to order n� 1 on a; b½ �) or f ðtÞ 2
Cn½a; b� (the space of functions f ðtÞ which are n times continuously differentiable
on a; b½ �), then
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CDa
t J

af ðtÞ ¼ f ðtÞ; ð1:13Þ

JaCDa
t f ðtÞ ¼ f ðtÞ �

Xn�1

k¼0

tk

k!
f ðkÞð0þÞ; t[ 0: ð1:14Þ

Proof Let a 62 N0. Since f ðtÞ 2 ACn½a; b�, the Caputo derivative CDa
t f ðtÞ is con-

tinuous on a; b½ �, i.e., CDa
t f ðtÞ 2 C a; b½ �.

Now, according to the definition of Caputo derivative Eq. (1.8),

CDa
t J

af ðtÞ ¼ Jn�aDnJaf ðtÞ
¼ Jn�aJa�nf ðtÞ; by the property Ja�nf ðtÞ ¼ DnJaf ðtÞ
¼ f ðtÞ:

Thus, Eq. (1.13) has been derived.

Again, according to the definition of Caputo derivative Eq. (1.8),

JaCDa
t f ðtÞ ¼ JaJn�aDðnÞf ðtÞ

¼ JnDðnÞf ðtÞ; using the semi-group property in ð1:1Þ
JaJn�a ¼ Jn

¼ f ðtÞ �
Xn�1

k¼0

tkf ðkÞð0þÞ
Cðkþ 1Þ :

Hence, Eq. (1.14) has been obtained. �
Theorem 1.1 (Generalized Taylor’s formula [21])

Suppose that Dka
a f ðtÞ 2 Cða; b� for k ¼ 0; 1; . . .; nþ 1, where 0\a� 1, we have

f ðtÞ ¼
Xn
i¼0

ðt � aÞia
Cðiaþ 1Þ Dia

a f ðtÞ
� �

t¼a þ<a
nðt ; aÞ; ð1:15Þ

with <a
nðt ; aÞ ¼ ðt�aÞðnþ 1Þa

Cððnþ 1Þaþ 1Þ Dðnþ 1Þa
a f ðtÞ

h i
t¼n

, a� n� t; 8t 2 ða; b�,

where Dka
a ¼ Da

a:D
a
a :D

a
a. . .D

a
a (k times).

Proof The proof of the Theorem 1.1 can be found from Theorem 3 in Ref. [21]. �

Grünwald–Letnikov Fractional Derivative

The Grünwald–Letnikov fractional derivative was first introduced by Anton Karl
Grünwald (1838–1920) from Prague, in 1867 and by Aleksey Vasilyevich Letnikov
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(1837–1888) from Moscow in 1868. The Grünwald–Letnikov fractional derivative
is based on finite differences, which is equivalent to the Riemann–Liouville
definition.

The Grünwald–Letnikov fractional derivative of an order að[ 0Þ [4, 8, 22] is
defined as

aD
a
t f ðtÞ ¼ lim

h ! 0
mh ¼ t � a

h�q
Xm
r¼0

xq
r f ðt � rhÞ; ð1:16Þ

where xq
r ¼ ð�1Þr q

r

 !
.

xq
0 ¼ 1 andxq

r ¼ 1� qþ 1
r

� �
xq

r�1; r ¼ 1; 2; . . . ð1:17Þ

Riesz Fractional Integral and Derivative

In this section, some significant definitions, viz. the right Riemann–Liouville
derivative, left Riemann–Liouville derivative, Riesz fractional derivative, and Riesz
fractional integral which are to be used subsequently in consequent chapters, have
been presented.

Definition 6 Riesz fractional integral [4, 8, 23, 24] of the order a, n� 1� a\n of
a function f 2 Cc, ðc� � 1Þ is defined as

R
0J

a
x f ðxÞ ¼ cað�1Jax þ xJa1Þf ðxÞ

¼ ca
C að Þ

Zþ1

�1
x� fj ja�1f fð Þ df;

where ca ¼ 1
2 cos pa

2ð Þ, a 6¼ 1.

Here,�1Jat , tJa1 are the left-hand and right-hand side Riemann–Liouville frac-
tional integral operators defined in definition 2.

Definition 7 The Riesz fractional derivative of order a ðn� 1\a� n; n 2 NÞ on
the infinite domain �1\t\1 of a function f 2 Cc, ðc��1Þ is defined as [4, 8,
23–25]

daf xð Þ
d xj ja ¼ �ca �1Da

x f ðxÞþ xD
a
1 f ðxÞ� �

; ð1:18Þ
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where ca ¼ 1
2 cos pa

2ð Þ, a 6¼ 1.

Here,�1Da
t and tDa

1 are the left-hand and right-hand side Riemann–Liouville
fractional differential operators defined in definitions 4 and 5, respectively.

In case of a� t� b (i.e., t defined in a finite interval), the Riesz fractional
derivative of order a ðn� 1\a� n; n 2 NÞ can be written as

daf ðtÞ
d xj ja ¼ � 1

2 cos ap
2

� � aD
a
x f ðxÞþ xD

a
bf ðxÞ

� �
;

where

aD
a
x f ðxÞ ¼

1
C n� að Þ

dn

dxn

Zx
a

f ðfÞdf
x� fð Þ1�nþ a;

xD
a
bf ðxÞ ¼

ð�1Þn
C n� að Þ

dn

dxn

Zb
x

f ðfÞdf
f� xð Þ1�nþ a:

Lemma 2 For a function /ðtÞ defined on the infinite domain ð�1\x\1Þ, the
following equality holds:

�ð�DÞa2/ðxÞ ¼ �cað�1Da
x þ xD

a
1Þ/ðxÞ ¼ da

d xj ja /ðxÞ; for n� 1\a� n; n 2 N:

ð1:19Þ
Proof According to Samko et al. [8], a fractional power of the Laplace operator is
defined as follows:

�ð�DÞa2/ðxÞ ¼ �F�1 nj jaFð/ðxÞÞ; ð1:20Þ

where F and F�1 denote the Fourier transform and inverse Fourier transform of
f ðxÞ, respectively. Hence, we have

�ð�DÞa2/ðxÞ ¼ � 1
2p

Z1
�1

e�itn nj ja
Z1
�1

eing/ðgÞdgdn:

Supposing that /ðxÞ vanishes at x ¼ �1, the integration by parts yields

Z1
�1

eing/ðgÞdg ¼ � 1
in

Z1
�1

eing/0ðgÞdg:
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Thus, we obtain

�ð�DÞa2/ðxÞ ¼ � 1
2p

Z1
�1

/0ðgÞ i
Z1
�1

einðg�tÞ nj ja
n

dn

24 35dg:
Let I ¼ i

R1
�1

einðg�xÞ nj ja
n dn, then

I ¼ i �
Z1
0

einðx�gÞna�1enþ
Z1
0

einðg�xÞna�1dn

24 35;
for 0\a\1, we have

I ¼ i
�CðaÞ
iðg� xÞ½ �a þ CðaÞ

iðx� gÞ½ �a
� 	

¼ signðx� gÞCðaÞCð1� aÞ
x� gj jaCð1� aÞ i1�a þð�iÞ1�a

h i
:

Using CðaÞCð1� aÞ ¼ p
sinðpaÞ and i1�a þð�iÞ1�a ¼ 2 sin ap

2

� �
, we obtain

I ¼ signðx� gÞp
cos ap

2

� �
x� gj jaCð1� aÞ :

Hence, for 0\a\1

�ð�DÞa2/ðxÞ ¼ � 1
2p

Z1
�1

/0ðgÞ signðx� gÞp
cos ap

2

� �
x� gj jaCð1� aÞdg

¼ � 1
2 cos ap

2

� � 1
Cð1� aÞ

Zx
�1

/0ðgÞ
ðx� gÞa dg�

1
Cð1� aÞ

Z1
x

/0ðgÞ
ðg� xÞa dg

24 35:
Following [1, 3], for 0\a\1, the Grünwald–Letnikov fractional derivative in

½a; x� is given by

aD
a
x/ðxÞ ¼

/ðaÞðx� aÞ�a

Cð1� aÞ þ 1
Cð1� aÞ

Zx
a

/0ðgÞ
ðt � gÞa dg:

Therefore, if /ðxÞ tends to zero for a ! �1, then we have

�1Da
x/ðxÞ ¼

1
Cð1� aÞ

Zx
�1

/0ðgÞ
ðx� gÞa dg:
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Similarly, if /ðxÞ tends to zero for b ! þ1, then we have

xD
a
1/ðxÞ ¼ �1

Cð1� aÞ
Z1
x

/0ðgÞ
ðg� xÞa dg:

Hence, if /ðxÞ is continuous and /ðxÞ is integrable for x� a, then for every
að0\a\1Þ, the Riemann–Liouville derivative exists and coincides with the
Grünwald–Letnikov derivative. Finally, for 0\a\1, we have

�ð�DÞa2/ðxÞ ¼ � 1
2 cos ap

2

� � ½�1Da
x/ðxÞþ xD

a
1/ðxÞ� ¼ da

d xj ja /ðxÞ;

where �1Da
x/ðxÞ ¼ 1

C 1�að Þ
d
dx
Rx

�1
/ðgÞdg
x�gð Þa and xDa

1/ðxÞ ¼ �1
C 1�að Þ

d
dx
R1
x

/ gð Þdg
g�xð Þa .

Following a similar argument, for 1\a\2, we can obtain

�ð�DÞa2/ðxÞ ¼ � 1
2 cos ap

2

� � ½�1Da
x/ðxÞþ xD

a
1/ðxÞ� ¼ da

d xj ja /ðxÞ;

where �1Da
x/ðxÞ ¼ 1

C 2�að Þ
d2

dx2
Rx

�1
/ðgÞdg
x�gð Þa�1 and xDa

1/ðxÞ ¼ 1
C 2�að Þ

d2

dx2
R1
t

/ gð Þdg
g�xð Þa�1 .

Finally, for n� 1\a\n, we have

�ð�DÞa2/ðxÞ ¼ � 1
2 cos ap

2

� � ½�1Da
x/ðxÞþ xD

a
1/ðtÞ� ¼ da

d xj ja /ðxÞ;

where �1Da
x/ðxÞ ¼ 1

C n�að Þ
dn

dxn
Rx

�1
/ fð Þdf

x�fð Þaþ 1�n and xDa
1/ðxÞ ¼ ð�1Þn

C n�að Þ
dn

dxn
R1
t

/ fð Þdf
f�xð Þaþ 1�n .

Remark 3 For a function f ðtÞ defined on the finite interval ½0; L�, the result in
Eq. (1.19) holds by setting

/�ðtÞ ¼ /ðtÞ t 2 ð0; LÞ;
0 t 62 ð0; LÞ:



That is /�ðtÞ ¼ 0 on the boundary points and beyond the boundary points.

Definition 8 Riesz–Feller fractional derivative proposed by Feller [24] is a gener-
alization of the Riesz fractional derivative. For 0\a� 2, a 6¼ 1 and free parameter h,
hj j �minfa; 2� ag, the Riesz–Feller fractional derivative is defined as [26]

FDa
hwðxÞ ¼ ðCþ ða; hÞDa

þ þC�ða; hÞDa
�ÞwðxÞ; ð1:21Þ
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where the coefficients C�ða; hÞ are given by

Cþ ða; hÞ ¼
sin ða� hÞ p2
� �
sinðapÞ ; C�ða; hÞ ¼

sin ðaþ hÞ p2
� �
sinðapÞ ;

and Da
þ and Da

� are the left- and right-sided Weyl fractional derivatives of order a,
defined for x 2 R and a[ 0, n � 1\a� n ; n 2 N as

ðDa
þ ÞwðxÞ :¼

d
dx

� �n

In�a
þ w

� �ðxÞ; ð1:22Þ

ðDa
�ÞwðxÞ :¼

d
dx

� �n

In�a
� w
� �ðxÞ: ð1:23Þ

In the above formulae, In�a
� are the left- and right-sided Weyl fractional integrals

given by

IaþwðxÞ ¼
1

CðaÞ
Zx
�1

ðx� fÞa�1wðfÞdf; ð1:24Þ

and

Ia�wðxÞ ¼
1

CðaÞ
Z1
x

ðf� xÞa�1wðfÞdf: ð1:25Þ

1.2.2 Preliminaries of Local Fractional Calculus

In this section, the basic definitions and some elementary properties of local frac-
tional derivative have been briefly discussed.

Local Fractional Continuity of a Function

Definition 9 Suppose that f ðxÞ is defined throughout some interval containing x0
and all points near x0, then f ðxÞ is said to be local fractional continuous at x ¼ x0,
denoted by lim

x!x0
f ðxÞ ¼ f ðx0Þ, if to each positive e and some positive constant

k corresponds some positive d such that [27–29]

f ðxÞ � f ðx0Þj j\kea; 0\a� 1; ð1:26Þ
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whenever x� x0j j\d, e; d [ 0 and e; d 2 R. Consequently, the function f ðxÞ is
called local fractional continuous on the interval ða; bÞ, denoted by

f ðxÞ 2 Caða; bÞ; ð1:27Þ

where a is fractal dimension with 0\a� 1.

Definition 10 A function f ðxÞ : R ! R, X 7! f ðXÞ is called a nondifferentiable
function of exponent a, 0\a� 1, which satisfies Hölder function of exponent a,
then for x; y 2 X, we have [27–29]

f ðxÞ � f ðyÞj j �C x� yj ja: ð1:28Þ
Definition 11 A function f ðxÞ : R ! R X 7! f ðXÞ is called to be local fractional
continuous of order a, 0\a� 1, or shortly a-local fractional continuous, when we
have [27–29]

f ðxÞ � f ðx0Þ ¼ O ðx� x0Það Þ: ð1:29Þ
Remark 4 A function f ðxÞ is said to be in the space Ca½a; b� if and only if it can be
written as [27–29]

f ðxÞ � f ðx0Þ ¼ O ðx� x0Það Þ;

with any x0 2 ½a; b� and 0\a� 1.

Theorem 1.2 (Generalized Hadamard’s Theorem) [30]
Any function f ðxÞ 2 CaðIÞ in a neighborhood of a point x0 can be decomposed

in the form

f ðxÞ ¼ f ðx0Þþ ðx� x0Þa
Cð1þ aÞ gðxÞ;

where gðxÞ 2 CmaðIÞ (the space of functions which are m times a th differentiable on
I � R).

Local Fractional Derivative

If a function is not differentiable at x ¼ x0, but has a fractional derivative of order a
at this point, then it is locally equivalent to the function

f ðxÞ ¼ f ðx0Þþ ðx� x0Þa
Cðaþ 1Þ f

ðaÞðx0ÞþO ðx� x0Þ2a
� �

; ð1:30Þ
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Definition 12 Following to Eq. (1.30), the local fractional derivative of f ðxÞ 2
Caða; bÞ of order a at x ¼ x0 is defined as [27–29]

f ðaÞðx0Þ ¼ daf ðxÞ
dxa






x¼x0

¼ lim
x!x0

Daðf ðxÞ � f ðx0ÞÞ
ðx� x0Þa ; ð1:31Þ

where Daðf ðxÞ � f ðx0ÞÞ ffi Cð1þ aÞðf ðxÞ � f ðx0ÞÞ and 0\a� 1.

Another definition of local fractional derivative has been proposed by Kolwankar
and Gangal [31] by means of theory on the Cantor space, which is given as follows.

Definition 13 Local fractional derivative of order að0\a\1ÞÞ of a function
f 2 C0 : R ! R is defined as

Daf ðxÞ ¼ lim
f!x

Da
xðf ðfÞ � f ðxÞÞ; ð1:32Þ

if the limit exist in R[1.

If f ðxÞ is differentiable at the point other than x ¼ x0, with nonzero value of the
derivative, then it can be approximated locally as

f ðxÞ ¼ f ðx0Þþ f 0ðx0Þðx� x0Þþ oðx� x0Þ: ð1:33Þ

So the local fractional derivative of f ðxÞ at x ¼ x0 becomes

Daf ðx0Þ ¼ lim
x!x0

daðf ðxÞ � f ðx0ÞÞ
dðx� x0Þa

¼ f 0ðx0Þ lim
x!x0

daðx� x0Þ
dðx� x0Þa

ð1:34Þ

Remark 5 The following rules are hold [13]

(1) da
xka

dxa ¼ Cð1þ kaÞ
Cð1þðk�1ÞaÞ x

ðk�1Þa;

(2) da
EaðkxaÞ
dxa ¼ kEaðkxaÞ, k is a constant.

Remark 6 [13, 27–29]

(I) If yðxÞ ¼ ðf 
 uÞðxÞ where uðxÞ ¼ gðxÞ, then we have

dayðxÞ
dxa

¼ f ðaÞ gðxÞð Þ gð1ÞðxÞ
� �a

; ð1:35Þ

when f ðaÞ gðxÞð Þ and gð1ÞðxÞ exist.

1.2 Introduction to Fractional Calculus 13



(II) If yðxÞ ¼ ðf 
 uÞðxÞ where uðxÞ ¼ gðxÞ, then we have

dayðxÞ
dxa

¼ f ð1Þ gðxÞð ÞgðaÞðxÞ; ð1:36Þ

when f ð1Þ gðxÞð Þ and gðaÞðxÞ exist.

1.3 Wavelets

Nowadays, wavelets [32] have found their place in many applications for a wide
range of engineering disciplines. Wavelets are very effectively used in signal
analysis for waveform demonstration and segmentations (separation or partition),
time-frequency analysis, and fast algorithms for easy execution. Wavelets allow
accurate depiction of a variety of functions and operators. With the widespread
applications of wavelet methods for solving difficult problems in diverse fields of
science and engineering such as wave propagation, data compression, image pro-
cessing, pattern recognition, computer graphics and in medical technology, these
methods have been implemented to develop accurate and fast algorithms for solving
integral, differential, and integro-differential equations, especially those whose
solutions are highly localized in position and scale [32, 33]. Using the powerful
multiresolution analysis, one can represent a function by a finite sum of components
at different resolutions so that each component can be adaptively processed based
on the objectives of the application. This capability of representing functions
compactly and in several levels of resolutions is the major strength of the wavelet
analysis.

The word “wavelet” has been derived from the French word “ondelette,” which
means “small wave.” An oscillatory function wðxÞ 2 L2 Rð Þ with zero mean and
compact support is a wavelet if it has the following desirable characteristics:

(i) Smoothness: wðxÞ is n times differentiable, and their derivatives are
continuous.

(ii) Localization: wðxÞ is well localized in both time and frequency domains, i.e.,

wðxÞ and its derivatives must decay rapidly. For frequency localization, bWðxÞ
must decay sufficiently fast as x ! 1 and that bWðxÞ becomes flat in the
neighborhood of x ¼ 0: The flatness is associated with the number of van-
ishing moments of wðxÞ, i.e.,

Z1
�1

xkwðxÞdx ¼ 0 or equivalently
dk

dxk
bWðxÞ ¼ 0 for k ¼ 0; 1; . . .; n
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in the sense that larger the number of vanishing moments, more is the flatness when
x is small.

(iii) The admissibility condition

Z1
�1

Ŵ xð Þ

 


xj j dx\1

suggests that bWðxÞ



 


 decay at least as xj j�1 or xj je�1 for e[ 0:

Although most of the numerical methods have been successfully applied for
many linear and nonlinear differential equations, they have also some drawbacks in
regions where singularities or sharp transitions occur. In those cases, the solutions
may be oscillating and for an accurate representation of the results, adaptive
numerical schemes must be used which complicates the solution. To overcome the
above difficulty, wavelet transform [32, 34] methods are quite useful.

1.3.1 Wavelet Transform

Morlet and Grossmann [35, 36] first introduced the concept of wavelets in the early
1980s. Since then, a lot of researchers were involved in the development of
wavelets. Some notable contributors include Morlet and Grossmann [36] for for-
mulation of continuous wavelet transform (CWT), Stromberg [37] for early works
on discrete wavelet transform (DWT), Meyer [38] and Mallat [39] for multireso-
lution analysis using wavelet transform, and Daubechies [40] for proposal of
orthogonal compactly supported wavelets. Thereafter, a lot of work has been done
both on development and application of wavelet analysis on a wide variety of
problems like signal and image processing, data condensation, and solution of
differential equations.

In 1982, Jean Morlet, a French geophysical engineer, first introduced the concept
of wavelets as a family of functions constructed from dilation and translation of a
single function known as the “mother wavelet” wðtÞ: They are defined by

wa;bðtÞ ¼
1ffiffiffiffiffiffi
aj jp w

t � b
a

� �
; a; b 2 R; a 6¼ 0 ð1:37Þ

where a is called a scaling parameter which measures the degree of compression or
scale, and b is a translation or shifting parameter that determines the location of the
wavelet. If aj j\1, the wavelet (1.37) is the compressed version of the mother
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wavelet and corresponds mainly to higher frequencies. On the other hand, when
aj j[ 1, wa;bðtÞ has a larger time width than wðtÞ and corresponds to lower fre-
quencies. Thus, wavelets have time widths adapted to their frequencies, which is
the main reason for the success of the Morlet wavelets in signal processing and
time-frequency signal analysis. It can be noted that the resolution of wavelets at
different scales varies in the time and frequency domains as governed by the
Heisenberg uncertainty principle. At large scale, the solution is coarse in the time
domain and fine in the frequency domain. As the scale decreases, the resolution in
the time domain becomes finer while that in the frequency domain becomes coarser.

The success of Morlet’s numerical algorithms encouraged Grossmann, a French
theoretical physicist, to make an extensive study of the Morlet wavelet transform
which led to the recognition that wavelets wa;bðtÞ correspond to a square integrable
representation of the affine group. Grossmann was concerned with the wavelet
transform of f 2 L2ðRÞ defined by

Ww½f �ða; bÞ ¼ f ;wa;b

� � ¼ 1ffiffiffiffiffiffi
aj jp Z1

�1
f ðtÞw t � b

a

� �
dt; ð1:38Þ

where wa;bðtÞ plays the same role as the kernel eixt in the Fourier transform. The
continuous wavelet transform Ww is linear. The inverse wavelet transform can be
defined so that f can be reconstructed by means of the formula

f ðtÞ ¼ C�1
w

Z1
�1

Z1
�1

Ww½ f �ða; bÞwa;bðtÞða�2daÞdb ð1:39Þ

provided Cw satisfies the so-called admissibility condition, that is,

Cw ¼ 2p
Z1
�1

bWðxÞ



 


2

xj j dx\1; ð1:40Þ

where bWðxÞ is the Fourier transform of the mother wavelet wðtÞ:
Grossmann’s ingenious work revealed that certain algorithms that decompose a

signal on the whole family of scales can be utilized as an efficient tool for multiscale
analysis. In practical applications, the continuous wavelet can be computed at
discrete grid points. For this, a general wavelet w can be defined by replacing a with
am0 ða0 6¼ 0; 1Þ; b with nb0am0 ðb0 6¼ 0Þ; where m and n are integers and making

wm;nðtÞ ¼ a�m=2
0 wða�m

0 t � nb0Þ: ð1:41Þ
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The discrete wavelet transform of f is defined as

�f ðm; nÞ ¼ W½f �ðm; nÞ ¼ ðf ;wm;nÞ ¼
Z1
�1

f ðtÞ�wm;nðtÞdt ð1:42Þ

where wm;nðtÞ is given in Eq. (1.41).
The series

X1
m;n¼�1

�f ðm; nÞwm;nðtÞ ð1:43Þ

is called the wavelet series of f, and the functions {wm;nðtÞ} are called the discrete
wavelets or simply wavelets. To compute the wavelet transform of a function at
some point in the time-scale plane, we do not need to know the function values for
the entire time axis. All we need is the function at those values of time at which the
wavelet is nonzero. Consequently, the evaluation of the wavelet transform can be
done almost in real time.

It is known that the continuous wavelet transform is a two-parameter repre-
sentation of a function. In many practical applications particularly in signal pro-
cessing, data are represented by a finite number of values, so it is essential and often
expedient to consider the discrete version of the continuous wavelet transform.
From a mathematical perspective, continuous representation of a function of two
continuous parameters a, b in Eq. (1.38) can be converted into a discrete one by
assuming that a and b take only integral values as given in Eq. (1.41). In general,
the function f belonging to the Hilbert space, L2ðRÞ can be completely determined
by its discrete wavelet transform if the wavelets form a complete system in L2ðRÞ.
In other words, if the wavelets form an orthonormal basis of L2ðRÞ, then they are
complete and f can be reconstructed from its discrete wavelet transform
�f ðm; nÞ ¼ f ;wm;n

� �� �
by means of the formula

f ðtÞ ¼
X1

m;n¼�1
f ;wm;n

� �
wm;nðtÞ; ð1:44Þ

provided the wavelets form an orthonormal basis.
Alternatively, the function f can be determined by the formula

f ðtÞ ¼
X1

m;n¼�1
f ;wm;n

� �
�wm;nðtÞ; ð1:45Þ
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provided the wavelets form a basis and {�wm;nðtÞ} is the dual basis.
For some particular choice of w and a0; b0, the wm;n constitute an orthonormal

basis for L2ðRÞ. If a0 ¼ 2 and b0 ¼ 1; then there exists a function w with good
time-frequency localization properties such that

wm;nðtÞ ¼ 2�m=2wð2�mt � nÞ ð1:46Þ

form an orthonormal basis for L2ðRÞ. These {wm;nðtÞ} are known as the
Littlewood–Paley wavelets. It has good space-frequency localization, given in the
following representation of f as

f ðtÞ ¼
X
m;n

f ;wm;n

� �
wm;nðtÞ: ð1:47Þ

An orthodox example of a wavelet w for which wm;n constitute an orthonormal
basis of L2ðRÞ is the Haar wavelet

wðtÞ ¼
1; 0� t\1

2

�1; 1
2� t\1

0; otherwise

8<: : ð1:48Þ

Historically, the Haar basis is the first orthonormal wavelet basis that was
invented long before the concept of wavelet was introduced. The joint venture of
Morlet and Grossmann led to a detailed mathematical study of the wavelet trans-
forms and applications.

Wavelet techniques enable us to divide a complicated function into several
simpler ones and study them separately. This property, along with a fast
wavelet algorithm, makes these techniques very attractive for analysis and syn-
thesis. Unlike Fourier-based analyses that use global (nonlocal) sine and cosine
functions as bases, wavelet analysis uses bases that are localized in time and fre-
quency to more effectively represent nonstationary signals. As a result, a wavelet
representation is much more compact and easier for implementation. Using the
powerful multiresolution analysis, one can represent a function by a finite sum of
components at different resolutions so that each component can be adaptively
processed based on the objectives of the application. This capability of representing
functions compactly and in several levels of resolutions is the major strength of the
wavelet analysis.

1.3.2 Orthonormal Wavelets

The orthonormal wavelets with good time-frequency localization are found to play
a significant role in wavelet theory and have a great variety of applications.
In general, the theory of wavelets instigates with a single function w 2 L2ð<Þ, and a

18 1 Mathematical Preliminaries



family of functions wm;n is constructed from this single function w by the operation
of binary dilation (i.e., dilation by 2m) and dyadic translation of n2�m so that

wm;nðtÞ ¼ 2
m
2w 2m t � n

2m

� �� �
; m; n 2 Z

¼ 2
m
2w 2mt � nð Þ;

ð1:49Þ

where the factor 2m
2 is introduced to ensure orthonormality.

Definition 14 Orthonormal Wavelet A wavelet w 2 L2ðRÞ is called an
orthonormal, if the family of functions wm;n, generated from w, is an orthonormal
basis of L2ðRÞ; that is,

wi;j

�
;wm;n

� ¼ di;mdj;n; i; j;m; n 2 Z:

Definition 15 Semi-orthogonal Wavelet A wavelet w 2 L2ðRÞ is called an
semi-orthogonal wavelet [33], if the family {wm;n} satisfies the following condition,

wi;j

�
;wm;n

� ¼ 0; i 6¼ m; i; j;m; n 2 Z:

Obviously, every semi-orthogonal wavelets generate an orthogonal decompo-
sition of L2ðRÞ, and every orthonormal wavelet is also a semi-orthogonal wavelet.

Construction of Orthonormal Wavelets

The construction of an orthonormal wavelet, viz. the Haar wavelet, is discussed by
using the properties of scaling functions and filters. The scaling function / satisfies
the dilation equation as

/ðtÞ ¼
ffiffiffi
2

p X1
n¼�1

cn/ð2t � nÞ; ð1:50Þ

where the coefficients cn are given by

cn ¼
ffiffiffi
2

p Z1
�1

/ðtÞ/ð2t � nÞdt: ð1:51Þ

Evaluating the above integral given in Eq. (1.51), with / ¼ v½0;1Þ, gives cn as
follows:

c0 ¼ c1 ¼ 1ffiffiffi
2

p and cn ¼ 0 for n 6¼ 0; 1:
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Here v½0;1Þ denotes the characteristic function given by

v½0;1ÞðtÞ ¼ 1; 0� t\1
0; otherwise



:

Hence, the dilation equation becomes

/ðtÞ ¼ /ð2tÞþ/ð2t � 1Þ: ð1:52Þ

This means that /ðtÞ is a linear combination of the even and odd translates of
/ð2tÞ and satisfies a very simple two-scale relation (1.52), which is shown in
Fig. 1.1.

Thus, the Haar mother wavelet is obtained as a simple two-scale relation

wðtÞ ¼ /ð2tÞ � /ð2t � 1Þ
¼ v½0;0:5Þ � v½0:5;1Þ

ð1:53Þ

¼
1; 0� t\1

2

�1; 1
2� t\1

0; otherwise

8<: ð1:54Þ

This two-scale relation (1.53) of w is represented in Fig. 1.2.

1.3.3 Multiresolution Analysis

In 1989, Stephane Mallat and Yves Meyer introduced the idea of multiresolution
analysis (MRA) [33, 34]. The fundamental idea of MRA is to represent a function
as a limit of successive approximations, each of which is a “smoother” version of
the original function. The successive approximations correspond to different reso-
lutions, which lead to the name multiresolution analysis as a formal approach to
construct orthogonal wavelet bases utilizing a definite set of rules. It also provides

Fig. 1.1 Two-scale relation of /ðtÞ ¼ /ð2tÞþ/ð2t � 1Þ
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the existence of so-called scaling functions and scaling filters which are then used
for the construction of wavelets and fast numerical algorithms. In applications, it is
an effective mathematical framework for the hierarchical decomposition of a signal
or an image into components of different scales represented by a sequence of
function spaces on R.

Any wavelet, orthogonal or semi-orthogonal, generates a direct sum decompo-
sition of L2ðRÞ. For each j 2 Z,, let us consider the closed subspaces

Vj ¼ : ::�Wj�2 �Wj�1; j 2 Z;

of L2ðRÞ. A set of subspaces Vj
� �

j2Z is said to be MRA of L2ðRÞ if it possesses the
following properties:

(i) Vj � Vjþ 1; 8j 2 Z;

(ii)
S
j2Z

Vj is dense in L2ðRÞ,
(iii)

T
j2Z

Vj ¼ f0g,
(iv) Vjþ 1 ¼ Vj �Wj,
(v) f ðtÞ 2 Vj , f ð2tÞ 2 Vjþ 1; 8j 2 Z:

Properties (ii)–(v) state that Vj
� �

j2Z is a nested sequence of subspaces that

effectively covers L2ðRÞ That is, every square integrable function can be approx-
imated as closely as desired by a function that belongs to at least one of the
subspaces Vj. A function u 2 L2ðRÞ is called a scaling function if it generates the
nested sequence of subspaces Vj and satisfies the dilation equation, namely

Fig. 1.2 Two-scale relation of wðtÞ ¼ /ð2tÞ � /ð2t � 1Þ
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uðtÞ ¼
X
k

pkuðat � kÞ; ð1:55Þ

with pk 2 l2 and a being any rational number.
For each scale j, since Vj � Vjþ 1, there exists a unique orthogonal comple-

mentary subspace Wj of Vj in Vjþ 1. This subspace Wj is called wavelet subspace
and is generated by wj;k ¼ wð2 jt � kÞ, where w 2 L2 is called the wavelet. From the
above discussion, these results follow easily

• Vj1 \Vj2 ¼ Vj2 ; j1 [ j2,
• Wj1 \Wj2 ¼ 0; j1 6¼ j2,
• Vj1 \Wj2 ¼ 0; j1 � j2.

Mathematically, the fundamental idea of multiresolution analysis is to represent
a function or signal as a limit of successive approximations, each of which is a finer
version of the function. These successive approximations correspond to different
levels of resolutions. Thus, multiresolution analysis is a formal approach to con-
structing orthonormal wavelet bases using a definite set of rules and procedures.
The key feature of this analysis is to describe mathematically the process of
studying signals or images at different time scales. From the point of view of
practical applications, MRA is a really effective mathematical framework for the
hierarchical decomposition of an image or signal into components of different
scales or frequencies.

In recent years, there have been many developments and new applications of
wavelet analysis for describing complex algebraic functions and analyzing empir-
ical continuous data obtained from many kinds of signals at different scales of
resolutions. The wavelet-based approximations of ordinary and partial differential
equations have been attracting the attention, since the contribution of orthonormal
bases of compactly supported wavelet by Daubechies and multiresolution
analysis-based fast wavelet transform algorithm by Beylkin et al. [41] gained
momentum to make wavelet approximations attractive.

In order to solve partial differential equations by numerical methods, the
unknown solution can be represented by wavelets of different resolutions, resulting
in a multigrid representation. The dense matrix resulting from an integral operator
can be sparsified using wavelet-based thresholding techniques to attain an arbitrary
degree of solution accuracy. The main feature of wavelets is its ability to convert
the given differential and integral equations to a system of linear or nonlinear
algebraic equations that can be solved by numerical methods.
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1.4 New Analytical and Numerical Techniques for Partial
and Fractional Differential Equations

1.4.1 Introduction

The purpose of this section is to deliver a brief description of various analytical and
numerical methods for solving partial and fractional differential equations. The
present research work focuses on new development of valuable analytical and
numerical techniques that have been examined for effectiveness and reliability over
other existing methods. Also, various analytical methods such as first integral
method (FIM) [42–46], optimal homotopy asymptotic method (OHAM) [47, 48],
homotopy analysis method (HAM) [49], variational iteration method (VIM)
[50, 51], and homotopy perturbation method (HPM) [52, 53] are used to compare
the accuracy of solutions for numerous partial as well as fractional differential
equations with the results obtained by the proposed techniques. The applicability of
these proposed methods has been examined for solving nonlinear partial differential
equations (PDEs) and fractional partial differential equations (FPDEs). The main
aim is to develop and improve significantly analytical and numerical techniques in
order to have advanced approaches to reinforce and complement classical methods.
The improved and developed techniques have been examined to be reliable,
accurate, effective, and efficient in both the analytic and numerical purposes. Thus,
the goal of this work is to encourage the researcher to get familiar with the beauty as
well as the effectiveness of these analytical and numerical techniques in the study of
nonlinear physical phenomena.

1.4.2 Modified Decomposition Method

Let us consider the following system of coupled partial differential equations

Lttu ¼ Lxxu� uþNðu; vÞ;
Ltv ¼ iLxxvþ iMðu; vÞ; ð1:56Þ

where Lt � @
@t, Ltt � @2

@t2, and Lxx � @2

@x2 symbolize the linear differential operators,

and the notations Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv symbolize the nonlinear
operators.

Applying the twofold integration inverse operator L�1
tt � R t0 R t0 ð
Þdtdt to the

system (1.56) and using the specified initial conditions yields
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uðx; tÞ ¼ uðx; 0Þþ tutðx; 0Þþ L�1
tt Lxxu� L�1

tt uþ L�1
tt Nðu; vÞ;

vðx; tÞ ¼ vðx; 0Þþ iL�1
t Lxxvþ iL�1

t Mðu; vÞ: ð1:57Þ

The Adomian decomposition method [54, 55] assumes an infinite series of
solutions for unknown function uðx; tÞ and vðx; tÞ given by

uðx; tÞ ¼
X1
n¼0

unðx; tÞ;

vðx; tÞ ¼
X1
n¼0

vnðx; tÞ:
ð1:58Þ

and nonlinear operators Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv by the infinite series of
Adomian’s polynomials given by

Nðu; vÞ ¼
X1
n¼0

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ; Mðu; vÞ ¼
X1
n¼0

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ;

where An and Bn are the appropriate Adomian polynomial which is generated
according to algorithm determined in [54, 55]. For the nonlinear operator Nðu; vÞ,
these polynomials can be defined as

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
N
X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0

ð1:59Þ

Similarly for the nonlinear operator Mðu; vÞ,

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
M

X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0

ð1:60Þ

These formulae are easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. For the sake of
convenience of the readers, we can give the first few Adomian polynomials for
Nðu; vÞ ¼ vj j2, Mðu; vÞ ¼ uv of the nonlinearity as
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A0 ¼ v0v0;
A1 ¼ v1v0 þ v0v1;

A2 ¼ v2v0 þ v0v2 þ v1v1;
. . .

and

B0 ¼ u0v0;
B1 ¼ u1v0 þ u0v1;

B2 ¼ u2v0 þ u0v2 þ u1v1;
. . .

and so on, and the rest of the polynomials can be constructed in a similar manner.
Substituting the initial conditions into Eq. (1.57) and consequently identifying

the zeroth components u0 and v0, then we obtain the subsequent components by the
following recursive equations by using the standard ADM

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An ; n� 0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn ; n� 0:
ð1:61Þ

Recently, Wazwaz [56] proposed that the construction of the zeroth component
of the decomposition series can be defined in a slightly different way. In [56], he
assumed that if the zeroth component u0 ¼ g and the function g are possible to
divide into two parts such as g1 and g2, the one can formulate the recursive
algorithm for u0 and general term unþ 1 in a form of the modified recursive scheme
as follows:

u0 ¼ g1

u1 ¼ g2 þ L�1
tt Lxxu0 � L�1

tt u0 þ L�1
tt A0

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An ; n� 1

ð1:62Þ

Similarly, if the zeroth component v0 ¼ g0 and the function g0 are possible to
divide into two parts such as g01 and g02, the one can formulate the recursive
algorithm for v0 and general term vnþ 1 in a form of the modified recursive scheme
as follows:

v0 ¼ g01;

v1 ¼ g02 þ iL�1
t Lxxv0 þ iL�1

t B0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn ; n� 1:

ð1:63Þ

This type of modification is giving more flexibility to the ADM in order to solve
complicate nonlinear differential equations. In many cases, the modified decom-
position scheme avoids unnecessary computation especially in the calculation of the
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Adomian polynomials. The computation of these polynomials will be reduced very
considerably by using the MDM.

It is worth noting that the zeroth components u0 and v0 are defined; then, the
remaining components un and vn ; n� 1 can be completely determined. As a
result, the components u0; u1; . . .; and v0; v1; . . .; are identified, and the series
solutions thus entirely determined. However, in many cases, the exact solution in a
closed form may be obtained.

The decomposition series (1.58) solutions generally converge very rapidly in
real physical problems [55]. The rapidity of this convergence means that few terms
are required. The convergence of this method has been rigorously established by
Cherruault [57], Abbaoui and Cherruault [58, 59], and Himoun et al. [60]. The
practical solutions will be the n-term approximations un and wn

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1;

wn ¼
Xn�1

i¼0

viðx; tÞ; n� 1;

ð1:64Þ

with

lim
n!1/n ¼ uðx; tÞ;
lim
n!1wn ¼ vðx; tÞ:

1.4.3 New Two-Step Adomian’s Decomposition Method

First, consider a one-dimensional fractional diffusion equation considered in [61]

@uðx; tÞ
@t

¼ dðxÞ @
auðx; tÞ
@xa

þ qðx; tÞ ð1:65Þ

on a finite domain xL < x < xR with 1 < a � 2. Here, d(x) > 0 is the diffusion
coefficient (or diffusivity), and a denotes the order of Riemann fractional derivative.

In this case, for solving Eq. (1.65), Adomian’s decomposition method has been
adopted. In light of this method, we assume that

u ¼
X1
n¼0

un ð1:66Þ

to be the solution of Eq. (1.65).
Now, Eq. (1.65) can be rewritten as
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Ltuðx; tÞ ¼ dðxÞDa
xuðx; tÞþ qðx; tÞ; ð1:67Þ

where Lt � @
@t which is an easily invertible linear operator, and Da

xð
Þ is the
Riemann–Liouville derivative of order a.

Therefore, by Adomian’s decomposition method, we can write

uðx; tÞ ¼ uðx; 0Þþ L�1
t dðxÞDa

x

X1
n¼0

un

 ! !
þ L�1

t ðqðx; tÞÞ: ð1:68Þ

Each term of series (1.66) is given by the standard Adomian decomposition
method recurrence relation

u0 ¼ f ;

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

; n� 0;
ð1:69Þ

where f ¼ uðx; 0Þþ L�1
t ðqðx; tÞÞ.

It is worth noting that once the zeroth component u0 is defined, then the
remaining components un, n� 1 can be completely determined; each term is
computed by using the previous term. As a result, the components u0; u1; . . . are
identified, and the series solutions thus entirely determined. However, in many
cases, the exact solution in a closed form may be obtained.

Recently, Wazwaz [56] proposed that the construction of the zeroth component
u0 of the decomposition series can be defined in a slightly different way. In [56], he
assumed that if the zeroth component u0 ¼ f and the function f is possible to divide
into two parts such as f1 and f2, then one can formulate the recursive algorithm for
u0 and general term unþ 1 in a form of the modified decomposition method
(MDM) recursive scheme as follows:

u0 ¼ f1;

u1 ¼ f2 þ L�1
t dðxÞDa

xun
� �

;

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

n� 1:

ð1:70Þ

Comparing the recursive scheme (1.69) of the standard Adomain method with
the recursive scheme (1.70) of the modified technique leads to the conclusion that in
Eq. (1.69), the zeroth component was defined by the function f, whereas in
Eq. (1.70), the zeroth component u0 is defined only by a part f1 of f. The remaining
part f2 of f is added to the definition of the component u1 in Eq. (1.70). Although the
modified technique needs only a slight variation from the standard Adomian
decomposition method, the results are promising in that it minimizes the size of
calculations needed and will accelerate the convergence. The modification could
lead to a promising approach for many applications in applied science.

The decomposition series solution (1.66) generally converges very rapidly in
real physical problems [54, 55]. The rapidity of this convergence means that few
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terms are required. The convergence of this method has been rigorously established
by Cherruault [57], Abbaoui and Cherruault [58, 59], and Himoun et al. [60]. The
practical solution will be the n-term approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1; ð1:71Þ

with

lim
n!1/n ¼ uðx; tÞ:

Luo [46] presented the theoretical support of how the exact solution can be
achieved by using only two iterations in the modified decomposition method. In
detail, it is possible because all other components vanish, if the zeroth component is
equal to the exact solution.

Although the modified decomposition method may provide the exact solution by
using two iterations only, the criterion of dividing the function f into two practical
parts, and the case where f consists only of one term remains unsolved so far. The
two-step Adomian decomposition method (TSADM) overcomes the difficulties
arising in the modified decomposition method.

In the following, Luo [62] presents the two-step Adomian decomposition
method. For the convenience of the reader, we consider the differential equation

LuþRuþNu ¼ g; ð1:72Þ

where L is the highest order derivative which is assumed to be easily invertible, R is
a linear differential operator of order less than L, Nu represents the nonlinear terms,
and g is the source term.

The main ideas of the two-step Adomian decomposition method are as follows:

(I) Applying the inverse operator L�1 to g, and using the given conditions, we
obtain u ¼ /þ L�1g, where the function / represents the term arising from
using the given conditions, all are assumed to be prescribed.
Let

u ¼
Xm
i¼0

ui; ð1:73Þ

where /0;/1; . . .;/m are the terms arising from integrating the source term
g and from using the given conditions. Based on this, we define
u0 ¼ uk þ � � � þukþ s, where k ¼ 0; 1; . . .;m, s ¼ 0; 1; . . .;m� k. Then, we
verify that u0 satisfies the original equation Eq. (1.72) and the given conditions
by substitution, once the exact solution is obtained, we stop. Otherwise, we go
to the following step two.
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(II) We set u0 ¼ u and continue with the standard Adomian recursive relation
ukþ 1 ¼ �L�1ðRukÞ � L�1ðAkÞ, k� 0.

Next, consider a two-dimensional fractional diffusion equation considered in
[63]

@uðx; y; tÞ
@t

¼ dðx; yÞ @
auðx; y; tÞ
@xa

þ eðx; yÞ @
buðx; y; tÞ
@yb

þ qðx; y; tÞ; ð1:74Þ

on a finite rectangular domain xL < x < xH and yL < y < yH, with fractional orders
1 < a � 2 and 1 < b � 2, where the diffusion coefficients d(x, y) > 0 and e(x,
y) > 0. The “forcing” function q(x, y, t) is used to represent sources and sinks.

Now, following the similar argument for one-dimensional fractional diffusion
equation, for Eq. (1.74) using Adomian’s decomposition method, we can obtain

uðx; y; tÞ ¼ uðx; y; 0Þþ L�1
t dðx; yÞDa

x

X1
n¼0

un

 ! !
þ L�1

t eðx; yÞDb
y

X1
n¼0

un

 ! !
þ L�1

t ðqðx; y; tÞÞ:
ð1:75Þ

The standard Adomian decomposition method recurrence scheme is

u0 ¼ f ;

unþ 1 ¼ L�1
t dðx; yÞDa

xun
� �þ L�1

t eðx; yÞDb
y un

� �
; n� 0; ð1:76Þ

where f ¼ uðx; y; 0Þþ L�1
t ðqðx; y; tÞÞ.

The modified decomposition method (MDM) recursive scheme is as follows

u0 ¼ f1;

u1 ¼ f2 þ L�1
t dðx; yÞDa

xu0
� �þ L�1

t eðx; yÞDb
y u0

� �
;

unþ 1 ¼ L�1
t dðx; yÞDa

xun
� �þ L�1

t eðx; yÞDb
y un

� �
; n� 1:

ð1:77Þ

Compared to the standard Adomian method and the modified method, we can
see that the two-step Adomian method may provide the solution by using two
iterations only.
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1.4.4 New Approach for Adomian’s Decomposition Method

Let us consider the following space fractional diffusion equation

@uðx; tÞ
@t

¼ jDa
xuðx; tÞ; 0\x\L; t� 0; 1\a� 2; ð1:78Þ

with the following boundary conditions

@uð0; tÞ
@x

¼ @uðL; tÞ
@x

¼ 0; t� 0; ð1:79Þ

and initial condition

uðx; 0Þ ¼ f ðxÞ; 0� x� L; ð1:80Þ

where j is the diffusion coefficient and Da
x is Caputo fractional derivative of order a.

Therefore, after considering the initial condition uðx; 0Þ ¼ f ðxÞ as Fourier cosine
series, we can take

uðx; 0Þ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
; ð1:81Þ

where cosc npx
L

� �
is the generalized cosine function defined in [8] and c ¼ a=2,

c 2 1
2 ; 1
� �

.
It is known that Dc

x sinc x ¼ cosc x, lim
c!1

sinc x ¼ sin x, and Dc
x sinc x ¼ cosc x,

where cosc x ¼
P1

n¼0
ð�1Þnx2nc
Cð2ncþ 1Þ.

According to the Adomian decomposition method, we can write

uðx; tÞ ¼ uðx; 0Þþ L�1
t ðdDa

xuðx; tÞÞ; ð1:82Þ

where

u0 ¼ uðx; 0Þ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
;

u1 ¼ L�1
t ðdDa

xu0Þ;
u2 ¼ L�1

t ðdDa
xu1Þ;

u3 ¼ L�1
t ðdDa

xu2Þ;

and so on.
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The practical solution will be the n-term approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1 ð1:83Þ

with

lim
n!1/n ¼ uðx; tÞ:

1.4.5 Modified Homotopy Analysis Method with Fourier
Transform

To describe the basic idea, let us consider the following fractional differential
equation

N u x; tð Þ½ � ¼ 0; ð1:84Þ

where N is a nonlinear differential operator containing Riesz fractional derivative
defined in Eq. (1.18), x and t denote independent variables and u x; tð Þ is an
unknown function. For simplicity, we ignore all boundary or initial conditions,
which can be treated in a similar way.

Then, applying Fourier transform and using Eq. (1.20), we can reduce fractional
differential Eq. (1.84) to the following Fourier transformed the differential equation

N ûðk; tÞ½ � ¼ 0; ð1:85Þ

where ûðk; tÞ is the Fourier transform of u x; tð Þ.
By means of the HAM [64, 65], one first constructs the zeroth-order deformation

equation of Eq. (1.85) as

1� pð ÞL / k; t; pð Þ � û0 k; tð Þ½ � ¼ p�hN / k; t; pð Þ½ �; ð1:86Þ

where L is an auxiliary linear operator, / k; t; pð Þ is an unknown function, û0 k; tð Þ is
an initial guess of û k; tð Þ, �h 6¼ 0 is an auxiliary parameter, and p 2 ½0; 1� is the
embedding parameter. For the sake of convenience, the expression in nonlinear
operator form has been modified in HAM. In this modified homotopy analysis
method, the nonlinear term appeared in expression for nonlinear operator form has
been expanded using Adomian’s type of polynomials as

P1
n¼0 Anpn [55].

Obviously, when p ¼ 0 and p ¼ 1, we have

/ k; t; 0ð Þ ¼ û0 k; tð Þ; / k; t; 1ð Þ ¼ û k; tð Þ; ð1:87Þ
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respectively. Thus, as p increases from 0 to 1, the solution / k; t; pð Þ varies from the
initial guess û0 k; tð Þ to the solution û k; tð Þ. Expanding / x; t; pð Þ in Taylor series
with respect to the embedding parameter p, we have

/ k; t; pð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

pmûm k; tð Þ; ð1:88Þ

where ûm k; tð Þ ¼ 1
m!

@m

@pm / k; t; pð Þ




p¼0

.

The convergence of the series (1.88) depends upon the auxiliary parameter �h. If
it is convergent at p ¼ 1, we have

û k; tð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

ûm k; tð Þ;

which must be one of the solutions of the original nonlinear equation.
Differentiating the zeroth-order deformation Eq. (1.86) m times with respect to

p and then setting p ¼ 0 and finally dividing them by m!, we obtain the following
mth-order deformation equation

L ûm k; tð Þ � vmûm�1 k; tð Þ½ � ¼ �h<m û0; û1; . . .; ûm�1ð Þ; ð1:89Þ

where

<m û0; û1; . . .; ûm�1ð Þ ¼ 1
m� 1ð Þ!

@m�1N / k; t; pð Þ½ �
@pm�1






p¼0

and

vm ¼ 1; m[ 1
0; m� 1



: ð1:90Þ

It should be noted that ûmðk; tÞ for m� 1 is governed by the linear Eq. (1.89)
which can be solved by symbolic computational software. Then, by applying
inverse Fourier transformation, we can get umðx; tÞ.

1.4.6 Modified Fractional Reduced Differential Transform
Method

Consider the following general nonlinear partial differential equation:
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Luðx; tÞþRuðx; tÞþNuðx; tÞ ¼ gðx; tÞ; ð1:91Þ

with initial condition

uðx; 0Þ ¼ f ðxÞ;

where L � Da
t is an easily invertible linear operator, R is the remaining part of the

linear operator, Nuðx; tÞ is a nonlinear term, and gðx; tÞ is an inhomogeneous term.
We can look for the solution uðx; tÞ of the Eq. (1.91) in the form of the fractional

power series:

uðx; tÞ ¼
X1
k¼0

UkðxÞtak; ð1:92Þ

where t-dimensional spectrum function UkðxÞ is the transformed function of uðx; tÞ.
Now, let us write the nonlinear term

Nðu; tÞ ¼
X1
n¼0

An U0ðxÞ;U1ðxÞ; � � � ;UnðxÞð Þ tna; ð1:93Þ

where An is the appropriate Adomian’s polynomials [55]. In this specific nonlin-
earity, we use the general form of the formula for An Adomian’s polynomials as

An U0ðxÞ;U1ðxÞ; � � � ;UnðxÞð Þ ¼ 1
n!

dn

dkn
N
X1
i¼0

kiUiðxÞ
 !" #

k¼0

: ð1:94Þ

Now, applying Riemann–Liouville integral Ja both sides of Eq. (1.91), we have

uðx; tÞ ¼ Uþ Jagðx; tÞ � JaRuðx; tÞ � JaNuðx; tÞ; ð1:95Þ

where from the initial condition U ¼ uðx; 0Þ ¼ f ðxÞ.
Substituting Eqs. (1.92) and (1.93), for uðx; tÞ and Nðu; tÞ, respectively, in

Eq. (1.95) yields

X1
k¼0

UkðxÞtak ¼ f ðxÞþ Ja
X1
k¼0

GkðxÞtak
 !

� Ja R
X1
k¼0

UkðxÞtak
 ! !

� Ja
X1
k¼0

AkðxÞtak
 !

;

where gðx; tÞ ¼ P1
k¼0

GkðxÞtak
� �

, and GkðxÞ is the transformed function of gðx; tÞ.
After carry out Riemann–Liouville integral Ja, we obtain
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P1
k¼0

UkðxÞ tak ¼ f ðxÞþ P1
k¼0

GkðxÞ t
aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

� �
� R

P1
k¼0

UkðxÞ t
aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

� �� �
� P1

k¼0
AkðxÞ t

aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

� �
:

Finally, equating coefficients of like powers of t, we derive the following
recursive formula

U0ðxÞ ¼ f ðxÞ;

and

Ukþ 1ðxÞ ¼GkðxÞ Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ � R UkðxÞ Cðakþ 1Þ

Cðaðkþ 1Þþ 1Þ
� �

� AkðxÞ Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ ; k� 0:

ð1:96Þ

Using the known U0ðxÞ, all components U1ðxÞ;U2ðxÞ; � � � ;UnðxÞ; � � � ;, etc., are
determinable by using Eq. (1.96).

Substituting these U0ðxÞ;U1ðxÞ;U2ðxÞ; � � � ;UnðxÞ; � � � ;, etc., in Eq. (1.92), the
approximate solution can be obtained as

~upðx; tÞ ¼
Xp
m¼0

UmðxÞ tma; ð1:97Þ

where p is the order of approximate solution.
Therefore, the corresponding exact solution is given by

uðx; tÞ ¼ lim
p!1

~upðx; tÞ: ð1:98Þ

1.4.7 Coupled Fractional Reduced Differential Transform
Method

In order to introduce coupled fractional reduced differential transform, two cases are
considered.

For Functions with Two Independent Variables

In this case, Uðh; k � hÞ is considered as the coupled fractional reduced differential
transform of uðx; tÞ. If the function uðx; tÞ is analytic and differentiated continuously
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with respect to time t, then we define the fractional coupled reduced differential
transform of uðx; tÞ as

Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞ

t uðx; tÞ
h i

t¼0
; ð1:99Þ

whereas the inverse transform of Uðh; k � hÞ is

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb; ð1:100Þ

which is one of the solutions of coupled fractional differential equations.

Theorem 1.3 Suppose that Uðh; k � hÞ and Vðh; k � hÞ are coupled fractional
reduced differential transform of functions uðx; tÞ and vðx; tÞ, respectively.
(i) If uðx; tÞ ¼ f ðx; tÞ � gðx; tÞ, then Uðh; k � hÞ ¼ Fðh; k � hÞ � Gðh; k � hÞ.
(ii) If uðx; tÞ ¼ af ðx; tÞ, where a 2 R, then Uðh; k � hÞ ¼ aFðh; k � hÞ.
(iii) If f ðx; tÞ ¼ uðx; tÞvðx; tÞ, then Fðh; k � hÞ ¼Ph

l¼0

Pk�h

s¼0
Uðh� l; sÞVðl; k�

h� sÞ.
(iv) If f ðx; tÞ ¼ Da

t uðx; tÞ, then

Fðh; k � hÞ ¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ:

(v) If f ðx; tÞ ¼ Db
t vðx; tÞ, then

Fðh; k � hÞ ¼ Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ:

Proof of Theorem 1.3 (i)

If uðx; tÞ ¼ f ðx; tÞ � gðx; tÞ, then according to Eq. (1.99)
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Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞ

t f ðx; tÞ � gðx; tÞð Þ
h i

t¼0

¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞf ðx; tÞ

h i
t¼0

� 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞgðx; tÞ

h i
t¼0

Therefore, in view of Eq. (1.99),

Uðh; k � hÞ ¼ Fðh; k � hÞ � Gðh; k � hÞ

where Fðh; k � hÞ ¼ 1
Cðhaþðk�hÞbþ 1Þ Dðhaþðk�hÞbÞf ðx; tÞ� �

t¼0

and Gðh; k � hÞ ¼ 1
Cðhaþðk�hÞbþ 1Þ Dðhaþðk�hÞbÞgðx; tÞ� �

t¼0

Proof of Theorem 1.3 (ii)

If uðx; tÞ ¼ af ðx; tÞ where a 2 R, then according to Eq. (1.99)

Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞaf ðx; tÞ

h i
t¼0

¼ a
1

Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞf ðx; tÞ
h i

t¼0

� �
¼ aFðh; k � hÞ

Proof of Theorem 1.3 (iii)

According to Eq. (1.100)

f ðx; tÞ ¼ Uð0; 0ÞVð0; 0Þþ Uð1; 0ÞVð0; 0ÞþUð0; 0ÞVð1; 0Þð Þta
þ Uð0; 1ÞVð0; 0ÞþUð0; 0ÞVð0; 1Þf gtb
þ Uð1; 0ÞVð0; 1ÞþUð0; 1ÞVð1; 0ÞþUð1; 1ÞVð0; 0ÞþUð0; 0ÞVð1; 1Þð Þtaþ b þ � � �

¼
X1
k¼0

Xk
h¼0

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ
 !

thaþðk�hÞb

Hence, Fðh; k � hÞ ¼Ph
l¼0

Pk�h

s¼0
Uðh� l; sÞVðl; k � h� sÞ, identified in view of

Eq. (1.100).
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Proof of Theorem 1.3 (iv)

If f ðx; tÞ ¼ Da
t uðx; tÞ, then according to Eq. (1.99)

Fðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ D

ðhþ 1Þaþðk�hÞb
t uðx; tÞ

h i
t¼0

¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ

1
Cððhþ 1Þaþ ðk � hÞbþ 1ÞD

ðhþ 1Þaþ ðk�hÞb
t uðx; tÞ

� 	
t¼0

¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ

where Uðhþ 1; k � hÞ ¼ 1
Cððhþ 1Þaþðk�hÞbþ 1ÞD

ðhþ 1Þaþ ðk�hÞb
t uðx; tÞ

h i
t¼0

Proof of Theorem 1.3 (v)

If f ðx; tÞ ¼ Db
t vðx; tÞ, then according to Eq. (1.99)

Fðh; k � hÞ ¼ 1
Cðhaþ ðk � hÞbþ 1Þ D

ðhaþ ðk�hþ 1ÞbÞ
t vðx; tÞ

h i
t¼0

¼ Cðhaþ ðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ

1
Cðhaþðk � hþ 1Þbþ 1ÞD

ðhaþðk�hþ 1ÞbÞ
t vðx; tÞ

� 	
t¼0

¼ Cðhaþ ðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ

where Vðh; k � hþ 1Þ ¼ 1
Cðhaþðk�hþ 1Þbþ 1ÞD

ðhaþ ðk�hþ 1ÞbÞ
t vðx; tÞ

h i
t¼0

For Functions with Three Independent Variables

In this case, Uðh; k � hÞ is considered as the coupled fractional reduced differential
transform of uðx; y; tÞ. If the function uðx; y; tÞ is analytic and differentiated con-
tinuously with respect to time t, then we define the fractional coupled reduced
differential transform of uðx; y; tÞ as

Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞ

t uðx; y; tÞ
h i

t¼0
; ð1:101Þ

whereas the inverse transform of Uðh; k � hÞ is

uðx; y; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb; ð1:102Þ

which is one of the solutions of coupled fractional differential equations.

Theorem 1.4. Suppose that Uðh; k � hÞ and Vðh; k � hÞ are coupled fractional
reduced differential transform of functions uðx; y; tÞ and vðx; y; tÞ, respectively.
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(i) If uðx; y; tÞ ¼ f ðx; y; tÞ � gðx; y; tÞ, then Uðh; k � hÞ ¼ Fðh; k � hÞ � Gðh;
k � hÞ.

(ii) If uðx; y; tÞ ¼ af ðx; y; tÞ, where a 2 R, then Uðh; k � hÞ ¼ aFðh; k � hÞ.
(iii) If f ðx; y; tÞ ¼ uðx; y; tÞvðx; y; tÞ, then Fðh; k � hÞ ¼Ph

l¼0

Pk�h

s¼0
Uðh� l; sÞVðl;

k � h� sÞ.
(iv) If f ðx; y; tÞ ¼ Da

t uðx; y; tÞ, then

Fðh; k � hÞ ¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ:

(v) If f ðx; y; tÞ ¼ Db
t vðx; y; tÞ, then

Fðh; k � hÞ ¼ Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ:

The proofs of Theorem 1.4 (i), (ii) and (iv), (v) can be obtained in a similar manner
as done for the functions with two independent variables.

Proof of Theorem 1.4 (iii)

f ðx; y; tÞ ¼ uðx; y; tÞvðx; y; tÞ

¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþ ðk�hÞb
 ! X1

k¼0

Xk
h¼0

Vðh; k � hÞthaþðk�hÞb
 !

¼ Uð0; 0ÞVð0; 0Þþ Uð1; 0ÞVð0; 0ÞþUð0; 0ÞVð1; 0Þð Þta þ Uð0; 1ÞVð0; 0ÞþUð0; 0ÞVð0; 1Þð Þtb
þ Uð1; 0ÞVð0; 1ÞþUð0; 1ÞVð1; 0ÞþUð1; 1ÞVð0; 0ÞþUð0; 0ÞVð1; 1Þð Þtaþb þ . . .

¼
X1
k¼0

Xk
h¼0

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ
 !

thaþðk�hÞb:

Hence,

Fðh; k � hÞ ¼
Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ:

1.4.8 Optimal Homotopy Asymptotic Method

The OHAM was introduced and developed by Merinca et al. [66]. In OHAM, the
control and adjustment of the convergence region are provided in a convenient way.
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To illustrate the basic ideas of optimal homotopy asymptotic method [67, 68], we
consider the following nonlinear differential equation

A u x; tð Þð Þþ g x; tð Þ ¼ 0; x 2 X ð1:103Þ

with the boundary conditions

B u;
@u
@t

� �
¼ 0; x 2 C ð1:104Þ

where A is a differential operator, B is a boundary operator, u x; tð Þ is an unknown
function, C is the boundary of the domain X, and g x; tð Þ is a known analytic
function.

The operator A can be decomposed as

A ¼ LþN; ð1:105Þ

where L is a linear operator and N is a nonlinear operator.
We construct a homotopy u x; t ; pð Þ : X� 0; 1½ � ! < which satisfies

H u x; t ; pð Þ; pð Þ ¼ 1� pð Þ L u x; t ; pð Þð Þþ g x; tð Þ½ �
� H pð Þ A u x; t ; pð Þð Þþ g x; tð Þ½ � ¼ 0;

ð1:106Þ

where p 2 0; 1½ � is an embedding parameter, H pð Þ is a nonzero auxiliary function
for p 6¼ 0 and H 0ð Þ ¼ 0:When p ¼ 0 and p ¼ 1;, we have u x; t ; 0ð Þ ¼ u0 x; tð Þ and
u x; t ; 1ð Þ ¼ u x; tð Þ, respectively.

Thus, as p varies from 0 to 1, the solution u x; t ; pð Þ approaches from u0 x; tð Þ to
u x; tð Þ.

Here u0 x; tð Þ is obtained from Eqs. (1.106) and (1.104) with p ¼ 0 yields

L u x; t ; 0ð Þð Þþ g x; tð Þ ¼ 0; B u0;
@u0
@t

� �
¼ 0: ð1:107Þ

The auxiliary function H pð Þ is chosen in the form

H pð Þ ¼ pC1 þ p2C2 þ p3C3 þ : : : ð1:108Þ

where C1; C2;C3; ::: are constants to be determined. To get an approximate solu-
tion, ~u x; t ; p;C1;C2;C3; . . .ð Þ is expanded in a series about p as

~u x; t ; p;C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
X1
i¼1

ui x; t;C1;C2;C3; . . .ð Þpi: ð1:109Þ

Substituting Eq. (1.109) in Eq. (1.106) and equating the coefficients of like
powers of p, we will have the following equations
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L u1 x; tð Þþ g x; tð Þð Þ ¼ C1N0 u0 x; tð Þð Þ; B u1;
@u1
@t

� �
¼ 0: ð1:110Þ

L u2 x; tð Þð Þ � L u1 x; tð Þð Þ ¼ C2N0 u0 x; tð Þð ÞþC1 L u1 x; tð Þð ÞþN1 u0 x; tð Þ; u1 x; tð Þð Þð Þ;

B u2;
@u2
@t

� �
¼ 0:

ð1:111Þ

and hence, the general governing equations for uj x; tð Þ are given by

L uj x; tð Þ� � ¼L uj�1 x; tð Þ� �þCjN0 u0 x; tð Þð Þ

þ
Xj�1

i¼1

Ci L uj�1 x; tð Þ� �þNj�1 u0 x; tð Þ; :::;uj�1 x; tð Þ� �� �
;

ð1:112Þ

j ¼ 2; 3;:::
where Nj u0 x; tð Þ; :::;uj x; tð Þ� �

is the coefficient of p j in the expansion of
N u x; t ; pð Þð Þ about the embedding parameter p and

N u x; t ; p;C1;C2;C3; . . .ð Þð Þ ¼ N0 u0 x; tð Þð Þþ
X1
j¼1

Nj u0; u1; :::; uj
� �

p j: ð1:113Þ

It is observed that the convergence of the series (1.109) depends upon the
auxiliary constants C1;C2;C3; . . ..

The approximate solution of Eq. (1.103) can be written in the following form

~u x; t ; C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
Xn�1

j¼1

uj x; t;C1;C2;C3; . . .ð Þ: ð1:114Þ

Substituting Eq. (1.114) in Eq. (1.103), we get the following expression for the
residual

Rn x; t ;C1;C2;C3; . . .ð Þ ¼ L ~u x; t ;C1;C2;C3; . . .ð Þð ÞþN ~u x; t ;C1;C2;C3; . . .ð Þð Þþ g x; tð Þ:
ð1:115Þ

If Rn x; t ;C1;C2;C3; . . .ð Þ ¼ 0;, then ~u x; t ;C1;C2;C3; . . .ð Þ is the exact solution.
Generally, such case does not arise for nonlinear problems. The nth-order
approximate solution given by Eq. (1.114) depends on the auxiliary constants
C1;C2;C3; . . ., and these constants can be optimally determined by various methods
such as weighted residual least square method, Galerkin’s method, and collocation
method.
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The convergence of the nth approximate solution depends upon the optimal
values of the unknown constants C1;C2;C3; . . .. When the convergence control
constants C1;C2;C3; . . . are known by the above-mentioned methods, then the
approximate solution of Eq. (1.103) is well determined.

1.4.9 First Integral Method

Let us consider the time fractional differential equation with independent variables
x ¼ ðx1; x2; . . .; xm; tÞ and a dependent variable u.

Pðu;Da
t u; ux1 ; ux2 ; ux3 ;D

2a
t u; ux1x1 ; ux1x2 ; ux2x2 ; ux3x3 ; . . .Þ ¼ 0; 0\a� 1 ð1:116Þ

where Da
t u is the fractional modified Riemann–Liouville derivatives of u.

Using the variable transformation

uðx1; x2; . . .; xm; tÞ ¼ UðnÞ; n ¼ x1 þ l1x2 þ . . .þ lm�1xm þ kta

Cð1þ aÞ ; ð1:117Þ

where k, li, and k are constants to be determined later; the fractional differential
Eq. (1.117) is reduced to a nonlinear ordinary differential equation

H ¼ ðUðnÞ;U0ðnÞ;U00ðnÞ; . . .Þ: ð1:118Þ

We assume that Eq. (1.117) has a solution in the form

UðnÞ ¼ XðnÞ; ð1:119Þ

and introduce a new independent variable YðnÞ ¼ UnðnÞ, which leads to a new
system of ODEs of the form

dXðnÞ
dn

¼ YðnÞ;
dYðnÞ
dn

¼ GðXðnÞ; YðnÞÞ:
ð1:120Þ

Now, let us recall the first integral method [69]. By using the division theorem
for two variables in the complex domain C which is based on the Hilbert’s
Nullstellensatz Theorem [70], we can obtain one first integral to Eq. (1.120) which
can reduce Eq. (1.118) to a first-order integrable ordinary differential equation. An
exact solution to Eq. (1.116) is then obtained by solving this equation directly.

Theorem 1.5 (Division theorem) Suppose that Qðx; yÞ and Rðx; yÞ are polynomials
in C½½x; y��, and Q(x, y) is irreducible in C½½x; y��. If Rðx; yÞ vanishes at all zero
points of Qðx; yÞ, then there exists a polynomial Hðx; yÞ in C½½x; y�� such that
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Rðx; yÞ ¼ Qðx; yÞHðx; yÞ: ð1:121Þ

The division theorem follows immediately from the Hilbert’s Nullstellensatz
theorem from the ring theory of commutative algebra [70–72].

Theorem 1.6 (Hilbert’s Nullstellensatz theorem, see [70]) Let K be a field and L be
an algebraic closure of K. Then

(i) Every ideal c ofK½X1;X2; . . .;Xn� not containing 1 admits at least one zero in Ln.
(ii) Let x ¼ ðx1; x2; . . .; xnÞ and y ¼ ðy1; y2; . . .; ynÞ be two elements of Ln; for the

set of polynomials of K½X1;X2; . . .;Xn� zero at x to be identical with the set of
polynomials of K½X1;X2; . . .;Xn� zero at y, it is necessary and sufficient that
there exists an K-automorphism S of L such that yi ¼ SðxiÞ for 1� i� n.

(iii) For an ideal a of K½X1;X2; . . .;Xn� to be maximal, it is necessary and suf-
ficient that there exists an x in Ln such that a is the set of polynomials of
K½X1;X2; . . .;Xn� zero at x.

(iv) For a polynomial Q of K½X1;X2; . . .;Xn� to be zero on the set of zeros in Ln of
an ideal c of K½X1;X2; . . .;Xn�, it is necessary and sufficient that there exists
an integer m[ 0 such that Qm 2 c.”

Using the ring conception of commutative algebra, Feng [69] first proposed the
first integral method in solving Burgers–KdV equation. The basic idea of this
method is to construct the first integral with polynomial coefficients of an explicit
form to an equivalent autonomous planar system by using the division theorem.

1.4.10 Haar Wavelets and the Operational Matrices

Morlet (1982) [33] first introduced the idea of wavelets as a family of functions
constructed from dilation and translation of a single function called the “mother
wavelet.” Haar wavelet functions have been used from 1910 and were introduced
by the Hungarian mathematician Alfred Haar [73]. Haar wavelets (which are
Daubechies wavelets of order 1) consist of piecewise constant functions on the real
line that can take only three values, i.e., 0, 1, and −1 and are therefore the simplest
orthonormal wavelets with a compact support. Haar wavelet method to be used due
to the following features: simpler and fast, flexible, convenient, small computa-
tional costs, and computationally attractive. The Haar functions are a family of
switched rectangular waveforms where amplitudes can differ from one function to
another.

The Haar wavelet family for x 2 0; 1½ Þ is defined as follows [74]

hiðxÞ ¼
1 x 2 n1; n2½ Þ
�1 x 2 n2; n3½ Þ
0 else where

8<: ð1:122Þ

42 1 Mathematical Preliminaries



where

n1 ¼
k
m
; n2 ¼

kþ 0:5
m

; n3 ¼
kþ 1
m

:

In these formulae integer m ¼ 2 j, j ¼ 0; 1; 2; . . .; J indicates the level of the
wavelet; k ¼ 0; 1; 2; . . .;m� 1 is the translation parameter. The maximum level of
resolution is J. The index i is calculated from the formula i ¼ mþ kþ 1; in the case
of minimal values m ¼ 1, k ¼ 0, we have i ¼ 2. The maximal value of
i ¼ 2M ¼ 2Jþ 1. It is assumed that the value i ¼ 1 corresponds to the scaling
function for which

hi xð Þ ¼ 1 for x 2 0; 1½ Þ
0 elsewhere:



ð1:123Þ

In the following analysis, integrals of the wavelets are defined as

pi xð Þ ¼
Zx
0

hi xð Þdx; qi xð Þ ¼
Zx
0

pi xð Þdx; ri xð Þ ¼
Zx
0

qi xð Þdx:

This can be done with the aid of (1.122)

pi xð Þ ¼
x� n1 for x 2 n1; n2½ Þ
n3 � x for x 2 n2; n3½ Þ
0 elsewhere

8<: : ð1:124Þ

qi xð Þ ¼
0 for x 2 0; n1½ Þ
1
2 x� n1ð Þ2 for x 2 n1; n2½ Þ
1

4m2 � 1
2 n3 � xð Þ2 for x 2 n2; n3½ Þ

1
4m2 for x 2 n3; 1½ �

8>><>>: : ð1:125Þ

ri xð Þ ¼

1
6 x� n1ð Þ3 for x 2 n1; n2½ Þ
1

4m2 x� n2ð Þþ 1
6 n3 � xð Þ3 for x 2 n2; n3½ Þ

1
4m2 x� n2ð Þ for x 2 n3; 1½ Þ

0 elsewhere

8>><>>: : ð1:126Þ

The collocation points are defined as

xl ¼ l� 0:5
2M

; l ¼ 1; 2; . . .; 2M:

It is expedient to introduce the 2M � 2M matrices H, P, Q, and R with the
elements Hði; lÞ ¼ hiðxlÞ, Pði; lÞ ¼ piðxlÞ, Qði; lÞ ¼ qiðxlÞ, and Rði; lÞ ¼ riðxlÞ,
respectively.
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In 2012, the generalized Haar wavelet operational matrix of integration has been
derived by the learned researcher Saha Ray [75]. Usually, the Haar wavelets are
defined for the interval t 2 ½0; 1Þ, but in general case t 2 ½A; B�, we divide the
interval ½A; B� into m equal subintervals; each of width Dt ¼ ðB� AÞ=m. In this
case, the orthogonal set of Haar functions is defined in the interval ½A; B� by [75]

h0ðtÞ ¼ 1 t 2 ½A;B�;
0 elsewhere



: ð1:127Þ

and

hiðtÞ ¼
1; f1ðiÞ� t\ f2ðiÞ
�1; f2ðiÞ� t\ f3ðiÞ
0; otherwise

8<: : ð1:128Þ

where

f1ðiÞ ¼ Aþ k � 1
2 j

� �
ðB� AÞ ¼ Aþ k � 1

2 j

� �
mDt;

f2ðiÞ ¼ Aþ k � 1=2ð Þ
2 j

� �
ðB� AÞ ¼ Aþ k � 1=2ð Þ

2 j

� �
mDt;

f3ðiÞ ¼ Aþ k
2 j

� �
ðB� AÞ ¼ Aþ k

2 j

� �
mDt;

for i ¼ 1; 2; � � � ;m, m ¼ 2J and J is a positive integer which is called the maximum
level of resolution. Here j and k represent the integer decomposition of the index i,
i.e., i ¼ kþ 2 j � 1, 0� j\i, and 1� k\2 j þ 1:

The mutual orthogonalities of all Haar wavelets can be expressed as

Zb
a

hmðtÞhnðtÞdt ¼ ðb� aÞ2�jdmn ¼ ðb� aÞ2�j; m ¼ n ¼ 2 j þ k
0; m 6¼ n



:

Function Approximation

Any function yðtÞ 2 L2ð½0; 1ÞÞ can be expanded into Haar wavelets by [76]

yðtÞ ¼ c0h0ðtÞþ c1h1ðtÞþ c2h2ðtÞþ � � � ; where cj ¼
Z1
0

yðtÞhjðtÞdt: ð1:129Þ
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If yðtÞ is approximated as piecewise constant in each subinterval, the sum in
Eq. (1.129) may be terminated after m terms, and consequently, we can write
discrete version in the matrix form as

Y �
Xm�1

i¼0

cihiðtlÞ
 !

1�m

¼ CT
mHm; ð1:130Þ

where Y and CT
m are the m-dimensional row vectors.

Here Hm is the Haar wavelet matrix of order m defined by
Hm ¼ ½h0; h1; � � � ; hm�1�T , i.e.

Hm ¼
h0
h1
� � �
hm�1

2664
3775 ¼

h0;0 h0;1 � � � h0;m�1

h1;0 h1;1 � � � h1;m�1

..

. ..
. ..

.

hm�1;0 hm�1;1 . . . hm�1;m�1

26664
37775: ð1:131Þ

where h0; h1; � � � ; hm�1 are the discrete form of the Haar wavelet bases.
The collocation points are given by

tl ¼ Aþ l� 0:5ð ÞD t; l ¼ 1; 2; � � � ;m: ð1:132Þ

Operational Matrix of the General-Order Integration

The integration of the HmðtÞ ¼ h0ðtÞ; h1ðtÞ; . . .; hm�1ðtÞ½ �T can be approximated by
[77]

Z t

0

HmðsÞds ffi QHmðtÞ; ð1:133Þ

where Q is called the Haar wavelet operational matrix of integration which is a
square matrix of m-dimension. To derive the Haar wavelet operational matrix of the
general order of integration, we recall the fractional integral of order að[ 0Þ which
is defined by Podlubny [4]

Jaf ðtÞ ¼ 1
CðaÞ

Z t

0

ðt � sÞa�1f ðsÞds; a[ 0; a 2 Rþ ð1:134Þ

where Rþ is the set of positive real numbers.
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The operational matrix for a general order was first time derived by learned
researcher Saha Ray [75]. The Haar wavelet operational matrix Qa for integration
of the general order a is given by [75]

QaHmðtÞ ¼ JaHmðtÞ ¼ Jah0ðtÞ; Jah1ðtÞ; . . .; Jahm�1ðtÞ½ �T :

Thus,

QaHmðtÞ ¼ Qh0ðtÞ;Qh1ðtÞ; � � � ;Qhm�1ðtÞ½ �T : ð1:135Þ

where

Qh0ðtÞ ¼
ta

Cð1þ aÞ ; t 2 ½A; B�;
0; elsewhere



: ð1:136Þ

and

QhiðtÞ ¼
0; A� t\f1ðiÞ;
/1; f1ðiÞ� t\f2ðiÞ;
/2; f2ðiÞ� t\f3ðiÞ;
/3; f3ðiÞ� t\B;

8>><>>: : ð1:137Þ

where

/1 ¼
t � f1ðiÞð Þa
Cðaþ 1Þ ;

/2 ¼
t � f1ðiÞð Þa
Cðaþ 1Þ � 2

t � f2ðiÞð Þa
Cðaþ 1Þ ;

/3 ¼
t � f1ðiÞð Þa
Cðaþ 1Þ � 2

t � f2ðiÞð Þa
Cðaþ 1Þ þ t � f3ðiÞð Þa

Cðaþ 1Þ :

for i ¼ 1; 2; � � � ;m, m ¼ 2J and J is a positive integer, called the maximum level of
resolution. Here j and k represent the integer decomposition of the index i,
i.e.i ¼ kþ 2 j � 1, 0� j\i and 1� k\2 j þ 1:

1.5 Numerical Methods for Solving Stochastic
Point Kinetics Equation

The point kinetics equations are the most essential model in the field of nuclear
science and engineering. The modeling of these equations intimates the
time-dependent behavior of a nuclear reactor [78–81]. Noise in reactors can be
described by conventional point reactor kinetic equations (PRKE) with fluctuation
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introduced in some of the parameters. Such equations may be referred to as
stochastic point reactor kinetic equations. Power reactor noise analysis may be
viewed as study of a reactor’s response to a stochastic reactivity or source input.
The difficulty of solving stochastic point reactor kinetic equations arises from the
fact that they are nonlinear. The stochastic behavior of a point reactor is modeled
with a system of Itô stochastic differential equations.

The point kinetics equations model a system of interacting populations,
specifically the populations of neutrons and delayed neutron precursors. The
dynamical process explained by the point kinetics equations is stochastic in nature.
The neutron density and delayed neutron precursor concentrations differ randomly
with respect to time. At the levels of high power, random behavior is imperceptible.
But at low-power levels, such as at the beginning, random fluctuation in the neutron
density and neutron precursor concentrations can be crucial.

The numerical solutions for neutron population density and sum of precursors
concentration population density have been solved with stochastic piecewise con-
stant approximation (PCA) method and Monte Carlo computations by using dif-
ferent step reactivity functions [81]. The derivation and the solution for stochastic
neutron point kinetics equation have elaborately described in the work of [82] by
considering the same parameters and different step reactivity with Euler–Maruyama
method and strong order 1.5 Taylor method. It can be observed that the numerical
methods like Euler–Maruyama method and strong order 1.5 Taylor method are
likely reliable with stochastic PCA method and Monte Carlo computations. Here,
Euler–Maruyama method and Taylor 1.5 strong order approximations method have
been applied efficiently and conveniently for the solution of the stochastic point
kinetics equation.

In the present investigation, the main attractive advantage, of these computa-
tional numerical methods, is their elegant applicability for solving stochastic point
kinetics equations in a simple and efficient way.

1.5.1 Wiener Process

A standard Wiener process (often called Brownian motion) on the interval ½0; T � is a
continuous time stochastic processWðtÞ that depends continuously on t 2 ½0; T � and
satisfies the following properties [82–85]

(i) Wð0Þ ¼ 0 (with probability 1).
(ii) For 0� s� t� T , the increment WðtÞ �WðsÞ is normally distributed with

mean EðWðtÞÞ ¼ 0, variance EðWðtÞ �WðsÞÞ2 ¼ t � sj j, and covariance
EðWðtÞWðsÞÞ ¼ minðt; sÞ; equivalently WðtÞ �WðsÞ � ffiffiffiffiffiffiffiffiffiffi

t � s
p

Nð0; 1Þ
where Nð0; 1Þ denotes a normal distribution with zero mean and unit
variance.

(iii) For 0� s\t\u\v� T , the increments WðtÞ �WðsÞ and WðvÞ �WðuÞ are
independent. For the computational purpose, it is useful to consider
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discredited Brownian motion, where WðtÞ is specified at discrete t values.
We thus set Dt ¼ T=N for some positive integer N and let Wi ¼ WðtiÞ with
ti ¼ iDt. We discretize the Wiener process with time step Dt as
Wi ¼ Wi�1 þ dWii ¼ 1; 2; . . .;N, where each dWi �

ffiffiffiffiffi
Dt

p
Nð0; 1Þ.

Stochastic differential equation (SDE) models play a prominent role in a range of
application areas, including biology, chemistry, epidemiology, mechanics, micro-
electronics, economics, and finance.

An Itô process (or stochastic integral) X ¼ fXt; t� 0g has the form [82–85]

Xt ¼ X0 þ
Z t

0

aðXsÞdsþ
Z t

0

bðXsÞdWs; for t� 0: ð1:138Þ

It consists of an initial value X0 ¼ x0, which may be random, a slowly varying
continuous component called the drift and rapid varying continuous random
component called the diffusion. The second integral in Eq. (1.138) is an Itô
stochastic integral with respect to the Wiener process W ¼ fWt; t� 0g. The integral
equation in Eq. (1.138) is often written in the differential form

dXt ¼ aðXtÞdtþ bðXtÞdWt; ð1:139Þ

Then Eq. (1.139) is called stochastic differential equation (or Itô stochastic
differential equation). Here Euler–Maruyama Method and the order 1.5 Strong
Taylor methods have been described which are used later for solving a stochastic
point kinetics equation.

1.5.2 Euler–Maruyama Method

The Euler–Maruyama approximation is the simplest time-discrete approximations
of an Itô process. Let Ysf g be an Itô process on s 2 t0; T½ � satisfying the stochastic
differential equation (SDE)

dYs ¼ aðs; YsÞdsþ bðs; YsÞdWs

Yt0 ¼ Y0



: ð1:140Þ

For a given time discretization

t0 ¼ s0\s1\ � � �\sn ¼ T ; ð1:141Þ

an Euler approximation is a continuous time stochastic process XðsÞ; t0 � s� Tf g
satisfying the iterative scheme [84, 85]
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Xnþ 1 ¼ Xn þ aðsn;XnÞDsnþ 1 þ bðsn;XnÞDWnþ 1; ð1:142Þ

for n ¼ 0; 1; 2; . . .;N � 1, with initial value

X0 ¼ Xðs0Þ;

where Xn ¼ XðsnÞ, Dsnþ 1 ¼ snþ 1 � sn, and DWnþ 1 ¼ Wðsnþ 1Þ �WðsnÞ. Here,
each random number DWn is computed as DWn ¼ gn

ffiffiffiffiffiffiffiffi
Dsn

p
, where gn is chosen

from the standard normal distribution Nð0; 1Þ.
We have considered the equidistant discretized times

sn ¼ s0 þ nD with D ¼ Dn ¼ ðT�s0Þ
N for some integer N large enough so that

D 2 ð0; 1Þ.

1.5.3 Order 1.5 Strong Taylor Method

Here we consider Taylor approximation having strong order a ¼ 1:5. The order 1.5
strong Taylor scheme can be obtained by adding more terms from Itô–Taylor
expansion to the Milstein scheme [84, 85]. The order 1.5 strong Itô–Taylor scheme is

Ynþ 1 ¼ Yn þ aDn þ bDWn þ 1
2
bbxðDW2

n � DnÞþ axbDZn þ 1
2
ðaax þ 1

2
b2axxÞD2

n

þðabx þ 1
2
b2bxxÞðDWnDn � DZnÞþ 1

2
bðbbxx þ b2xÞð

1
3
DW2

n � DnÞDWn

ð1:143Þ

for n ¼ 0; 1; 2; . . .;N � 1, with initial value

Y0 ¼ Yðs0Þ and Dn ¼ Dsn:

Here, partial derivatives are denoted by subscripts, and the random variable DZn
is normally distributed with mean EðDZnÞ ¼ 0 and variance EðDZ2

nÞ ¼ 1
3Ds

3
n and

correlated with DWn by covariance

EðDZnDWnÞ ¼ 1
2
Ds2n:

We can generate DZn as

DZn ¼ 1
2
DsnðDWn þDVn=

ffiffiffi
3

p
Þ; ð1:144Þ
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where DVn is chosen independently from
ffiffiffiffiffiffiffiffi
Dsn

p
Nð0; 1Þ. Here the approximation

Yn ¼ YðsnÞ is the continuous time stochastic process fYðsÞ; t0 � s� Tg, the
time-step size Dsn ¼ sn � sn�1, and DWn ¼ WðsnÞ �Wðsn�1Þ.
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Chapter 2
New Approaches for Decomposition
Method for the Solution of Differential
Equations

2.1 Introduction

In many practical applications regarding the field of science and engineering, the
physical systems are modeled by nonlinear partial differential equations (NLPDEs).
These equations play a significant role in modeling problems in science and
engineering. Many physical phenomena of the physical problems arising in various
fields of science and engineering can be elegantly investigated by the NPDEs.
Furthermore, NPDEs are widely used to describe complex phenomena in various
fields of sciences, such as physics, biology, and chemistry and engineering.
Because, in many of the cases exact solutions are very difficult or even impossible
to obtain for NPDEs, the approximate analytical solutions are particularly important
for the study of dynamic systems for analyzing their physical nature. In the case of
approximate analytical solutions, the success of a certain approximation method
depends on the nonlinearities that occur in the studied problem, and thus a general
algorithm for the construction of such approximate solutions do not exist in the
general cases. Various methods have been devised to find the exact and approxi-
mate solutions of nonlinear partial differential equations in order to impart a great
deal of information for understanding physical phenomena arising in numerous
scientific and engineering fields. The investigation of the analytical solutions of
NPDEs plays a prominent role in the study of nonlinear physical phenomena.

In this chapter, the modified decomposition method has been implemented for
solving a coupled Klein-Gordon Schrödinger equation. In this purpose, a system of
coupled Klein-Gordon Schrödinger equation with appropriate initial values has
been solved by using the modified decomposition method. The proposed method
does not need linearization, weak nonlinearity assumptions or perturbation theory.

Spatially fractional order diffusion equations are generalizations of classical
diffusion equations which are increasingly used in modeling practical superdiffusive
problems in fluid flow, finance and other areas of application. This chapter presents
the analytical solutions of space fractional diffusion equations by two-step Adomian
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decomposition method (TSADM). By using initial conditions, the explicit solutions
of the equations have been presented in the closed form and then their solutions
have been represented graphically. The solution procedures of a one-dimensional
and a two-dimensional fractional diffusion equation are presented to show the
application of the present technique. The solutions obtained by the standard
decomposition method have been numerically evaluated and presented in the form
of tables and then compared with those obtained by TSADM. After examining the
results, it manifests that the present TSADM performs extremely well in terms of
efficiency and simplicity.

This chapter also presents the new approach of the Adomian decomposition
method (ADM) for the solution of space fractional diffusion equation with insulated
ends. A typical example of special interest with fractional space derivative of order
a, 1\a� 2 is considered in the present analysis and solved by ADM after
expressing the initial condition as Fourier series. The explicit solution of space
fractional diffusion equation has been presented in the closed form and then the
numerical solution has been represented graphically. The behaviour of Adomian
solutions and the effects of different values of a are shown graphically.

2.2 Outline of the Present Study

The aim of the present chapter is to focus on the study of nonlinear partial dif-
ferential equations (NLPDEs) that have particular applications appearing in engi-
neering and applied sciences. The analytical approximate methods have been used
for solving some specific nonlinear partial differential equations like coupled
nonlinear Klein-Gordon-Schrödinger equations, space fractional diffusion equations
on finite domain, space fractional diffusion equation with insulated ends, which
have a wide variety of applications in physical models.

2.2.1 Coupled Nonlinear Klein–Gordon–Schrödinger
Equations

The coupled nonlinear Klein–Gordon–Schrödinger (K-G-S) equations are consid-
ered in the following form:

utt � uxx þ u� vj j2¼ 0

ivt þ vxx þ uv ¼ 0:
ð2:1Þ

The modified decomposition method has been applied for solving coupled
Klein-Gordon-Schrödinger equations which play an important role in modern
physics.
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Darwish and Fan [1] have been proposed an algebraic method to obtain the
explicit exact solutions for coupled Klein-Gordon-Schrödinger (K-G-S) equations.
Recently, the Jacobi elliptic function expansion method has been applied to obtain
the solitary wave solutions for coupled K-G-S equations [2]. Hioe [3] has obtained
periodic solitary waves for two coupled nonlinear Klein–Gordon and Schrödinger
equations. Bao and Yang [4] have presented efficient, unconditionally stable and
accurate numerical methods for approximations of the Klein-Gordon-Schrödinger
equations. In order to determine the explicit series solutions of the coupled K-G-S
equations, the notion of Adomian’s decomposition method (in short ADM) [5, 6]
has been used. Without the use of any linearization or transformation method, the
ADM accurately computes the series solution. The ADM method which is of great
interest to applied sciences [5–7], provides the solution in a rapidly convergent
series with components that can be elegantly computed. The nonlinear equations
are solved easily and elegantly without linearizing the problem by using the ADM
[5, 6]. Large classes of linear and nonlinear differential equations, both ordinary as
well as partial, can be solved by the Adomian decomposition method [5–41].
A reliable modification of Adomian decomposition method has been done by
Wazwaz [42]. The decomposition method provides an effective procedure for
analytical solution of a wide and general class of dynamical systems representing
real physical problems [5–10, 12, 14–20, 23–25, 28–38, 40, 41]. This method
efficiently works for initial-value or boundary-value problems and for linear or
nonlinear, ordinary or partial differential equations and even for stochastic systems.
Moreover, we have the advantage of a single global method for solving ordinary or
partial differential equations as well as many types of other equations. Recently, the
solution of the fractional differential equation has been obtained through the
Adomian decomposition method by the researchers [38–40]. The method has
features in common with many other methods, but it is distinctly different on close
examinations, and one should not be misled by apparent simplicity into superficial
conclusions [5, 6].

In the present chapter, the modified decomposition method (in short MDM) has
been used to obtain the analytical approximate solutions of the coupled sine-Gordon
equations (2.1).

2.2.2 Space Fractional Diffusion Equations on Finite
Domain

Fractional diffusion equations are used to model problems in physics [43–45],
finance [46–49], and hydrology [50–54]. Fractional space derivatives may be used
to formulate anomalous dispersion models, where a particle plume spreads at a rate
that is different than the classical Brownian motion model. When a fractional
derivative of order 1\a\2 replaces the second derivative in a diffusion or dis-
persion model, it leads to a superdiffusive flow model. Nowadays, fractional
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diffusion equation plays important roles in modeling anomalous diffusion and
subdiffusion systems, description of fractional random walk, the unification of
diffusion and wave propagation phenomenon, see, e.g., the reviews in [43–58], and
references therein.

A one-dimensional fractional diffusion equation has been considered as in [59]

@uðx; tÞ
@t

¼ dðxÞ @
auðx; tÞ
@xa

þ qðx; tÞ; ð2:2Þ

on a finite domain xL\x\xR with 1\a� 2. It is to be assumed that the diffusion
coefficient (or diffusivity) dðxÞ[ 0. We also assume an initial condition uðx; t ¼
0Þ ¼ sðxÞ for xL\x\xR and Dirichlet boundary conditions of the form uðxL; tÞ ¼ 0
and uðxR; tÞ ¼ bRðtÞ. Equation (2.2) uses a Riemann fractional derivative of order a.

Also, a two-dimensional fractional diffusion equation has been considered as in
[60]

@uðx; y; tÞ
@t

¼ dðx; yÞ @
auðx; y; tÞ
@xa

þ eðx; yÞ @
buðx; y; tÞ
@yb

þ qðx; y; tÞ; ð2:3Þ

on a finite rectangular domain xL\x\xH and yL\y\yH , with fractional orders
1\a� 2 and 1\b� 2, where the diffusion coefficients dðx; yÞ[ 0 and eðx; yÞ[ 0.
The ‘forcing’ function qðx; y; tÞ can be used to represent sources and sinks. We will
assume that this fractional diffusion equation has a unique and sufficiently smooth
solution under the following initial and boundary conditions. Assume the initial
condition uðx; y; t ¼ 0Þ ¼ f ðx; yÞ for xL\x\xH , yL\y\yH , and Dirichlet bound-
ary condition uðx; y; tÞ ¼ Bðx; y; tÞ on the boundary (perimeter) of the rectangular
region xL\x\xH , yL\y\yH , with the additional restriction that
BðxL; y; tÞ ¼ Bðx; yL; tÞ ¼ 0. In physical applications, this means that the left/lower
boundary is set far away enough from an evolving plume that no significant con-
centrations reach that boundary. The classical dispersion equation in two dimen-
sions is given by a ¼ b ¼ 2. The values of 1\a\2, or 1\b\2 model a
super-diffusive process in that coordinate. Equation (2.3) also uses Riemann frac-
tional derivatives of order a and b.

In this chapter, the new two-step Adomian Decomposition Method (ADM) [6]
has been used to obtain the solutions of the fractional diffusion equations (2.2) and
(2.3).

2.2.3 Space Fractional Diffusion Equation with Insulated
Ends

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. Nowadays, fractional diffusion equa-
tion plays important roles in modeling anomalous diffusion and subdiffusion
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systems, description of fractional random walk, the unification of diffusion and
wave propagation phenomenon, see, e.g. the reviews in [43, 44, 55–58, 61], and
references therein.

In this chapter, the following space fractional diffusion equation with insulated
ends has been considered [62]

@uðx; tÞ
@t

¼ dDa
xuðx; tÞ; 0\x\L; t� 0; 1\a� 2; ð2:4Þ

where d is the diffusion coefficient and Da
x is Caputo fractional derivative of order a,

which is defined as [63]

Da
x f ðxÞ ¼

dm
f ðxÞ
dxm ; a ¼ m 2 N

1
Cðm�aÞ

Rx
0

x� nð Þm�a�1dm
f ðnÞ
dnm dn; m� 1\a\m; m 2 N:

8><>: ð2:5Þ

We further consider the following Dirichlet’s boundary conditions

@uð0; tÞ
@x

¼ @uðL; tÞ
@x

¼ 0; t� 0; ð2:6Þ

and initial condition

uðx; 0Þ ¼ f ðxÞ; 0� x� L ð2:7Þ

In the present chapter, the Adomian decomposition method (ADM) [5, 6] with a
simple variation has been used to obtain the analytical approximate solution of
space fractional diffusion equation (2.4) with insulated ends.

2.3 Analysis of Proposed Methods

In this section, the analysis of modified decomposition method (MDM), the new
two-step Adomian Decomposition Method, and Adomian decomposition method
with a simple variation have been presented for solving the above physical
problems.

2.3.1 A Modified Decomposition Method for Coupled K-G-S
Equations

The coupled K-G-S equations (2.1) can be written in the following operator form
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Lttu ¼ Lxxu� uþNðu; vÞ
Ltv ¼ iLxxvþ iMðu; vÞ ð2:8Þ

where Lt � @
@t, Ltt � @2

@t2 and Lxx � @2

@x2 symbolize the linear differential operators and

the notations Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv symbolize the nonlinear operators.

Applying the two-fold integration inverse operator L�1
tt � Rt

0

Rt
0
ð:Þdtdt to the

system (2.8) and using the specified initial conditions yields

uðx; tÞ ¼ uðx; 0Þþ tutðx; 0Þþ L�1
tt Lxxu� L�1

tt uþ L�1
tt Nðu; vÞ

vðx; tÞ ¼ vðx; 0Þþ iL�1
t Lxxvþ iL�1

t Mðu; vÞ: ð2:9Þ

The Adomian decomposition method [5, 6] assumes an infinite series of solu-
tions for unknown function uðx; tÞ and vðx; tÞ given by

uðx; tÞ ¼
X1
n¼0

unðx; tÞ;

vðx; tÞ ¼
X1
n¼0

vnðx; tÞ;
ð2:10Þ

and nonlinear operators Nðu; vÞ ¼ vj j2 and Mðu; vÞ ¼ uv by the infinite series of
Adomain polynomials given by

Nðu; vÞ ¼
X1
n¼0

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ;

Mðu; vÞ ¼
X1
n¼0

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ;

where An and Bn are the appropriate Adomian’s polynomial which are generated
according to algorithm determined in [5, 6]. For the nonlinear operator Nðu; vÞ,
these polynomials can be defined as

Anðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
N
X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0:

ð2:11Þ

Similarly for the nonlinear operator Mðu; vÞ,

Bnðu0; u1; . . .; un; v0; v1; . . .; vnÞ ¼ 1
n!

dn

dkn
M

X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #
k¼0

; n� 0:

ð2:12Þ
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These formulae are easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. For the sake of
convenience of the readers, we can give the first few Adomian polynomials for
Nðu; vÞ ¼ vj j2, Mðu; vÞ ¼ uv of the nonlinearity as

A0 ¼ v0v0;

A1 ¼ v1v0 þ v0v1;

A2 ¼ v2v0 þ v0v2 þ v1v1;

. . .

and

B0 ¼ u0v0;

B1 ¼ u1v0 þ u0v1;

B2 ¼ u2v0 þ u0v2 þ u1v1;

. . .

and so on, the rest of the polynomials can be constructed in a similar manner.
Substituting the initial conditions into Eq. (2.9) and identifying the zeroth

components u0 and v0, we then obtain the subsequent components by using the
following recursive equations according to the standard ADM

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An; n� 0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn; n� 0:
ð2:13Þ

Recently, Wazwaz [42] proposed that the construction of the zeroth component
of the decomposition series can be defined in a slightly different way. In [42], he
assumed that if the zeroth component u0 ¼ g and the function g is possible to divide
into two parts such as g1 and g2, the one can formulate the recursive algorithm for
u0 and general term unþ 1 in a form of the modified recursive scheme as follows:

u0 ¼ g1;

u1 ¼ g2 þ L�1
tt Lxxu0 � L�1

tt u0 þ L�1
tt A0;

unþ 1 ¼ L�1
tt Lxxun � L�1

tt un þ L�1
tt An; n� 1:

ð2:14Þ

Similarly, if the zeroth component v0 ¼ g0 and the function g0 is possible to
divide into two parts such as g01 and g02, the one can formulate the recursive
algorithm for v0 and general term vnþ 1 in a form of the modified recursive scheme
as follows:

2.3 Analysis of Proposed Methods 61



v0 ¼ g01;

v1 ¼ g02 þ iL�1
t Lxxv0 þ iL�1

t B0;

vnþ 1 ¼ iL�1
t Lxxvn þ iL�1

t Bn; n� 1:

ð2:15Þ

This type of modification is giving more flexibility to the ADM in order to solve
complicate nonlinear differential equations. In many cases, the modified decom-
position scheme avoids unnecessary computation especially in the calculation of the
Adomian polynomials. The computation of these polynomials will be reduced very
considerably by using the MDM.

It is worth noting that the zeroth components u0 and v0 are defined then the
remaining components un and vn; n� 1 can be completely determined. As a
result, the components u0; u1; . . .; and v0; v1; . . .; are identified and the series
solutions thus entirely determined. However, in many cases, the exact solution in a
closed form may be obtained.

The decomposition series solutions (2.10) generally converge very rapidly in
real physical problems [6]. The rapidity of this convergence means that few terms
are required. The convergence of this method has been rigorously established by
Cherruault [64], Abbaoui and Cherruault [65, 66] and Himoun et al. [67]. The
practical solutions will be the n-term approximations /n and wn

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1;

wn ¼
Xn�1

i¼0

viðx; tÞ; n� 1:

ð2:16Þ

with

lim
n!1/n ¼ uðx; tÞ;
lim
n!1wn ¼ vðx; tÞ: ð2:17Þ

2.3.2 The Two-Step Adomian Decomposition Method

Equation (2.2) can be rewritten as

Ltuðx; tÞ ¼ dðxÞDa
xuðx; tÞþ qðx; tÞ ð2:18Þ

where Lt � @
@t which is an easily invertible linear operator, Da

xð:Þ is the
Riemann-Liouville derivative of order a.
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The solution uðx; tÞ of Eq. (2.18) is represented by the decomposition series

u ¼
X1
n¼0

un: ð2:19Þ

Now, operating L�1
t both sides of Eq. (2.18) and then substituting Eq. (2.19)

yields

uðx; tÞ ¼ uðx; 0Þþ L�1
t dðxÞDa

x

X1
n¼0

un

 ! !
þ L�1

t ðqðx; tÞÞ ð2:20Þ

Each term of series (2.19) is given by the standard ADM recurrence relation

u0 ¼ f ;

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

; n� 0
ð2:21Þ

where f ¼ uðx; 0Þþ L�1
t ðqðx; tÞÞ.

It is worth noting that once the zeroth component u0 is defined, then the
remaining components un, n� 1 can be completely determined; each term is
computed by using the previous term. As a result, the components u0; u1; . . . are
identified and the series solutions thus entirely determined. However, in many
cases, the exact solution in a closed form may be obtained.

Without loss of generality let us assume that the zeroth component u0 ¼ f and
the function f is possible to divide into two parts such as f1 and f2, then one can
formulate the recursive algorithm for u0 and general term unþ 1 in a form of the
modified decomposition method (MDM) recursive scheme as follows:

u0 ¼ f1

u1 ¼ f2 þ L�1
t dðxÞDa

xun
� �

unþ 1 ¼ L�1
t dðxÞDa

xun
� �

; n� 1:

ð2:22Þ

Comparing the recursive scheme (2.21) of the standard Adomain method with
the recursive scheme (2.22) of the modified technique leads to the conclusion that in
Eq. (2.21) the zeroth component was defined by the function f, whereas in
Eq. (2.22), the zeroth component u0 is defined only by a part f1 of f. The remaining
part f2 of f is added to the definition of the component u1 in Eq. (2.22). Although the
modified technique needs only a slight variation from the standard Adomian
decomposition method, the results are promising in that it minimizes the size of
calculations needed and will accelerate the convergence. The modification could
lead to a promising approach for many applications in applied science.
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The decomposition series solution (2.19) generally converges very rapidly in
real physical problems [5, 6]. Here also, the practical solution will be the n-term
approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1 ð2:23Þ

with
lim
n!1/n ¼ uðx; tÞ: ð2:24Þ

Luo [68] presented the theoretical support of how the exact solution can be
achieved by using only two iterations in the modified decomposition method. In
detail, it is possible because all other components vanish if the zeroth component is
equal to the exact solution.

Although the modified decomposition method may provide the exact solution by
using two iterations only, the criterion of dividing the function f into two practical
parts, and the case where f consists only of one term remains unsolved so far. The
two-step Adomian decomposition method (TSADM) overcomes the difficulties
arising in the modified decomposition method.

In the following, Luo [68] presents the two-step Adomian decomposition
method. For the convenience of the reader, we consider the differential equation

LuþRuþNu ¼ g; ð2:25Þ

where L is the highest order derivative which is assumed to be easily invertible, R is
a linear differential operator of order less than L, Nu represents the nonlinear terms,
and g is the source term.

The main ideas of the two-step Adomian decomposition method are:

1. Applying the inverse operator L�1 to g, and using the given conditions we
obtain

u ¼ /þ L�1g;

where the function / represents the term arising from using the given
conditions, all are assumed to be prescribed.
Let

u ¼
Xm
i¼0

ui; ð2:26Þ

where /0;/1; . . .;/m are the terms arising from integrating the source term
g and from using the given conditions. Based on this, we define u0 ¼
uk þ . . .þukþ s where k ¼ 0; 1; . . .;m, s ¼ 0; 1; . . .;m� k. Then we verify that
u0 satisfies the original equation Eq. (2.25) and the given conditions by
substitution, once the exact solution is obtained, we stop. Otherwise, we go to
the following step two.
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2. We set u0 ¼ u and continue with the standard Adomian recursive relation

ukþ 1 ¼ �L�1ðRukÞ � L�1ðAkÞ; k� 0:

Similarly, for Eq. (2.3), we can obtain

uðx; y; tÞ ¼ uðx; y; 0Þþ L�1
t dðx; yÞDa

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞDb

y

X1
n¼0

un

 ! !
þ L�1

t ðqðx; y; tÞÞ:
ð2:27Þ

Now, the standard Adomian decomposition method recurrence scheme is

u0 ¼ f ;

unþ 1 ¼ L�1
t dðx; yÞDa

xun
� �þ L�1

t eðx; yÞDb
y un

� �
; n� 0;

ð2:28Þ

where f ¼ uðx; y; 0Þþ L�1
t ðqðx; y; tÞÞ.

In the other hand, the modified decomposition method recursive scheme is as
follows

u0 ¼ f1

u1 ¼ f2 þ L�1
t dðx; yÞDa

xu0
� �þ L�1

t eðx; yÞDb
y u0

� �
unþ 1 ¼ L�1

t dðx; yÞDa
xun

� �þ L�1
t eðx; yÞDb

y un
� �

; n� 1:

ð2:29Þ

Compared to the standard Adomian method and the modified method, we can
see that the two-step Adomian method may provide the solution by using two
iterations only.

2.3.3 ADM with a Simple Variation for Space Fractional
Diffusion Model

Equation (2.4) can be written as

Ltuðx; tÞ ¼ dDa
xuðx; tÞ; ð2:30Þ

where Lt � @
@t which is an easily invertible linear operator, Da

xð�Þ is the Caputo
fractional derivative of order a.
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If f ðxÞ is a periodic function with period L, then the Fourier Cosine series of f ðxÞ
in ½0; L� can be obtained as

f ðxÞ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cos

npx
L

� �
: ð2:31Þ

The Fourier Cosine series is well adapted to functions whose first order
derivatives are zero at the endpoints x ¼ 0 and x ¼ L of the interval ½0; L�, since all
the basis functions cos npx

L

� �
have this property.

Therefore, after considering the initial condition uðx; 0Þ ¼ f ðxÞ as Fourier Cosine
series, we can take

uðx; 0Þ ¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
; ð2:32Þ

where cosc npx
L

� �
is the Generalized Cosine function defined in [69] and c ¼ a=2,

c 2 ð12 ; 1�.
It is known that

Dc
x sinc x ¼ cosc x; lim

c!1
sinc x ¼ sin x

and

Dc
x sinc x ¼ cosc x;

where cosc x ¼
P1
n¼0

ð�1Þnx2nc
Cð2ncþ 1Þ.

According to the Adomian decomposition method, we can write,

uðx; tÞ ¼ uðx; 0Þþ L�1
t ðdDa

xuðx; tÞÞ; ð2:33Þ

where
u0 ¼ uðx; 0Þ

¼ p2

3
þ
X1
n¼1

2
L

ZL
0

f ðnÞ cos npn
L

� �
dn cosc

npx
L

� �
;

u1 ¼ L�1
t ðdDa

xu0Þ;
u2 ¼ L�1

t ðdDa
xu1Þ;

u3 ¼ L�1
t ðdDa

xu2Þ;

and so on.
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The decomposition series solution

u ¼
X1
n¼0

un;

generally converges very rapidly in real physical problems [6]. The practical
solution will be the n-term approximation /n

/n ¼
Xn�1

i¼0

uiðx; tÞ; n� 1 ð2:34Þ

with

lim
n!1/n ¼ uðx; tÞ: ð2:35Þ

2.4 Solutions of Coupled Klein–Gordon–Schrödinger
Equations

In this section, the modified decomposition method has been used for getting the
analytical approximate solutions for the coupled K-G-S equations (2.1).

2.4.1 Implementation of MDM for Analytical Approximate
Solutions of Coupled K-G-S Equations

We first consider the coupled K-G-S equations (2.1) with the initial conditions

uðx; 0Þ ¼ 6B2 sec h2ðBxÞ; utðx; 0Þ ¼ �12B2c sec h2ðBxÞ tanhðBxÞ;
vðx; 0Þ ¼ 3B sec h2ðBxÞeidx; ð2:36Þ

where Bð� 1=2Þ, c and d are arbitrary constants.
Using (2.14) and (2.15) with (2.11) and (2.12) respectively and considering

c ¼
ffiffiffiffiffiffiffiffiffiffi
4B2�1

p
2 , d ¼ � c

2B for the coupled K-G-S equations (2.1) and initial conditions
(2.36) gives
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u0 ¼ 0;

u1 ¼ uðx; 0Þþ tutðx; 0Þþ L�1
tt Lxxu0 � L�1

tt u0 þ L�1
tt A0

¼ 6B2 sec h2ðBxÞ � 12B2ct sec h2ðBxÞ tanhðBxÞ;
u2 ¼ L�1

tt Lxxu1 � L�1
tt u1 þ L�1

tt A1

¼ t2ð�3B2 sec h2ðBxÞ � 9B4 sec h4ðBxÞþ 3B4 coshð3BxÞ sec h5ðBxÞÞ
þ t3ð�2B4c sec h5ðBxÞð�11 sinhðBxÞþ sinhð3BxÞÞ
þ 2B2c sec h2ðBxÞ tanhðBxÞÞ;

and

v0 ¼ 0;

v1 ¼ vðx; 0Þþ iL�1
t Lxxv0 þ iL�1

t B0

¼ 3B sec h2ðBxÞeidx;
v2 ¼ iL�1

t Lxxv1 þ iL�1
t B1

¼ �3iBeidxt sec h2ðBxÞð2B2 sec h2ðBxÞþ ðdþ 2iB tanh2ðBxÞÞ2Þ

and so on, in this manner, the other components of the decomposition series can be
easily obtained of which uðx; tÞ and vðx; tÞ were evaluated in the following series
form

uðx; tÞ ¼ 6B2 sec h2ðBxÞ � 12B2ct sec h2ðBxÞ tanhðBxÞ
þ t2ð�3B2 sec h2ðBxÞ � 9B4 sec h4ðBxÞþ 3B4 coshð3BxÞ sec h5ðBxÞÞ
þ t3ð�2B4c sec h5ðBxÞð�11 sinhðBxÞþ sinhð3BxÞÞþ 2B2c sec h2ðBxÞ tanhðBxÞÞþ � � � ;

vðx; tÞ ¼ 3B sec h2ðBxÞeidx

ð2:37Þ

�3iBeidxt sec h2ðBxÞð2B2 sec h2ðBxÞþ ðdþ 2iB tanh2ðBxÞÞ2Þþ � � � : ð2:38Þ

follow immediately with the aid of Mathematica [70].

2.4.2 Numerical Results and Discussion for Coupled K-G-S
Equations

In this section, we analyze the numerical solutions for coupled K-G-S equations
obtained by the modified decomposition method.

The numerical simulations using MDM

In the present numerical experiment, Eqs. (2.37) and (2.38) have been used to draw
the graphs as shown in Figs. 2.1, 2.2, 2.3 and 2.4 respectively.
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The numerical solutions of the coupled K-G-S equations (2.1) have been shown
in Figs. 2.1, 2.2, 2.3 and 2.4 with the help of five-term and four-term approxima-
tions /5 and w4 for the decomposition series solutions of uðx; tÞ and vðx; tÞ
respectively. In the present numerical computation, we have assumed B ¼ 0:575.

Fig. 2.1 a The decomposition method solution for uðx; tÞ, b Corresponding 2D solution for uðx; tÞ
when t ¼ 0

Fig. 2.2 a The decomposition method solution for Reðvðx; tÞÞ, b Corresponding 2D solution for
Reðvðx; tÞÞ when t ¼ 0

Fig. 2.3 a The decomposition method solution for Imðvðx; tÞÞ, b Corresponding 2D solution for
Imðvðx; tÞÞ when t ¼ 0
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2.5 Implementation of Two-Step Adomian Decomposition
Method for Space Fractional Diffusion Equations
on a Finite Domain

In this section, the new two-step Adomian decomposition method has been
implemented for the solutions of one-dimensional and two-dimensional space
fractional diffusion equations with finite domain respectively.

2.5.1 Solution of One-Dimensional Space Fractional
Diffusion Equation

Let us consider the one-dimensional fractional diffusion equation (2.2), as taken in
[59]

@uðx; tÞ
@t

¼ dðxÞ @
1:8uðx; tÞ
@x1:8

þ qðx; tÞ; ð2:39Þ

on a finite domain 0\x\1, with the diffusion coefficient

dðxÞ ¼ Cð2:2Þx2:8=6 ¼ 0:183634x2:8;

the source/sink function

qðx; tÞ ¼ �ð1þ xÞe�tx3;

the initial condition

Fig. 2.4 a The decomposition method solution for Absðvðx; tÞÞ, b Corresponding 2D solution for
Absðvðx; tÞÞ when t ¼ 0
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uðx; 0Þ ¼ x3; for 0\x\1

and the boundary conditions

uð0; tÞ ¼ 0; uð1; tÞ ¼ e�t; for t[ 0:

Now, Eq. (2.39) can be rewritten in operator form as

Ltuðx; tÞ ¼ dðxÞD1:8
x uðx; tÞþ qðx; tÞ; ð2:40Þ

where Lt � @
@t symbolizes the easily invertible linear differential operator, D1:8

x ð:Þ is
the Riemann–Liouville derivative of order 1.8.

Applying the one-fold integration inverse operator L�1
t � Rt

0
ð:Þdt to Eq. (2.40)

and using the specified initial condition yields

uðx; tÞ ¼ uðx; 0Þþ L�1
t dðxÞD1:8

x

X1
n¼0

un

 ! !
þ L�1

t ðqðx; tÞÞ

¼ e�tx3 þ e�tx4 � x4 þ L�1
t dðxÞD1:8

x

X1
n¼0

un

 ! !
:

ð2:41Þ

The standard Adomian decomposition method:

u0 ¼ e�tx3 þ e�tx4 � x4;

u1 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u0
@x1:8

� �
¼ ð�e�t þ 1Þx4 þ 4ð�e�t þ 1� tÞx5

2:2
;

u2 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u1
@x1:8

� �

¼ 4ðe�t þ t � 1Þx5
2:2

þ
80 e�t � t2

2! þ t � 1
� �

x6

3:2� 2:22
;

u3 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u2
@x1:8

� �

¼
80 �e�t þ t2

2! � tþ 1
� �

x6

3:2� 2:22
þ

80Cð6Þ �e�t � t3
3! þ t2

2! � tþ 1
� �

x7

4:2� 3:22 � 2:23
;

and so on.
Therefore, according to the decomposition method, the two-term approximation

/2 is
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/2 ¼ u0 þ u1

¼ e�tx3 þ 4ð�e�t þ 1� tÞx5
2:2

:
ð2:42Þ

Therefore, the three-term approximation /3 is

/3 ¼ u0 þ u1 þ u2

¼ e�tx3 þ
80 e�t � t2

2! þ t � 1
� �

x6

3:2� 2:22
:

ð2:43Þ

Therefore, according to the decomposition method, the four-term approximation
/4 is

/4 ¼ u0 þ u1 þ u2 þ u3

¼ e�tx3 þ
80Cð6Þ �e�t � t3

3! þ t2
2! � tþ 1

� �
x7

4:2� 3:22 � 2:23

ð2:44Þ

The TSADM:
Using the scheme (2.26) of TSADM, we have

u ¼ u0 þu1 þu2;

where u0 ¼ e�tx3, u1 ¼ e�tx4, u2 ¼ �x4.
Clearly, u1 and u2 do not satisfy the initial condition uðx; 0Þ ¼ x3. By selecting

u0 ¼ u0 and verifying that u0 justifies Eq. (2.39) and satisfies the initial as well as
boundary conditions, we obtain the following terms from the recursive scheme of
MDM

u0 ¼ e�tx3;

u1 ¼ e�tx4 � x4 þ L�1
t

Cð2:2Þx2:8
6

@1:8u0
@x1:8

� �
¼ e�tx4 � x4 � ðe�t � 1Þx4
¼ 0

u2 ¼ L�1
t

Cð2:2Þx2:8
6

@1:8u1
@x1:8

� �
¼ 0

and so on.
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Therefore, the solution is

u x; tð Þ ¼ e�tx3 ð2:45Þ

The solution (2.45) can be verified through substitution in Eq. (2.39).

2.5.2 Solution of Two-Dimensional Space Fractional
Diffusion Equation

Let us consider the two-dimensional fractional diffusion equation Eq. (1.2), as in
[60]

@uðx; y; tÞ
@t

¼ dðx; yÞ @
1:8uðx; y; tÞ
@x1:8

þ eðx; yÞ @
1:6uðx; y; tÞ
@y1:6

þ qðx; y; tÞ; ð2:46Þ

on a finite rectangular domain 0\x\1, 0\y\1, for 0� t� Tend with the diffusion
coefficients

dðx; yÞ ¼ Cð2:2Þx2:8y=6;

and

eðx; yÞ ¼ 2xy2:6=Cð4:6Þ;

and the forcing function

qðx; y; tÞ ¼ �ð1þ 2xyÞe�tx3y3:6;

with the initial condition

uðx; y; 0Þ ¼ x3y3:6;

and Dirichlet boundary conditions on the rectangle in the form uðx; 0; tÞ ¼
uð0; y; tÞ ¼ 0, uðx; 1; tÞ ¼ e�tx3, and uð1; y; tÞ ¼ e�ty3:6, for all t� 0.

Now, Eq. (2.46) can be rewritten in operator form as

Ltuðx; y; tÞ ¼ dðx; yÞD1:8
x uðx; y; tÞþ eðx; yÞD1:6

y uðx; y; tÞþ qðx; y; tÞ; ð2:47Þ

where Lt � @
@t symbolizes the easily invertible linear differential operator, D1:8

x ð:Þ
and D1:6

y ð:Þ are the Riemann–Liouville derivatives of order 1.8 and 1.6 respectively.

Applying the one-fold integration inverse operator L�1
t � Rt

0
ð:Þdt to the

Eq. (2.47) and using the specified initial condition yields
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uðx; y; tÞ ¼ uðx; y; 0Þþ L�1
t dðx; yÞD1:8

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞD1:6

y

X1
n¼0

un

 ! !
þ L�1

t ðqðx; y; tÞÞ

¼ x3y3:6e�t þ 2x4y4:6e�t � 2x4y4:6 þ L�1
t dðx; yÞD1:8

x

X1
n¼0

un

 ! !

þ L�1
t eðx; yÞD1:6

y

X1
n¼0

un

 ! !
ð2:48Þ

The standard Adomian decomposition method:

u0 ¼ x3y3:6e�t þ 2x4y4:6e�t � 2x4y4:6;

u1 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u0
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u0
@y1:6

� �
¼ 2x4y4:6ð�e�t þ 1Þþ 8

2:2
þ 2� 4:6

3

� �
x5y5:6ð�e�t þ 1� tÞ

¼ 2x4y4:6ð�e�t þ 1Þþ 1106
165

x5y5:6ð�e�t þ 1� tÞ;

u2 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u1
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u1
@y1:6

� �
¼ 1106

165
x5y5:6ðe�t � 1þ tÞþ 9101827

272250
x6y6:6

�
e�t � 1þ t � t2

2

�

and so on.
Therefore, according to the decomposition method, the three-term approxima-

tion /3 is

/3 ¼ u0 þ u1 þ u2

¼ x3y3:6e�t þ 9101827
272250

x6y6:6
�
e�t � 1þ t � t2

2

� ð2:49Þ

The TSADM:
Using the scheme (2.26) of TSADM, we have

u ¼ u0 þu1 þu2;

where u0 ¼ x3y3:6e�t, u1 ¼ 2x4y4:6e�t, u2 ¼ �2x4y4:6.
Clearly, u1 and u2 do not satisfy the initial condition uðx; y; 0Þ ¼ x3y3:6. By

selecting u0 ¼ u0 and verifying that u0 justifies Eq. (2.46) and satisfies the initial as
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well as boundary conditions, we obtain the following terms from the recursive
scheme of MDM

u0 ¼ x3y3:6e�t;

u1 ¼ 2x4y4:6e�t � 2x4y4:6 þ L�1
t

Cð2:2Þx2:8y
6

@1:8u0
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u0
@y1:6

� �
¼ 2x4y4:6e�t � 2x4y4:6 � 2ðe�t � 1Þx4y4:6
¼ 0;

u2 ¼ L�1
t

Cð2:2Þx2:8y
6

@1:8u1
@x1:8

� �
þ L�1

t
2xy2:6

Cð4:6Þ
@1:6u1
@y1:6

� �
¼ 0

and so on.
Therefore, the solution is

uðx; y; tÞ ¼ x3y3:6e�t: ð2:50Þ

The solution (2.50) can be verified through substitution in Eq. (2.46).

2.5.3 Numerical Results and Discussion for Space
Fractional Diffusion Equations

In this section, the numerical solutions for space fractional diffusion equations
obtained by proposed new two-step Adomian decomposition method have been
analyzed. Also, an analysis for the comparison of errors between TSADM solution
and standard Adomian decomposition method solution has been presented here.

The numerical simulations using TSADM

In this present numerical experiment, Eqs. (2.45) and (2.50) have been used to draw
the graphs as shown in Figs. 2.5 and 2.6 respectively. Figure 2.5 shows the 3D
surface solution uðx; tÞ for one-dimensional fractional diffusion equation. On the
other hand, Fig. 2.6 shows the 3D surface solution uðx; y; tÞ for two-dimensional
fractional diffusion equation.

Comparison of errors between TSADM solution and standard Adomian
decomposition method solution

In this present analysis, the solutions of the two-step Adomian decomposition
method have been compared with that obtained by standard Adomian decompo-
sition method. Here we demonstrate the absolute errors by taking different values of
x and t. Comparison results in Tables 2.1, 2.2, 2.3 and 2.4 exhibit that there is a
good agreement between TSADM and standard Adomian decomposition method
solutions.
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From Tables 2.1, 2.2 and 2.3, it can be observed that the standard Adomian
decomposition method solution converges very slowly to the exact solution. On the
other hand, TSADM requires only two iterations to achieve the exact solution.
Therefore, TSADM is more effective and promising compared to standard Adomian
decomposition method.

Fig. 2.5 Three dimensional surface solution uðx; tÞ of one-dimensional fractional diffusion
Eq. (2.39)

Fig. 2.6 Three dimensional surface solution uðx; y; tÞ of two-dimensional fractional diffusion
Eq. (2.46) at time t ¼ 1
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Table 2.1 Comparison between TSADM solution and standard Adomian decomposition method
solution /2

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
two term solution /2

Absolute error
u� /2j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.00509492 0.000653195

(0.5, 1) 0.0459849 0.0250827 0.0209022

(0.75, 1) 0.155199 −0.00352725 0.158726

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.0000987486 0.00201587

(0.5, 2) 0.0169169 −0.0475908 0.0645077

(0.75, 2) 0.0570946 −0.432761 0.489855

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00286161 0.00363954

(0.5, 3) 0.00622338 −0.110242 0.116465

Table 2.2 Comparison between TSADM solution and standard Adomian decomposition method
solution /3

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
three term solution /3

Absolute error
u� /3j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.0055815 0.000166612

(0.5, 1) 0.0459849 0.0353218 0.0106631

(0.75, 1) 0.155199 0.0337393 0.12146

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.00102422 0.00109039

(0.5, 2) 0.0169169 −0.0528681 0.0697851

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00231194 0.00308986

(0.5, 3) 0.00622338 −0.191528 0.197751

2.5 Implementation of Two-Step Adomian Decomposition Method … 77



Table 2.3 Comparison between TSADM solution and standard Adomian decomposition method
solution /4

(x, t) Two-step Adomain
decomposition
method solution
(exact solution
uðx; tÞ ¼ e�tx3)

Standard Adomian
decomposition method
four term solution /4

Absolute error
u� /4j j

(0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

(0, 1) 0 0 0

(0.25, 1) 0.00574812 0.00570392 0.0000442011

(0.5, 1) 0.0459849 0.0403272 0.00565774

(0.75, 1) 0.155199 0.0585313 0.0966678

(0, 2) 0 0 0

(0.25, 2) 0.00211461 0.00151496 0.000599653

(0.5, 2) 0.0169169 −0.0598386 0.0767556

(0, 3) 0 0 0

(0.25, 3) 0.000777923 −0.00184474 0.00262266

(0.5, 3) 0.00622338 −0.329478 0.335701

Table 2.4 Comparison between TSADM solution and standard Adomian decomposition method
solution /3

ðx; y; t ¼ 1Þ Two-step Adomain
decomposition method
solution (exact solution
uðx; y; t ¼ 1Þ ¼ x3y3)

Standard Adomian
decomposition method
three term solution /3

Absolute error
u� /3j j

(0, 0.25, 1) 0 0 0

(0.25, 0.25, 1) 0.000039094 0.0000389794 0.0000001146

(0.5, 0.25, 1) 0.000312752 0.000305417 0.000007335

(0.75, 0.25, 1) 0.00105554 0.000971995 0.0000835416

(1, 0.25, 1) 0.00250201 0.00203262 0.000469391

(0, 0.5, 1) 0 0 0

(0.25, 0.5, 1) 0.000474043 0.000462926 0.0000111166

(0.5, 0.5, 1) 0.00379234 0.00308088 0.000711464

(0.75, 0.5, 1) 0.0127992 0.00469513 0.00810402

(1, 0.5, 1) 0.0303387 −0.015195 0.0455337

(0, 0.75, 1) 0 0 0

(0.25, 0.75, 1) 0.00204054 0.00187904 0.000161501

(0.5, 0.75, 1) 0.0163244 0.00598829 0.0103361

(0.75, 0.75, 1) 0.0550947 −0.0626396 0.117734

(0, 1, 1) 0 0 0

(0.25, 1, 1) 0.00574812 0.00466974 0.00107838

(0.5, 1, 1) 0.0459849 −0.0230313 0.0690162
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From Table 2.4, it can be observed that the absolute errors for TSADM solution
and standard Adomian decomposition method solution /3 are very small for small
values of x and y. But as the values of x and y increase the absolute errors also
increase.

2.6 Solution of Space Fractional Diffusion Equation
with Insulated Ends

In this section, a variation of Adomian decomposition method has been proposed
for getting analytical approximate solution of space fractional diffusion equation
with insulated ends.

2.6.1 Implementation of the Present Method

Let us consider initial conditions

uðx; 0Þ ¼ x2; 0� x� p ð2:51Þ

and boundary conditions

@uð0; tÞ
@x

¼ @uðp; tÞ
@x

¼ 0; t� 0 ð2:52Þ

for Eq. (2.4), as taken in [62].
We see that f ðxÞ ¼ x2 is a periodic function with period p. The Fourier sine

series of f ðxÞ in [0, p] can be obtained as

f ðxÞ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cos nx: ð2:53Þ

Therefore, after considering f ðxÞ as Fourier Cosine series, we can take

uðx; 0Þ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx; ð2:54Þ

where cosc nx is the Generalized Cosine function and c ¼ a=2, c 2 ð12 ; 1�.
From Eq. (2.33), the following terms can be obtained
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u0 ¼ uðx; 0Þ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx;

u1 ¼ L�1
t ðdDa

xu0Þ ¼
�td
1!

X1
n¼1

4
n2
ð�1Þnn2c cosc nx;

u2 ¼ L�1
t ðdDa

xu1Þ ¼
t2d2

2!

X1
n¼1

4
n2
ð�1Þnn4c cosc nx;

u3 ¼ L�1
t ðdDa

xu2Þ ¼ � t3d3

3!

X1
n¼1

4
n2
ð�1Þnn6c cosc nx

and so on.
Therefore, the solution is

uðx; tÞ ¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx 1� tdn2c

1!
þ t2d2n4c

2!
� t3d3n6c

3!
þ � � �

� �
¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx E1ð�tdn2cÞ;

where Ek zð Þ is the Mittag-Leffler function in one parameter.

¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosc nx e�tdn2c

¼ p2

3
þ
X1
n¼1

4
n2
ð�1Þn cosa=2 nx e�tdna

ð2:55Þ

The solution (2.55) can be verified through substitution in Eq. (2.4).

2.6.2 Numerical Results and Discussion

In this section, the numerical solutions of the space fractional diffusion equation
with insulated ends obtained by the proposed method have been analyzed.

The numerical simulations for the proposed method

In this present numerical experiment, Eq. (2.55) has been used to draw the graphs
as shown in Figs. 2.7, 2.8 and 2.9 for different fractional order values of a
respectively. In this numerical analysis, we assume d ¼ 0:4 for Eq. (2.4).

Figures 2.7, 2.8 and 2.9 show anomalous diffusion behaviour. These figures
exhibit slow diffusion at the beginning and fast diffusion later. From these figures, it
is also observed that diffusion behaviour increases as a increases.
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Fig. 2.7 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 1:5

Fig. 2.8 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 1:75

Fig. 2.9 a The 3D surface solution, b The corresponding 2D solution at t ¼ 0:5, d ¼ 0:4 and
a ¼ 2
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2.7 Conclusion

In the present chapter, the modified decomposition method has been used for
finding the solutions for the coupled K-G-S equations with initial conditions. The
approximate solutions to the coupled K-G-S equations have been calculated by
using the MDM without any need of transformation techniques and linearization of
the equations. Additionally, it does not need any discretization method to get
numerical solutions. This proposed method thus eliminates the difficulties of
massive computational work.

This chapter includes an analytical scheme to obtain the solutions of the one
dimensional and two-dimensional fractional diffusion equations. Two typical
examples have been discussed as illustrations. In this work, it has been established
that TSADM is well suited to solve the fractional diffusion equation. TSADM
proceeds in two steps. The first step consists of verifying that the zeroth component
of the series solution includes the exact solution. Once the exact solution is
obtained, we stop. Otherwise, we continue with the standard Adomian recursion
relation in the second step.

In this chapter, TSADM has been applied for the solutions of space fractional
diffusion equations. The TSADM may provide the solution by using two iterations
only if compared with the standard Adomian method and the modified decompo-
sition method. Moreover, the TSADM overcomes the difficulties arising in the
modified decomposition method as discussed earlier. A comparison study between
the TSADM and the standard decomposition method is conducted to illustrate the
efficiency of the TSADM and the results obtained indicate that the TSADM is more
feasible and effective.

This chapter also presents an analytical scheme to obtain the solution of space
fractional diffusion equation with insulated ends by ADM with a simple variation.
In the present analysis, a new approach of Adomian decomposition method has
been successfully applied after expressing the initial condition as a Fourier series.
The physical significance of the solution has been also presented graphically. The
present work demonstrates that this proposed technique is well suited to solve the
space fractional diffusion equation with insulated ends.

The proposed methods are straightforward, without restrictive assumptions and
the components of the series solution can be easily computed using any mathe-
matical symbolic package. Moreover, these methods do not change the problem
into a convenient one for the use of linear theory. Therefore, they provide more
realistic series solutions that generally converge very rapidly in real physical
problems. When solutions are computed numerically, the rapid convergence is
obvious. Moreover, no linearization or perturbation is required. It can avoid the
difficulty of finding the inverse of the Laplace Transform and can reduce the labour
of perturbation method. It is quite obvious to see that these methods are quite
accurate, easy and efficient technique for solving fractional partial differential
equations arising in physical problems.
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As mentioned, the proposed methods avoid linearization and physically unre-
alistic assumptions. Furthermore, as the present methods do not require dis-
cretization of the variables, i.e., time and space, it is not affected by computational
round off errors and one is not faced with the necessity of large computer memory
and time. Consequently, the computational size will be reduced.
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Chapter 3
Numerical Solution of Fractional
Differential Equations by Using New
Wavelet Operational Matrix of General
Order

3.1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders (including complex orders). It is also known as gen-
eralized integral and differential calculus of arbitrary order [1, 2]. In the last few
decades, fractional calculus has been extensively investigated due to their broad
applications in mathematics, physics, and engineering such as viscoelasticity, dif-
fusion of a biological population, signal processing, electromagnetism, fluid
mechanics, electrochemistry, and so on. Fractional differential equations are
extensively used in modeling of physical phenomena in various fields of science
and engineering. Fractional calculus was described by Gorenflo and Mainardi [3] as
the field of mathematical analysis which deals with investigation and applications
of integrals and derivatives of arbitrary order.

Fractional calculus is in use for the past 300 years ago. And many great mathe-
maticians [2] (pure and applied) such as N. H. Abel, M. Caputo, L. Euler, J. Fourier,
A. K. Grünwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren,
P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz,
and H. Weyl made major contributions to the theory of fractional calculus.

The history of fractional calculus was started at the end of the seventeenth
century, and the birth of fractional calculus was due to a letter exchange. At that
time, scientific journals did not exist and scientists exchanged their information
through letters. The first conference on fractional calculus and its applications was
organized in June 1974 by B. Ross and held at the University of New Haven.

In recent years, fractional calculus has become the focus of interest for many
researchers in different disciplines of applied science and engineering because of
the fact that realistic modeling of a physical phenomenon can be successfully
achieved by using fractional calculus.
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The fractional derivative has been occurring in many physical problems such as
frequency-dependent damping behavior of materials, motion of a large thin plate in
a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the
PIkDl controller for the control of dynamical systems, etc. Phenomena in elec-
tromagnetics, acoustics, viscoelasticity, and electrochemistry and material science
are also described by differential equations of fractional order. The solution of the
differential equation containing fractional derivative is much involved.

Fractional calculus has been used to model physical and engineering processes
that are found to be best described by fractional differential equations. For that
reason, we need a reliable and efficient technique for the solution of fractional
differential equations.

Recently, orthogonal wavelet bases are becoming more popular for numerical
solutions of partial differential equations due to their excellent properties such as the
ability to detect singularities, orthogonality, flexibility to represent a function at a
different level of resolution and compact support. In recent years, there has been a
growing interest in developing wavelet-based numerical algorithms for the solution
of fractional-order partial differential equations. Among them, the Haar wavelet
method is the simplest and is easy to use. Haar wavelets have been successfully
applied for the solutions of ordinary and partial differential equations, integral
equations, and integro-differential equations.

3.2 Outline of the Present Study

In this chapter, a numerical method based on the Haar wavelet operational method
is applied to solve the Bagley–Torvik equation. In the present analysis, a new
numerical technique based on Haar wavelet operational matrices of the general
order of integration has been employed for the solution of fractional-order Bagley–
Torvik equation. In this regard, a general procedure of obtaining this Haar wavelet
operational matrix of integration Qa of the general order a is derived. To the best
information of the author, such correct general order operational matrix is not
reported earlier in the open literature. In the present chapter, the Haar wavelet
operational method has been applied for the numerical solution of the Bagley–
Torvik equation and then compared with the analytical solution obtained by
Podlubny [4].

Also, in this chapter, the fractional Fisher-type equation has been solved by
using two reliable techniques, viz. Haar wavelet method and optimal homotopy
asymptotic method (OHAM). Haar wavelet method is an efficient numerical
method for the solution of fractional-order partial differential equation like Fisher
type. The obtained results of the fractional Fisher-type equation are then compared
with the optimal homotopy asymptotic method as well as with the exact solutions.
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3.2.1 Fractional Dynamic Model of Bagley–Torvik
Equation

Torvik and Bagley [5] derived a fractional differential equation of degree a ¼ 3
2 for

the description of the motion of an immersed plate in a Newtonian fluid [6]. The
motion of a rigid plate of mass m and area A connected by a massless spring of
stiffness k, immersed in a Newtonian fluid, was originally proposed by Bagley and
Torvik.

A rigid plate of mass m immersed into an infinite Newtonian fluid as shown in
Fig. 3.1. The plate is held at a fixed point by means of a spring of stiffness k. It is
assumed that the motions of spring do not influence the motion of the fluid and that
the area A of the plate is very large, such that the stress–velocity relationship is valid
on both sides of the plate.

Let l be the viscosity and q be the fluid density. The displacement of the plate
y is described by

Fig. 3.1 Rigid plate of mass
m immersed into a Newtonian
fluid [6]
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Ay00ðtÞþBD3=2yðtÞþCyðtÞ ¼ gðtÞ; yð0Þ ¼ y0ð0Þ ¼ 0 ð3:1Þ

where A ¼ m;B ¼ 2A
ffiffiffiffiffiffi
lq

p
, and C ¼ k.

In the present analysis, the Haar wavelet method has been applied for the
numerical solution of the Bagley–Torvik equation of fractional order. Then, the
obtained numerical results have been also compared with the exact solutions.

3.2.2 Generalized Time Fractional Fisher-Type Equation

The generalized time fractional Fisher’s biological population diffusion equation is
given by

@au
@ta

¼ @2u
@x2

þFðuÞ; u x; 0ð Þ ¼ uðxÞ ð3:2Þ

where u x; tð Þ denotes the population density and t[ 0; x 2 <;FðuÞ is a continuous
nonlinear function satisfying the following conditions Fð0Þ ¼ Fð1Þ ¼ 0;
F0ð0Þ[ 0[F0ð1Þ. The derivative in Eq. (3.2) is the Caputo derivative of order a.

The aim of the present work is to implement Haar wavelet method and optimal
homotopy asymptotic method (OHAM) in order to demonstrate the capability of
these methods in handling nonlinear equations of arbitrary order so that one can
apply it to various types of nonlinearity.

3.3 Haar Wavelets and the Operational Matrices

In this section, a brief survey is introduced for the Haar wavelet operational matrix
method which is used to solve the fractional-order Bagley–Torvik equation and
fractional Fisher-type equation. In this context, a short review of Haar wavelets and
operational matrices has been discussed here.

3.3.1 Haar Wavelets

Haar functions have been used from 1910 when they were introduced by the
Hungarian mathematician Alfred Haar. Haar wavelets are the simplest wavelets
among various types of wavelets. They are step functions (piecewise constant
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functions) on the real line that can take only three values, i.e., 0, 1, and −1. We use
the Haar wavelet method due to the following features, simpler and fast, flexible,
convenient, small computational costs, and computationally attractive.

The Haar functions are a family of switched rectangular waveforms where
amplitudes can differ from one function to another. The orthogonal set of Haar
functions are defined in the interval ½0; 1Þ by

h0ðtÞ ¼ 1

hiðtÞ ¼
1; k�1

2 j � t\ k�1
2

2 j

�1; k�1
2

2 j � t\ k
2 j

0; otherwise

8>><>>:
ð3:3Þ

where i ¼ 1; 2; . . .;m� 1, m ¼ 2J , and J is a positive integer. j and k represent the
integer decomposition of the index i, i.e., i ¼ kþ 2 j � 1, 0� j\i, and
1� k\2 j þ 1.

Theoretically, this set of functions is complete. The first curve of Fig. 3.2 is that
h0ðtÞ ¼ 1 during the whole interval ½0; 1Þ. It is called the scaling function. The
second curve h1ðtÞ is the fundamental square wave or the mother wavelet which
also spans the whole interval ½0; 1Þ. All the other subsequent curves are generated
from h1ðtÞ with two operations: translation and dilation. h2ðtÞ is obtained from h1ðtÞ
with dilation, i.e., h1ðtÞ is compressed from the whole interval ½0; 1Þ to the half
interval ½0; 1=2� to generate h2ðtÞ is the same as h2ðtÞ but shifted(translated) to the
right by 1/2. Similarly, h2ðtÞ is compressed form a half interval to a quarter interval
to generate h4ðtÞ. The function h4ðtÞ s translated to the right by 1=4; 2=4; 3=4 to
generate h5ðtÞ, h6ðtÞ, h7ðtÞ, respectively.

In the construction, h0ðtÞ is called the scaling function and h1ðtÞ is the mother
wavelet.

Usually, the Haar wavelets are defined for the interval t 2 ½0; 1�. In general case
t 2 ½A;B�, we divide the interval ½A;B� into m equal subintervals; each of width
Dt ¼ ðB� AÞ=m. In this case, the orthogonal set of Haar functions are defined in
the interval ½A; B� by Saha Ray [7]

h0ðtÞ ¼
1; t 2 ½A;B�
0; elsewhere

�
;

hiðtÞ ¼
1; n1ðiÞ� t\n2ðiÞ
�1; n2ðiÞ� t\n3ðiÞ
0; otherwise

8><>:
ð3:4Þ
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Fig. 3.2 Haar wavelet functions with m ¼ 8
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Fig. 3.2 (continued)
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where

n1ðiÞ ¼ Aþ k � 1
2 j

� �
ðB� AÞ ¼ Aþ k � 1

2 j

� �
mDt;

n2ðiÞ ¼ Aþ k � 1
2

2 j

� �
ðB� AÞ ¼ Aþ k � 1

2

2 j

� �
mDt;

n3ðiÞ ¼ Aþ k
2 j

� �
ðB� AÞ ¼ Aþ k

2 j

� �
mDt;

for i ¼ 1; 2; . . .;m, m ¼ 2J , and J is a positive integer which is called the maximum
level of resolution. Here, j and k represent the integer decomposition of the index i,
i.e., i ¼ kþ 2 j � 1, 0� j\i, and 1� k\2 j þ 1:

In the following analysis, integrals of the wavelets are defined as

piðxÞ ¼
Zx
0

hiðxÞdx; qiðxÞ ¼
Zx
0

piðxÞdx; riðxÞ ¼
Zx
0

qiðxÞdx:

This can be done with the aid of (3.4)

piðxÞ ¼
x� n1 for x 2 n1; n2½ Þ
n3 � x for x 2 n2; n3½ Þ

0 elsewhere

8<: ð3:5Þ

qi xð Þ ¼
0 for x 2 0; n1½ Þ

1
2 x� n1ð Þ2 for x 2 n1; n2½ Þ

1
4m2 � 1

2 n3 � xð Þ2 for x 2 n2; n3½ Þ
1

4m2 for x 2 n3; 1½ �

8>><>>: ð3:6Þ

ri xð Þ ¼

1
6 x� n1ð Þ3 for x 2 n1; n2½ Þ

1
4m2 x� n2ð Þþ 1

6 n3 � xð Þ3 for x 2 n2; n3½ Þ
1

4m2 x� n2ð Þ for x 2 n3; 1½ Þ
0 elsewhere

8>><>>: ð3:7Þ

The collocation points are defined as

xl ¼ l� 0:5
2M

; l ¼ 1; 2; . . .; 2M: ð3:8Þ

It is expedient to introduce the 2M � 2M matrices H, P, Q, and R with the
elements Hði; lÞ ¼ hiðxlÞ, Pði; lÞ ¼ piðxlÞ, Qði; lÞ ¼ qiðxlÞ and Rði; lÞ ¼ riðxlÞ,
respectively.
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3.3.2 Operational Matrix of the General Order Integration

In 2012, the generalized Haar wavelet operational matrix of integration has been
devised first time ever by Saha Ray [7].

The integration of the HmðtÞ ¼ ½h0ðtÞ; h1ðtÞ; . . .; hm�1ðtÞ�T can be approximated
by Chen and Hsiao [8]

Z t

0

HmðsÞds ffi QHmðtÞ; ð3:9Þ

where Q is called the Haar wavelet operational matrix of integration which is a
square matrix of dimension m� m.

Now, we shall derive the Haar wavelet operational matrix of the general order of
integration. In this purpose, we first introduce the fractional integral of order a (>0)
which is defined as Podlubny [4]

Jaf ðtÞ ¼ 1
CðaÞ

Z t

0

ðt � sÞa�1f ðsÞds; t[ 0; a 2 Rþ ð3:10Þ

where Rþ is the set of positive real numbers.
The Haar wavelet operational matrix Qa of integration of the general order a is

given by

QaHmðtÞ ¼ JaHmðtÞ
¼ ½Jah0ðtÞ; Jah1ðtÞ; . . .; Jahm�1ðtÞ�T

¼ ½Qh0ðtÞ;Qh1ðtÞ; . . .;Qhm�1ðtÞ�T;

where

Qh0ðtÞ ¼
ta

Cðaþ 1Þ ; t 2 ½A;B�
0; elsewhere

(
;

QhiðtÞ ¼

0; A� t\n1ðiÞ
f1; n1ðiÞ� t\n2ðiÞ
f2; n2ðiÞ� t\n3ðiÞ
f3; n3ðiÞ� t\B

8>>><>>>:
ð3:11Þ
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where

f1 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ ;

f2 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ � 2

t � n2ðiÞð Þa
Cðaþ 1Þ ;

f3 ¼ t � n1ðiÞð Þa
Cðaþ 1Þ � 2

t � n2ðiÞð Þa
Cðaþ 1Þ þ t � n3ðiÞð Þa

Cðaþ 1Þ ;

for i ¼ 1; 2; . . .;m, m ¼ 2J , and J is a positive integer. Here, j and k represent
the integer decomposition of the index i, i.e., i ¼ kþ 2 j � 1, 0� j\i, and
1� k\2 j þ 1.

For instance, if m ¼ 4, we have

Q1=2H4 ¼
0:398942 0:690988 0:892062 1:0555
0:398942 0:690988 0:0941775 �0:326475
0:398942 �0:106896 �0:0909723 �0:0376338

0 0 0:398942 �0:106896

0BB@
1CCA

QH4 ¼

1
8

3
8

5
8

7
8

1
8

3
8

3
8

1
8

1
8

1
8 0 0

0 0 1
8

1
8

0BB@
1CCA

Q2H4 ¼

1
128

9
128

25
128

49
128

1
128

9
128

23
128

31
128

1
128

7
128

1
16

1
16

0 0 1
128

7
128

0BB@
1CCA

Although, the learned researchers Chen and Hsiao [8], Kilicman and Zhour [9],
Li and Zhao [10] and Bouafoura and Braiek [11] proposed the generalized oper-
ational matrix of integration which is an approximate matrix in nature. It is not the
exact generalized operational matrix. Moreover, it has a drawback for obtaining the
correct integer-order operational matrices from the generalized operational matrix.

In the present analysis, the derived Haar wavelet operational matrix of inte-
gration Qa ¼ ðQaHÞH�1 of the general order a is the correct operational matrix.
The above examples justify its correctness.

3.3.3 Function Approximation by Haar Wavelets

Any function f ðtÞ 2 L2ð½0; 1ÞÞ can be expanded into Haar wavelets by
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yðtÞ ¼ c0h0ðtÞþ c1h1ðtÞþ c2h2ðtÞþ � � � ð3:12Þ

where cj ¼
R 1
0 yðtÞhjðtÞdt.

If yðtÞ is approximated as a piecewise constant in each subinterval, the sum in
Eq. (3.12) may be terminated after m terms and consequently, we can write a
discrete version in the matrix form as

Y �
Xm�1

i¼0

cihiðtlÞ
 !

1�m

¼ CTHm; ð3:13Þ

where Y is the discrete form of the continuous function yðtÞ, and CT ¼
½c0; c1; . . .; cm�1� is called the coefficient vector of Y which can be calculated from
CT ¼ Y:H�1

m . Y and CT are both row vectors, and Hm is the Haar wavelet matrix of
order m ¼ 2J , J is a positive integer and is defined by Hm ¼ ½h0; h1; . . .; hm�1�T

i.e.,

Hm ¼
h0
h1
. . .
hm�1

2664
3775 ¼

h0;0 h0;1 . . . h0;m�1

h1;0 h1;1 . . . h1;m�1

. . .:
hm�1;0 hm�1;1 . . . hm�1;m�1

2664
3775 ð3:14Þ

where h0; h1; . . .; hm�1 are the discrete form of the Haar wavelet bases; the discrete
values are taken from the continuous curves h0ðtÞ; h1ðtÞ; . . .; hm�1ðtÞ, respectively.

The expansion of a given function f ðtÞ into the Haar wavelet series is

f ðtÞ ¼
Xm�1

i¼0

cihiðtÞ; t 2 ½A;B� ð3:15Þ

where ci are the wavelet coefficients.
In the present paper, we apply wavelet collocation method to determine the

coefficients ci. These collocation points are given by

tl ¼ Aþðl� 0:5ÞDt; l ¼ 1; 2; . . .;m: ð3:16Þ

The discrete version of (3.15) is

f ðtlÞ ¼
Xm�1

i¼0

cihiðtlÞ: ð3:17Þ
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Equation (3.17) can be written in the matrix form as

f̂ ¼ CTHm: ð3:18Þ

where f̂ and CT are m-dimensional row vectors, and Hm is the Haar wavelet matrix
of order m.

3.3.4 Convergence of Haar Wavelet Approximation

In this subsection, the convergence analysis for the Haar wavelet method has been
employed.

Theorem 3.1 Let, f ðxÞ 2 L2ðRÞ be a continuous function defined in [0, 1). Then,
the error at Jth level may be defined as

EJðxÞ ¼ f ðxÞ � fJðxÞj j ¼ f ðxÞ �
X2M
i¼1

aihiðxÞ
�����

����� ¼ X1
i¼2M

aihiðxÞ
�����

�����: ð3:19Þ

Then, the error norm at Jth level satisfies the following inequalities

EJk k� K2

12
2�2J ; ð3:20Þ

where f 0ðxÞj j �K, for all x 2 ð0; 1Þ and K[ 0 and M is a positive number
related to the Jth level resolution of the wavelet given by M ¼ 2J .

Proof The error at the Jth level of resolution is defined as

EJj j ¼ f ðxÞ � fJðxÞj j

¼
X1
i¼2M

aihiðxÞ
�����

�����;
where

fJðxÞ ¼
X2M�1

i¼0

aihiðxÞ; M ¼ 2J :
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EJk k2 ¼
Z1
�1

X1
i¼2M

aihiðxÞ;
X1
l¼2M

alhlðxÞ
 !

dx

¼
X1
i¼2M

X1
l¼2M

aial

Z1
�1

hiðxÞhlðxÞdx

�
X1
i¼2M

aij j2:

Now, ai ¼
R 1
0 2

j=2f ðxÞhð2 jx� kÞdx,
where hiðxÞ ¼ 2j=2hð2 jx� kÞ, k ¼ 0; 1; 2; . . .; 2 j � 1, j ¼ 0; 1; . . .; J
and

h 2 jx� k
� � ¼ 1; k2�j � x\ kþ 1

2

� �
2�j

�1; kþ 1
2

� �
2�j � x\ðkþ 1Þ2�j

0; elsewhere

8<: :

Therefore, applying integral mean value theorem, we obtain

ai ¼ 2j=2
Zðkþ 1

2Þ2�j

k2�j

f ðxÞdx�
Zðkþ 1Þ2�j

ðkþ 1
2Þ2�j

f ðxÞdx

264
375

¼ 2j=2 kþ 1
2

� �
2�j � k2�j

� �
f ðn1Þ

	
� kþ 1ð Þ2�j � kþ 1

2

� �
2�j

� �
f ðn2Þ



;

where n1 2 k2�j; kþ 1
2

� �
2�j

� �
and

n2 2 kþ 1
2

� �
2�j; kþ 1ð Þ2�j

� �
Consequently, applying Lagrange’s mean value theorem, we have

ai ¼ 2�
j
2�1ðn1 � n2Þðf 0ðnÞÞ; where n 2 ðn1; n2Þ:

This implies that

a2i ¼ 2�j�2ðn2 � n1Þ2f 0ðnÞ2
� 2�j�22�2jK2; since f 0ðxÞj j �K

¼ 2�3j�2K2:
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Therefore,

EJk k2 �
X1
i¼2M

a2i �
X1
i¼2M

2�3j�2K2

¼ K2
X1

j¼Jþ 1

X2jþ 1�1

i¼2 j

2�3j�2

¼ K2
X1

j¼Jþ 1

2�3j�2 2jþ 1 � 1� 2 j þ 1
� �

¼ K2
X1

j¼Jþ 1

ð2�2j�1 � 2�2j�2Þ

¼ K2
X1

j¼Jþ 1

2�2jð2�1 � 2�2Þ

¼ K2

4

X1
j¼Jþ 1

2�2j

¼ K2

4
2�2ðJþ 1Þ

1� 1
4

� �
¼ K2

12
2�2J :

ð3:21Þ

From the above Eq. (3.21), it is obvious that the error bound is inversely pro-
portional to the level of resolution J of Haar wavelet. Hence, the accuracy in the
wavelet method improves as we increase the level of resolution J.

3.4 Basic Idea of Optimal Homotopy Asymptotic Method

To illustrate the basic ideas of optimal homotopy asymptotic method, we consider
the following nonlinear differential equation

A u x; tð Þð Þþ g x; tð Þ ¼ 0; x 2 X ð3:22Þ

with the boundary conditions

B u;
@u
@t

� �
¼ 0; x 2 C ð3:23Þ

where A is a differential operator, B is a boundary operator, u x; tð Þ is an unknown
function, C is the boundary of the domain X, and g x; tð Þ is a known analytic
function.
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The operator A can be decomposed as

A ¼ LþN; ð3:24Þ

where L is a linear operator, and N is a nonlinear operator.
We construct a homotopy u x; t; pð Þ : X� 0; 1½ � ! < which satisfies

H u x; t; pð Þ; pð Þ ¼ 1� pð Þ L u x; t; pð Þð Þþ g x; tð Þ½ �
� HðpÞ A u x; t; pð Þð Þþ g x; tð Þ½ � ¼ 0;

ð3:25Þ

where p 2 0; 1½ � is an embedding parameter, and HðpÞ is a nonzero auxiliary
function for p 6¼ 0 and Hð0Þ ¼ 0. When p ¼ 0 and p ¼ 1, we have u x; t; 0ð Þ ¼
u0 x; tð Þ and u x; t; 1ð Þ ¼ u x; tð Þ, respectively.

Thus as p varies from 0 to 1, the solution u x; t; pð Þ approaches from u0 x; tð Þ to
u x; tð Þ.

Here u0 x; tð Þ is obtained from Eqs. (3.25) and (3.23) with p ¼ 0 yields

L u x; t; 0ð Þð Þþ g x; tð Þ ¼ 0; B u0;
@u0
@t

� �
¼ 0: ð3:26Þ

The auxiliary function HðpÞ is chosen in the form

HðpÞ ¼ pC1 þ p2C2 þ p3C3 þ � � � ; ð3:27Þ

where C1;C2;C3; . . . are constants to be determined. To get an approximate solu-
tion, ~u x; t; p;C1;C2;C3; . . .ð Þ is expanded in a series about p as

~u x; t; p;C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
X1
i¼1

ui x; t;C1;C2;C3; . . .ð Þpi: ð3:28Þ

Substituting Eq. (3.28) in Eq. (3.25) and equating the coefficients of like powers
of p, we will have the following equations

L u1 x; tð Þþ g x; tð Þð Þ ¼ C1N0 u0 x; tð Þð Þ; B u1;
@u1
@t

� �
¼ 0: ð3:29Þ

L u2 x; tð Þð Þ � L u1 x; tð Þð Þ ¼ C2N0 u0 x; tð Þð Þ

þC1 L u1 x; tð Þð ÞþN1 u0 x; tð Þ; u1 x; tð Þð Þð Þ;B u2;
@u2
@t

� �
¼ 0:

ð3:30Þ

and hence, the general governing equations for uj x; tð Þ is given by
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L uj x; tð Þ� � ¼ L uj�1 x; tð Þ� �þCjN0 u0 x; tð Þð Þ

þ
Xj�1

i¼1

Ci L uj�1 x; tð Þ� �þNj�1 u0 x; tð Þ; . . .; uj�1 x; tð Þ� �� �
;

j ¼ 2; 3; . . .

ð3:31Þ

where Nj u0 x; tð Þ; . . .; uj x; tð Þ� �
is the coefficient of p j in the expansion of

N u x; t; pð Þð Þ about the embedding parameter p and

N u x; t; p;C1;C2;C3; . . .ð Þð Þ ¼ N0 u0 x; tð Þð Þþ
X1
j¼1

Nj u0; u1; . . .; uj
� �

p j: ð3:32Þ

It is observed that the convergence of the series (3.28) depends upon the aux-
iliary constants C1;C2;C3; . . ..

The approximate solution of Eq. (3.22) can be written in the following form

~u x; t;C1;C2;C3; . . .ð Þ ¼ u0 x; tð Þþ
Xn�1

j¼1

uj x; t;C1;C2;C3; . . .ð Þ: ð3:33Þ

Substituting Eq. (3.33) in Eq. (3.22), we get the following expression for the
residual

Rn x; t;C1;C2;C3; . . .ð Þ ¼ L ~u x; t;C1;C2;C3; . . .ð Þð Þ
þN ~u x; t;C1;C2;C3; . . .ð Þð Þþ g x; tð Þ: ð3:34Þ

If Rn x; t;C1;C2;C3; . . .ð Þ ¼ 0, then ~u x; t;C1;C2;C3; . . .ð Þ is the exact solution.
Generally, such case does not arise for nonlinear problems. The nth-order
approximate solution given by Eq. (3.33) depends on the auxiliary constants
C1;C2;C3; . . ., and these constants can be optimally determined by various meth-
ods. Here, we apply the collocation method.

According to the collocation method, the optimal values of the constants
C1;C2;C3; . . . can be obtained by solving the following system of equations:

Rn xi; tj;C1;C2;C3; . . .;Ck2
� � ¼ 0; for i ¼ 1; 2; . . .; k and j ¼ 1; 2; . . .; k ð3:35Þ

After obtaining the optimal values of the convergence control constants
C1;C2;C3; . . . by the above-mentioned method, the approximate solution of
Eq. (3.22) is well determined.
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3.5 Application of Haar Wavelet Method
for the Numerical Solution of Bagley–Torvik Equation

In the present analysis, we are using the operational matrix of Haar wavelet for
finding the numerical solution of Bagley–Torvik Equation, which arises, for
instance, in modeling the motion of a rigid plate immersed in a Newtonian fluid.

Let us consider the Bagley–Torvik equation [4]

Ay00ðtÞþBD3=2yðtÞþCyðtÞ ¼ f ðtÞ; t[ 0 ð3:36Þ

where

f ðtÞ ¼ 8; 0� t� 1
0; t[ 1

�

subject to initial conditions

yð0Þ ¼ y0ð0Þ ¼ 0:

The Haar wavelet solution is sought in the form

yðtÞ ¼
Xm�1

i¼0

cihiðtÞ; ð3:37Þ

which can be written in the matrix form as

yðtlÞ ¼ CTHmðtlÞ; ð3:38Þ

where tl is the collocation points in Eq. (2.7), CT is the m-dimensional row vector,
and HmðtlÞ is the Haar wavelet square matrix of order m.

Integrating Eq. (3.36), we get

A
Z t

0

Z t

0

D2yðtÞdt dtþB
Z t

0

Z t

0

D3=2yðtÞdt dtþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt:

This implies

A yðtÞ � yð0Þ � t y0ð0Þ½ � þBJ1=2yðtÞþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt:
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Substituting the initial conditions, we obtain

AyðtÞþBJ1=2yðtÞþC
Z t

0

Z t

0

yðtÞdt dt ¼
Z t

0

Z t

0

f ðtÞdt dt: ð3:39Þ

Now, expressing Eq. (3.38) into the discrete matrix form, we obtain

ACTHmðtlÞþBCTQ1=2HmðtlÞþCCTQ2HmðtlÞ ¼ EH�1
m ðtlÞQ2HmðtlÞ: ð3:40Þ

Since,
R t
0

R t
0 f ðt)dt dt ffi cTQ2HmðtÞ, where cT ¼ EH�1

m ðtÞ and E is the discrete
form of the function f ðtlÞ ¼ 8 uðtlÞ � u tl � 1ð Þð Þ, where uðtÞ is the Heaviside step
function, for Eq. (3.36).

From Eq. (3.40), we have

CT AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ

 �

¼ EH�1
m ðtlÞQ2HmðtlÞ: ð3:41Þ

Solving Eq. (3.41) for the coefficient row vector CT , we get

CT ¼ EH�1
m ðtlÞQ2HmðtlÞ AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ


 ��1
: ð3:42Þ

Using Eq. (3.38), the Haar wavelet numerical solution is obtained as

yðtlÞ ¼ EH�1
m ðtlÞQ2HmðtlÞ AHmðtlÞþBQ1=2HmðtlÞþCQ2HmðtlÞ


 ��1
HmðtlÞ:

ð3:43Þ

Now, the analytical solution of Eq. (3.36) is [4]

yðtÞ ¼
Z t

0

G3ðt � sÞf ðsÞds; ð3:44Þ

where G3 tð Þ ¼ 1
A

P1
r¼0

�1ð Þr
r!

C
A

� �r
t2rþ 1E rð Þ

1
2;
3
2rþ 2

�B
A t1=2
� �

, Ek;lðzÞ is called the Mittag–

Leffler function in two parameters k; l (>0) [4] and

EðrÞ
k;lðyÞ 	

dr

dyr
Ek;lðyÞ ¼

X1
j¼0

jþ rð Þ!y j
j!C kjþ krþ lð Þ; r ¼ 0; 1; 2; . . .ð Þ

Then, Eq. (3.44) is reduced to
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yðtÞ ¼ 8 yUðtÞ � yUðt � 1Þ½ �; if f ðtÞ ¼ 8 uðtÞ � u t � 1ð Þð Þ ð3:45Þ

where

yUðtÞ ¼ uðtÞ 1
A

X1
r¼0

�1ð Þr
r!

C
A

� �r

t2 rþ 1ð ÞEðrÞ
1
2;
3
2rþ 3

�B
A

t1=2
� �" #

:

The solution (3.45) is the analytical solution of Eq. (3.36).

3.5.1 Numerical Results and Discussions

In the present numerical computation, we have assumed A ¼ 1, B ¼ 0:5, and
C ¼ 0:5, as is taken in [4]. It is interesting to note that the graph obtained by Haar
wavelet operation method almost coincides with that of [4] cited in Fig. 3.3.

Equations (3.43) and (3.45) have been used to draw the graphs as shown in
Fig. 3.3. In Fig. 3.3, yapp(t) and yext(t) specify Haar wavelet numerical solution
and analytical exact solution of Bagley–Torvik equation, respectively.

To have a comparison of the present analysis through Haar wavelet operational
method with that of another available method [4], Table 3.1 creates to cite the
absolute errors at the collocation points given by Eq. (3.16).

The R.M.S. error between the numerical solution and the exact solution is
0.204029. The above numerical experiments presented in this section were com-
puted using Mathematica 7 [12].

Fig. 3.3 Numerical solution yapp(t) and analytical exact solution yext(t) of Bagley–Torvik
equation (black line for yapp(t) and dash line for yext(t))
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Table 3.1 Absolute error between numerical solution and analytical exact solution

Sl. No. Time (t) Analytical exact solution Numerical solution Absolute error

1 0.15625 0.0871108 0.0794522 0.00765854

2 0.46875 0.721004 0.70136 0.0196437

3 0.78125 1.87889 1.85171 0.0271845

4 1.09375 3.43807 3.35895 0.0791208

5 1.40625 4.85696 4.67105 0.185911

6 1.71875 5.98737 5.71216 0.27521

7 2.03125 6.83165 6.48436 0.347298

8 2.34375 7.39045 6.98837 0.402077

9 2.65625 7.66909 7.22953 0.439556

10 2.96875 7.67925 7.21918 0.460064

11 3.28125 7.43909 6.97477 0.464314

12 3.59375 6.97278 6.51938 0.453404

13 3.90625 6.30966 5.88088 0.428782

14 4.21875 5.48313 5.09093 0.392194

15 4.53125 4.52949 4.18387 0.345618

16 4.84375 3.48673 3.19553 0.291196

17 5.15625 2.39322 2.16206 0.231159

18 5.46875 1.28657 1.11881 0.167756

19 5.78125 0.202504 0.0993191 0.103185

20 6.09375 −0.826127 −0.865657 0.03953

21 6.40625 −1.77019 −1.7489 0.0212933

22 6.71875 −2.60496 −2.52737 0.0775864

23 7.03125 −3.3106 −3.1827 0.127905

24 7.34375 −3.87253 −3.70144 0.171084

25 7.65625 −4.28152 −4.07526 0.206259

26 7.96875 −4.53369 −4.30082 0.232869

27 8.28125 −4.63032 −4.37967 0.250654

28 8.59375 −4.57747 −4.31783 0.259644

29 8.90625 −4.38554 −4.1254 0.260137

30 9.21875 −4.06866 −3.81598 0.252674

31 9.53125 −3.64404 −3.40603 0.238006

32 9.84375 −3.13126 −2.9142 0.217055

33 10.1563 −2.55149 −2.36062 0.190874

34 10.4688 −1.92678 −1.76617 0.160611

35 10.7813 −1.27925 −1.15179 0.12746

36 11.0938 −0.630455 −0.537829 0.0926261

37 11.4063 −0.00071872 0.056568 0.0572867

38 11.7188 0.591432 0.613989 0.0225565

39 12.0313 1.12973 1.11919 0.0105422

40 12.3438 1.60056 1.55946 0.0411051
(continued)
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3.5.2 Error Estimate

The following table demonstrates the comparison between the numerical solution
obtained by Haar wavelet and the analytical solution. The corresponding absolute
errors are presented in Table 3.2.

Table 3.1 (continued)

Sl. No. Time (t) Analytical exact solution Numerical solution Absolute error

41 12.6563 1.99321 1.92484 0.0683651

42 12.9688 2.30003 2.20832 0.0917076

43 13.2813 2.51652 2.40585 0.110679

44 13.5938 2.64127 2.51628 0.124988

45 13.9063 2.6758 2.54129 0.134509

46 14.2188 2.62437 2.4851 0.139268

47 14.5313 2.49368 2.35425 0.139437

48 14.8438 2.29251 2.15719 0.135316

49 15.1563 2.03131 1.90399 0.127317

50 15.4688 1.7218 1.60585 0.115943

51 15.7813 1.37652 1.27475 0.101767

52 16.0938 1.00838 0.922968 0.0854092

53 16.4063 0.630246 0.56273 0.0675157

54 16.7188 0.254542 0.205806 0.0487359

55 17.0313 −0.107127 −0.13683 0.0297033

56 17.3438 −0.444276 −0.455293 0.0110165

57 17.6563 −0.747806 −0.74103 0.00677619

58 17.9688 −1.01021 −0.987015 0.0231906

59 18.2813 −1.22569 −1.18788 0.0378169

60 18.5938 −1.3903 −1.33997 0.0503275

61 18.9063 −1.50186 −1.44138 0.0604813

62 19.2188 −1.56003 −1.49191 0.0681253

63 19.5313 −1.56614 −1.49294 0.0731934

64 19.8438 −1.52304 −1.44734 0.0757026
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3.6 Solution of Fractional Fisher-Type Equation

In this section, the time fractional Fisher-type equation has been solved by reliable
methods, namely the Haar wavelet method and OHAM, respectively.

3.6.1 Application of Haar Wavelet to Fractional
Fisher-Type Equation

Consider the nonlinear diffusion equation of the Fisher type [13, 14]

@au
@ta

¼ @2u
@x2

þ u 1� uð Þ u� að Þ; ð3:46Þ

where 0\a� 1, 0� x� 1, and 0\a\1
with the initial condition

u x; 0ð Þ ¼ 1

1þExp � 1ffiffi
2

p

 �

x
h i : ð3:47Þ

When a ¼ 1, the exact solution of Eq. (3.46) is given by Wazwaz and Gorguis
[15], Liu [16]

u x; tð Þ ¼ 1

1þExp � xþ ctffiffi
2

p

 �h i ; ð3:48Þ

Table 3.2 Comparison of error between the numerical solution and analytical exact solution for
t ¼ 0; 1; 2; . . .; 10

Time t Approximate solution of yðtÞ Analytical solution of yðtÞ Absolute error

0 8:88178� 10�16 0 8:88178� 10�16

1 3.53856 2.95258 0.585974

2 7.53718 6.76011 0.77707

3 8.2854 7.66614 0.61926

4 6.26126 6.07725 0.184014

5 2.53055 2.94394 0.41339

6 −1.49195 −0.525171 0.966783

7 −4.50898 −3.2463 1.26268

8 −5.72074 −4.55029 1.17045

9 −5.00085 −4.30286 0.697989

10 −2.84029 −2.84838 0.0080944
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where c ¼ ffiffiffi
2

p
1
2 � a
� �

.
Let us divide both space and time interval [0, 1] into m equal subintervals; each

of width D ¼ 1
m.

Haar wavelet solution of u x; tð Þ is sought by assuming that @2u x;tð Þ
@x2 can be

expanded in terms of Haar wavelets as

@2u x; tð Þ
@x2

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞ: ð3:49Þ

Integrating Eq. (3.49) twice w.r.t. x from 0 to x, we get

u x; tð Þ ¼
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ qðtÞþ xpðtÞ: ð3:50Þ

Putting x ¼ 0; in Eq. (3.50), we get

qðtÞ ¼ u 0; tð Þ: ð3:51Þ

Putting x ¼ 1, in Eq. (3.50) we get

pðtÞ ¼ u 1; tð Þ � u 0; tð Þ �
Xm
i¼1

Xm
j¼1

cij Q
2hiðxÞ

� �
x¼1hjðtÞ: ð3:52Þ

Again qðtÞþ xpðtÞ can be approximated using Haar wavelet function as

qðtÞþ xpðtÞ ¼
Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ: ð3:53Þ

This implies

u 0; tð Þþ x u 1; tð Þ � u 0; tð Þ �
Xm
i¼1

Xm
j¼1

cij Q
2hiðxÞ

� �
x¼1hjðtÞ

" #

¼
Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ:
ð3:54Þ

Substituting Eq. (3.53) in Eq. (3.50), we get

u x; tð Þ ¼
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ: ð3:55Þ
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The nonlinear term presented in Eq. (3.46) can be approximated using Haar
wavelet function as

u 1� uð Þ u� að Þ ¼
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ: ð3:56Þ

Therefore,

Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ
 !

1�
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ
 !
Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ � a

 !
¼
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ

ð3:57Þ

Substituting Eqs. (3.49) and (3.56) in Eq. (3.46), we will have

@au
@ta

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞþ
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ : ð3:58Þ

Now applying Ja to both sides of Eq. (3.58) yields

u x; tð Þ � u x; 0ð Þ ¼ Jat
Xm
i¼1

Xm
j¼1

cijhiðxÞhjðtÞ
 !

þ Jat
Xm
i¼1

Xm
j¼1

dijhiðxÞhjðtÞ
 !

: ð3:59Þ

Substituting Eq. (8.44) and Eq. (3.55) in Eq. (3.59), we get

Xm
i¼1

Xm
j¼1

cijQ
2hiðxÞhjðtÞþ

Xm
i¼1

Xm
j¼1

rijhiðxÞhjðtÞ

� 1

1þ e
� 1ffiffi

2
p

 �

x

¼
Xm
i¼1

Xm
j¼1

cijhiðxÞQa
t hjðtÞ

þ
Xm
i¼1

Xm
j¼1

dijhiðxÞQa
t hjðtÞ:

ð3:60Þ

Now substituting the collocation points xl ¼ l�0:5
m and tk ¼ k�0:5

m for l; k ¼
1; 2; . . .;m in Eqs. (3.54), (3.57), and (3.60), we have 3m2 equations in 3m2
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unknowns in cij, rij, and dij. By solving this system of equations using mathematical
software, the Haar wavelet coefficients cij, rij, and dij can be obtained.

3.6.2 Application of OHAM to Fractional Fisher-Type
Equation

Using the optimal homotopy asymptotic method, the homotopy for Eq. (3.46) can
be written as

1� pð Þ @
au x; t; pð Þ

@ta
¼ HðpÞ @au x; t; pð Þ

@ta
� @2u x; t; pð Þ

@x2

	
�u x; t; pð Þ 1� u x; t; pð Þ½ � u x; t; pð Þ � a½ ��

ð3:61Þ

Here,

u x; t; pð Þ ¼ u0 x; tð Þþ
X1
i¼1

ui x; tð Þpi; ð3:62Þ

HðpÞ ¼ pC1 þ p2C2 þ p3C3 þ � � � ; ð3:63Þ

N u x; t; pð Þð Þ ¼ N0 u0 x; tð Þð Þþ
X1
k¼1

Nk u0; u1; . . .; ukð Þpk: ð3:64Þ

Substituting Eqs. (3.62)–(3.64) in Eq. (3.61) and equating the coefficients of like
powers of p, we have the following system of partial differential equations.

Coefficients of p0:

@au0 x; tð Þ
@ta

¼ 0: ð3:65Þ

Coefficients of p1:

@au1 x; tð Þ
@ta

� @au0 x; tð Þ
@ta

¼ C1
@au0 x; tð Þ

@ta
� @2u0 x; tð Þ

@x2

	
þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3

i ð3:66Þ
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Coefficients of p2:

@au2 x; tð Þ
@ta

� @au1 x; tð Þ
@ta

¼ C1
@au1 x; tð Þ

@ta
� @2u1 x; tð Þ

@x2
þ au1 x; tð Þ

	
�2u0 x; tð Þu1 x; tð Þ 1þ að Þþ 3 u0 x; tð Þð Þ2u1 x; tð Þ

i
þC2

@au0 x; tð Þ
@ta

� @2u0 x; tð Þ
@x2

	
þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3

i
ð3:67Þ

and so on.
For solving fractional Fisher-type equation using OHAM, we consider the initial

condition Eq. (3.47) and solving Eqs. (3.65)–(3.67), we obtain

u0 x; tð Þ ¼ 1

1þExp � 1ffiffi
2

p

 �

x
h i ; ð3:68Þ

u1 x; tð Þ ¼
C1 2a� 1ð ÞExp xffiffi

2
p
h i

ta

2 1þExp xffiffi
2

p
h i
 �2

C 1þ að Þ
; ð3:69Þ

u2 x; tð Þ ¼ u1 x; tð Þþ C1 u1 x; tð Þ �
C1 2a� 1ð ÞExp xffiffi

2
p
h i

1� 4Exp xffiffi
2

p
h i

þExp
ffiffiffi
2

p
x

� �
 �
t2a

4 1þExp xffiffi
2

p
h i
 �4

C 1þ 2að Þ

264
þ

aC1 2a� 1ð ÞExp xffiffi
2

p
h i

t2a

2 1þExp xffiffi
2

p
h i
 �2

C 1þ 2að Þ
� 1þ að ÞC1 2a� 1ð ÞExp ffiffiffi

2
p

x
� �

t2a

1þExp xffiffi
2

p
h i
 �3

C 1þ 2að Þ

þ
3C1 2a� 1ð ÞExp 3xffiffi

2
p
h i

t2a

2 1þExp xffiffi
2

p
h i
 �4

C 1þ 2að Þ

375
þC2 � @2u0 x; tð Þ

@x2
þ au0 x; tð Þ � u0 x; tð Þð Þ2 1þ að Þþ u0 x; tð Þð Þ3

	 

ta

C 1þ að Þ
ð3:70Þ

Using Eqs. (3.68)–(3.70) and consequently substituting in Eq. (3.33), the
second-order approximate solution is obtained as follows
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ð3:71Þ

The optimal values of the convergence control constants C1 and C2 can be
obtained using the collocation method from Eq. (3.35).

3.6.3 Numerical Results and Discussion

Table 3.3 shows the comparison of the approximate solutions of fractional
Fisher-type Eq. (3.46) obtained by using the Haar wavelet method and OHAM at
different values of x and t. Tables 3.4, 3.5, and 3.6 exhibit the comparison of
approximate solutions obtained by Haar wavelet method and OHAM for fractional
Fisher-type Eq. (3.46). The obtained results in Tables 3.3, 3.4, 3.5, and 3.6
demonstrate that these methods are well suited for solving fractional Fisher-type
equation. Table 3.7 exhibits the L2 and L1 error norm for fractional Fisher-type
equation at different values of t and a ¼ 1. It can be easily observed from Table 3.7
that the solutions obtained by OHAM are more accurate than that of the Haar
wavelet method.

In the case of fractional Fisher-type Eq. (3.46), Figs. 3.4, 3.5, 3.6, and 3.7 show
the graphical comparison between the numerical solutions obtained by Haar
wavelet method and exact solutions for different values of x and t for a ¼ 1.
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Table 3.3 Absolute errors in the solution of fractional Fisher-type Eq. (3.46) using the Haar
wavelet method and second-order OHAM at various points of x and t for a ¼ 1

x uExact � uHaarj j uExact � uOHAMj j
t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8 t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

0.1 6.3532E−3 2.37818E−3 1.10276E−2 0.01313 1.15082E−6 2.2604E−5 9.065E−5 2.3096E−4

0.2 0.0157158 1.13279E−3 0.0156863 0.0202773 2.08404E−6 9.2861E−6 5.967E−5 1.7382E−4

0.3 0.0254058 8.69964E−4 0.0188795 0.0256173 5.29828E−6 4.1167E−6 2.814E−5 1.151E−4

0.4 0.0346376 3.18353E−3 0.0206902 0.0290465 8.45965E−6 1.7464E−5 3.605E−6 5.5364E−5

0.5 0.0392372 6.88463E−4 0.0293499 0.0394803 1.1537E−5 3.0617E−5 3.521E−5 4.6066E−6

0.6 0.0452261 1.29706E−3 0.0284296 0.0387295 1.45011E−5 4.3441E−5 6.635E−5 6.4167E−5

0.7 0.0486123 0.00292683 0.0260098 0.0356642 1.73248E−5 5.5811E−5 9.668E−5 1.2266E−4

0.8 0.0489923 0.00432643 0.0218834 0.0300975 1.99841E−5 6.761E−5 1.259E−4 1.7945E−4

0.9 0.0461399 0.00580079 0.0157611 0.0218232 2.2458E−5 7.8733E−5 1.537E−4 2.3396E−4

1.0 0.0407954 0.00797543 7.28187E−3 0.010615 2.47294E−5 8.9092E−5 1.799E−4 2.8567E−4

Table 3.4 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and second-order OHAM at various points of x and t for a ¼ 0:75

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.529262 0.541972 0.550815 0.558464 0.57178 0.572871 0.58789 0.586061

0.2 0.54032 0.559441 0.567777 0.57575 0.592323 0.589947 0.610112 0.6029

0.3 0.551007 0.576764 0.583637 0.592852 0.611195 0.606805 0.630359 0.619494

0.4 0.561805 0.5939 0.598653 0.60973 0.628487 0.62341 0.648635 0.635808

0.5 0.577346 0.61081 0.619426 0.62635 0.652014 0.639728 0.673325 0.651811

0.6 0.589669 0.627458 0.63334 0.642676 0.666293 0.655727 0.687588 0.667476

0.7 0.603304 0.643809 0.646865 0.658676 0.679049 0.67138 0.699751 0.682775

0.8 0.618509 0.659832 0.659997 0.674324 0.690193 0.68666 0.709697 0.697687

0.9 0.635416 0.675498 0.672635 0.689592 0.699573 0.701546 0.717268 0.712192

1.0 0.653985 0.69078 0.684559 0.704459 0.706961 0.716016 0.722251 0.726273

Table 3.5 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and three terms for second-order OHAM at various points of x and t for a ¼ 0:5

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.531396 0.55521 0.550389 0.570645 0.570167 0.582442 0.586081 0.592358

0.2 0.544463 0.572501 0.567129 0.587683 0.589396 0.599243 0.606722 0.608926

0.3 0.557098 0.589616 0.582811 0.604511 0.607055 0.615806 0.625465 0.625237

0.4 0.569581 0.606516 0.597627 0.621093 0.62327 0.6321 0.642398 0.64126

0.5 0.586931 0.623164 0.617982 0.637394 0.645433 0.648094 0.665485 0.656966

0.6 0.599906 0.639526 0.631544 0.653383 0.659045 0.663758 0.678972 0.672331

0.7 0.613502 0.655571 0.644668 0.669033 0.671439 0.679069 0.690761 0.68733

0.8 0.627951 0.671268 0.657436 0.684317 0.682619 0.694001 0.700823 0.701944

0.9 0.643461 0.686593 0.669891 0.699213 0.69255 0.708537 0.709084 0.716155

1.0 0.660213 0.701522 0.682031 0.713701 0.701145 0.722658 0.715421 0.729948
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Table 3.7 L2 and L1 error norm for Fisher-type equation at different values of t

Time (s) Haar wavelet method Optimal homotopy asymptotic
method (OHAM)

L2 L1 L2 L1
0.2 0.0377811 0.0489923 1.50470E−5 2.47294E−5

0.4 0.00380168 0.00797543 5.05627E−5 8.9092E−5

0.6 0.020685 0.0293499 9.97048E−5 1.799E−4

0.8 0.0281228 0.0394803 1.69576E−4 2.8567E−4

Table 3.6 Approximate solutions of fractional Fisher-type Eq. (8.1) using the Haar wavelet
method and three terms for second-order OHAM at various points of x and t for a ¼ 0:25

x t ¼ 0:2 t ¼ 0:4 t ¼ 0:6 t ¼ 0:8

uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.532613 0.572089 0.549759 0.582288 0.56869 0.589109 0.584364 0.594376

0.2 0.546845 0.589079 0.566132 0.599061 0.586797 0.605718 0.603614 0.610849

0.3 0.560632 0.605856 0.581558 0.615598 0.603479 0.622078 0.62109 0.627063

0.4 0.574145 0.622383 0.596189 0.631866 0.618879 0.638157 0.63693 0.642985

0.5 0.592632 0.638629 0.6162 0.647836 0.639969 0.653925 0.658653 0.65859

0.6 0.60613 0.654561 0.62967 0.663478 0.653168 0.669358 0.671551 0.673851

0.7 0.6199 0.670153 0.642758 0.678767 0.665416 0.68443 0.683099 0.688748

0.8 0.634137 0.685379 0.655588 0.693681 0.67679 0.699122 0.693344 0.703261

0.9 0.649049 0.700217 0.668278 0.7082 0.687344 0.713415 0.702305 0.717372

1.0 0.664857 0.714648 0.680936 0.722306 0.697114 0.727293 0.709973 0.731069

Fig. 3.4 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:2 and a ¼ 1
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Fig. 3.5 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:4 and a ¼ 1

Fig. 3.6 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:6 and a ¼ 1

Fig. 3.7 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t ¼ 0:8 and a ¼ 1
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3.7 Conclusion

In the present chapter, a numerical method based on the Haar wavelet operational
method is applied to solve the Bagley–Torvik equation. An attempt has been made
to apply the Haar wavelet operational method for the numerical solution of the
Bagley–Torvik equation.

We exhibit a numerical method for the fractional-order Bagley–Torvik equation
based on Haar wavelet operational matrices of the general order of integration. In
this regard, a general procedure of obtaining the Haar wavelet operational matrix Qa

of integration of the general order a is derived first time in this work. This oper-
ational matrix is the correct general order operational matrix confirmed after
examined by the author.

The numerical solution is compared with the exact solution and the R.M.S. error
is 0.204029. The error may be reduced if we take more number of collocation
points. The advantage of this method is that it transforms the problem into algebraic
matrix equation so that the computation is simple, and it is a computer-oriented
method. It shows the simplicity and effectiveness of this method. It is based on the
operational matrices of Haar wavelet functions. Moreover, wavelet operational
method is much simpler than the conventional numerical method for fractional
differential equations, and the result obtained is quite satisfactory. The admissible
comparison of the results obtained by the present method justifies the applicability,
accuracy, and efficiency of the proposed method.

Also, in this chapter, the fractional Fisher-type equation has been solved by
using the Haar wavelet method. The obtained results are then compared with exact
solutions as well as the optimal homotopy asymptotic method. These results have
been presented in the tables and also graphically demonstrated in order to justify the
accuracy and efficiency of the proposed schemes. The Haar wavelet technique
provides quite satisfactory results for the fractional Fisher-type Eq. (3.46). The
main advantages of this Haar wavelet method are it transfers the whole scheme into
a system of algebraic equations for which the computation is easy and simple.
OHAM allows fine-tuning of the convergence region and the rate of convergence
by suitably identifying convergence control parameters C1;C2;C3; . . .. The results
obtained by OHAM are more accurate as its convergence region can be easily
adjusted and controlled. The main advantages of these schemes are their simplicity,
applicability, and less computational errors. Although the obtained results indicate
that the optimal homotopy asymptotic method provides more accurate value than
Haar wavelet method, and however, the accuracy of the wavelet method may be
improved with the increase in level of resolution.
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Chapter 4
Numerical Solutions of Riesz Fractional
Partial Differential Equations

4.1 Introduction

Nowadays, different applications of fractional differential equations in many areas,
such as engineering, physics, chemistry, astrophysics, and many other sciences, are
observed. Fractional kinetics systems are widely applied to describe anomalous
diffusion or advection-dispersion processes [1]. Fractional differential equations are
comprehensively used in examining physical phenomena in numerous disciplines
of engineering and science. For this, we need reliable and efficient techniques for
the solutions of fractional differential equations [2, 3]. The fractional-order models
are more adequate than the previously used integer-order models because
fractional-order derivatives and integrals enable the description of the memory and
hereditary properties of different substances [4]. This is the most significant
advantage of the fractional-order models in comparison with integer-order models,
in which such effects are neglected. In the area of physics, fractional space
derivatives are used to model anomalous diffusion or dispersion, where a particle
spreads at a rate inconsistent with the classical Brownian motion model [5]. In
particular, the Riesz fractional derivative includes a left Riemann–Liouville
derivative and a right Riemann–Liouville derivative that allows the modeling of
flow regime impacts from either side of the domain [6]. The fractional
advection-dispersion equation (FADE) is used in groundwater hydrology to model
the transport of passive tracers carried by fluid flow in a porous medium [7–9].

The Riesz fractional advection-dispersion equation (RFADE) with a symmetric
fractional derivative, namely the Riesz fractional derivative, was derived from the
kinetics of chaotic dynamics by Saichev and Zaslavsky [10] and summarized by
Zaslavsky [6]. Ciesielski and Leszczynski [11] presented a numerical solution for
the RFADE (without the advection term) based on the finite difference method.
Shen et al. [12] presented explicit and implicit difference approximations for the
space RFADE with initial and boundary conditions on a finite domain and derived
the stability and convergence of their proposed numerical methods.
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Fokker–Planck equation (FPE) was introduced by Adriaan Fokker and Max
Planck, commonly used to describe the Brownian motion of particles [13]. The FPE
describes the change of probability of a random function in space and time, so it is
naturally used to describe solute transport. The FPE is involved with the conser-
vation of probability that a particle will occupy a specific location. At any particular
time, the sum of the probabilities at all locations must equal unity. So if the
probability changes in one location from one moment to the next, the probability
must also change in the vicinity to conserve probability. An ensemble of a large
number of particles can fulfill the probabilities, and the FPE becomes an equation of
the conservation of mass. Also, the nonlinear Fokker–Planck equation has impor-
tant applications in various other fields. The fractional Fokker–Planck equations
have been useful for the description of transport dynamics in complex systems that
are governed by anomalous diffusion and nonexponential relaxation patterns [5].
Fractional derivatives play a key role in modeling particle transport in anomalous
diffusion. For the description of anomalous transport in the presence of an external
field, Metzler and Klafter [5] introduced a time fractional extension of the FPE,
namely the time fractional Fokker–Planck equation (TFFPE).

There are some researchers who have investigated the FFPE. So and Liu [14]
studied the subdiffusive fractional Fokker–Planck equation of bistable systems.
Saha Ray and Gupta [15] established the numerical solutions of time and space
fractional Fokker–Planck equations with the aid of two-dimensional Haar wavelets.
Chen et al. [16] proposed three different implicit approximations for the TFFPE and
proved these approximations are unconditionally stable and convergent. Zhuang
et al. [17] presented an implicit numerical method for the TSFFPE and discussed its
stability and convergence.

Numerous mathematical methods such as the Adomian decomposition method
(ADM) [18], variational iteration method (VIM) [18], operational Tau method
(OTM) [19], and homotopy perturbation method (HPM) [20] have been used in
order to solve fractional Fokker–Planck equations. In Refs. [18–20], the fractional
derivative is considered in Caputo sense. The aim of the present work is to
implement shifted Grünwald approximation and fractional centered difference
approximation to discretize the Riesz fractional diffusion equation and time and
space Riesz fractional Fokker–Planck equation, respectively. The stability and
convergence of the proposed finite difference schemes have been also analyzed
rigorously.

The classical sine-Gordon equation (SGE) [21] is one of the basic equations of
modern nonlinear wave theory, and it arises in many different areas of physics, such
as nonlinear optics, Josephson junction theory, field theory, and the theory of lattices
[22]. In these applications, the sine-Gordon equation provides the simplest nonlinear
description of physical phenomena in different configurations. The theory, methods
of solutions, and applications of the celebrated fractional sine-Gordon equation are
discussed in great detail in two recent books [23, 24]. Special attention is also given
to soliton, antisoliton solutions, and a remarkable new mode that propagates in a
two-level atomic system. In order to further emphasis on the analysis of one-soliton
and two-soliton solitary wave solutions, it may be referred to Ref. [25].
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The more adequate modeling can be prevailed corresponding to the general-
ization of the classical sine-Gordon equation. In particular, taking into account of
nonlocal effects, such as long-range interactions of particles, complex law of
medium dispersion, or curvilinear geometry of the initial boundary problem, clas-
sical sine-Gordon equation results in the nonlocal generalization of SGE.

In this chapter, the nonlocal generalization of the sine-Gordon equation has been
proposed in [26] as follows:

utt � RDa
xuþ sin u ¼ 0; ð4:1Þ

where the nonlocal operator RDa
x is the Riesz space fractional derivative, 1� a� 2.

These similar types of evolution Eq. (4.2) arise in various interesting problems
of nonlocal Josephson electrodynamics. These problems were introduced in [27–
32]; among these, one of the basic model equation is

utt � H½ux� þ sin u ¼ 0; ð4:2Þ

where H is the Hilbert transform, given by

H½/� � 1
p
v � p �

Z1
�1

/ðnÞ
n� x

dn; ð4:3Þ

and the integral is understood in the Cauchy principal value sense. The evolution
Eq. (4.2) was an object of study in a series of papers [27, 28, 31, 33, 34] available
in the open literature. Other nonlocal sine-Gordon equations were considered in
[35, 36].

In this case, the derived approximate solutions are based on modified homotopy
analysis method with Fourier transform. In this present chapter, we employ a new
technique such as applying the Fourier transform followed by homotopy analysis
method. This new technique enables derivation of the approximate solutions for the
nonlocal fractional sine-Gordon Eq. (4.1). To the best possible information of the
author, the present approximation technique has been proposed first time in this
work for solving the nonlocal fractional sine-Gordon equation.

4.2 Outline of the Present Study

In this chapter, numerical solutions of fractional Fokker–Planck equations with
Riesz space fractional derivatives have been developed. Here, the fractional
Fokker–Planck equations have been considered in a finite domain. In order to deal
with the Riesz fractional derivative operator, shifted Grünwald approximation and
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fractional centered difference approaches have been used. The explicit finite dif-
ference method and Crank–Nicolson implicit method have been applied to obtain
the numerical solutions of the fractional diffusion equation and fractional Fokker–
Planck equations, respectively. Numerical results are presented to demonstrate the
accuracy and effectiveness of the proposed numerical solution techniques.

Also, a novel approach comprising modified homotopy analysis method with
Fourier transform has been implemented for the approximate solution of the frac-
tional sine-Gordon equation

utt � RDa
xuþ sin u ¼ 0;

where RDa
x is the Riesz space fractional derivative, 1� a� 2.

For a ¼ 2, it becomes a classical sine-Gordon equation

utt � uxx þ sin u ¼ 0;

and corresponding to a ¼ 1, it becomes nonlocal sine-Gordon equation

utt � Huþ sin u ¼ 0;

which arises in Josephson junction theory, where H is the Hilbert transform. The
fractional sine-Gordon equation is considered as an interpolation between the
classical sine-Gordon equation (corresponding to a ¼ 2) and nonlocal sine-Gordon
equation (corresponding to a ¼ 1). Here the approximate solution of the fractional
sine-Gordon equation is derived by using the modified homotopy analysis method
with Fourier transform. Then, the obtained results have been analyzed by numerical
simulations, which demonstrate the simplicity and effectiveness of the present
method.

4.3 Numerical Approximation Techniques for Riesz Space
Fractional Derivative

There are different approximation techniques for Riesz space fractional derivative
[37–40]. In the present chapter, the emphasis has been focused on the shifted
Grünwald formula to discretize the Riesz space fractional differential equation
which, unlike the standard Grünwald formula, does not suffer from instability
problems [41] and also on the fractional centered difference approximation tech-
nique, respectively.

Let us assume that the functionWðx; tÞ is n� 1 times continuously differentiable
in the interval ½0; L� and that W ðnÞðx; tÞ is integrable in ½0; L�. Then for every
að0� n� 1\a� n; n 2 NÞ, the Riemann–Liouville fractional derivative exists and
coincides with the Grünwald–Letnikov derivative. This relationship enables the use
of the Grünwald–Letnikov derivative for obtaining the numerical solution [8, 42].
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The fractional Grünwald–Letnikov derivative with order 1� a is given by

0D
1�a
t Wðx; tkÞ ¼ lim

s!0
sa�1

Xk
r¼0

ð�1Þr 1� a

r

� �
Wðx; tk � rsÞ

¼ sa�1
Xk
r¼0

x1�a
r Wðx; tk � rsÞþOðspÞ;

ð4:4Þ

where s ¼ T=N, tr ¼ rs, x1�a
0 ¼ 1, x1�a

r ¼ ð�1Þr ð1�aÞð�aÞ...ð2�a�rÞ
r! , for

r ¼ 1; 2. . .;N.

4.3.1 Shifted Grünwald Approximation Technique
for the Riesz Space Fractional Derivative

The shifted Grünwald formula which was proposed by Meerschaert and Tadjeran
[41] has been applied for discretizing the Riesz fractional derivative. In this
problem, we discretize the Riesz space fractional derivative using the following
shifted Grünwald approximation:

@aWðxl; tÞ
@ xj ja � � h�a

2 cos ap
2

� � Xlþ 1

j¼0

~gjWl�jþ 1 þ
Xm�lþ 1

j¼0

~gjWlþ j�1

" #
; ð4:5Þ

where the coefficients are defined by

~g0 ¼ 1; ~gj ¼ ð�1Þ j aða� 1Þ. . .ða� jþ 1Þ
j!

; j ¼ 1; 2; . . .;m:

4.3.2 Fractional Centered Difference Approximation
Technique for the Riesz Space Fractional Derivative

Recently, Çelik and Duman [43] derived the interesting result that if f �ðxÞ be
defined as follows

f �ðxÞ ¼ f ðxÞ; x 2 ½a; b�
0; x 62 ½a; b�

�
such that f �ðxÞ 2 C5ðRÞ and all derivatives up to order five belong to L1ðRÞ, then
for the Riesz fractional derivative of order að1\a� 2Þ
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@af ðxÞ
@ xj ja ¼ �h�a

Xx�a
h

j¼�b�x
h

gjf ðx� jhÞþOðh2Þ; ð4:6Þ

where h ¼ b�a
m , and m is the number of partitions of the interval ½a; b� and

gj ¼ ð�1Þ jCðaþ 1Þ
Cða=2� jþ 1ÞCða=2þ jþ 1Þ :

Property 4.1 The coefficients gj of the fractional centered difference approxima-
tion have the following properties for j ¼ 0;	1;	2; . . .; and a[�1:

(i) g0 
 0,
(ii) g�j ¼ gj � 0 for all jj j 
 1,

(iii) gjþ 1 ¼ j�a=2
a=2þ jþ 1 gj,

(iv) gj ¼ Oðj�a�1Þ.

Proof For the proof of the above properties, it may be referred to Ref. [43].

Lemma 4.1 Let f 2 C5ðRÞ and all derivatives up to order five belong to L1ðRÞ and
the fractional central derivative of f be

daf ðxÞ ¼
X1
j¼�1

gjf ðx� jhÞ;

where

gj ¼ ð�1Þ jCðaþ 1Þ
Cða=2� jþ 1ÞCða=2þ jþ 1Þ ;

then

@af ðxÞ
@ xj ja ¼ �h�a

X1
j¼�1

gjf ðx� jhÞþOðh2Þ;

when h ! 0 and @af ðxÞ
@ xj ja is the Riesz fractional derivative for 1\a� 2.

Proof For the proof also, it may be referred to Ref. [43].
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4.3.3 Inhomogeneous Fractional Diffusion Equation
with Riesz Space Fractional Derivative

Let us consider the following inhomogeneous Riesz fractional diffusion equation
with source term in a finite domain associated with initial and Dirichlet boundary
conditions [42, 43]

@Wðx; tÞ
@t

¼ K
@aWðx; tÞ
@ xj ja þ f ðx; tÞ; a\x\b; t 2 ½0; T�; ð4:7Þ

Wðx; 0Þ ¼ /ðxÞ; a� x� b;

Wða; tÞ ¼ Wðb; tÞ ¼ 0; 0� t� T ;

where K[ 0 is diffusion coefficient and /ðxÞ is a real-valued sufficiently smooth
function. We consider a super-diffusion model, i.e., 1\a� 2. This type of
super-diffusion problems largely arises in the modeling of fluid flow, finance, and
other applications.

Explicit Finite Difference Method for Riesz Fractional Diffusion Equation

In this present analysis, numerical solution of Eq. (4.7) has been provided based on
the explicit finite difference method (EFDM). Let us assume that the spatial domain
is ½0; L�, and it is partitioned into m subintervals. Thus, the mesh is of m equal
subintervals of width h ¼ L=m and xl ¼ lh, for l ¼ 0; 1; 2; . . .;m. Let Wk

l denote the
numerical approximation of Wðxl; tkÞ at ðxl; tkÞ.

Now we obtain the following explicit finite difference numerical discretization
scheme for the Eq. (4.7).

Wkþ 1
l ¼ Wk

l þ s � Kh�a

2 cos ap
2

� � Xlþ 1

j¼0

~gjW
k
l�jþ 1 þ

Xm�lþ 1

j¼0

~gjW
k
lþ j�1

 !
þ f kl

" #
; ð4:8Þ

for l ¼ 1; 2; . . .;m� 1, and k ¼ 0; 1; . . .;N � 1.
The aforementioned Eq. (4.8) determines the numerical approximate value of

the solution Wkþ 1
l at ðxl; tkþ 1Þ.

In matrix form, Eq. (4.8) can be written as

Ukþ 1 ¼ AUk þ sFkþ 1=2; ð4:9Þ

where Uk ¼ ðWk
1 ;W

k
2 ; . . .;W

k
m�1ÞT ,
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Fk ¼ f k1 ; f
k
2 ; . . .; f

k
m�1

� �T , and Ai is a symmetric ðm� 1Þ � ðm� 1Þ matrix of the
following form

A ¼

1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ � Ksh�a

2 cosap2
~g3 . . . � Ksh�a

2 cosap2
~gm�1

� Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ . . . � Ksh�a

2 cosap2
~gm�2

. . . . . . . . . . . .

� Ksh�a

2 cosap2
~gm�1 � Ksh�a

2 cosap2
~gm�2 � Ksh�a

2 cosap2
~gm�3 . . . 1� Ksh�a

cosap2
~g1

0BBBB@
1CCCCA:

ð4:10Þ

4.3.4 Time and Space Fractional Fokker–Planck Equation
with Riesz Fractional Operator

In this section, we consider the following time and space fractional Fokker–Planck
equation which describes the anomalous transport in the presence of an external
field [42]

@Wðx; tÞ
@t

¼ 0D
1�a
t

@

@x
V 0ðxÞ
mga

þKl
a

@l

@ xj jl
� �

Wðx; tÞþ f ðx; tÞ
	 


; a\x\b; t 2 ½0; T�;

ð4:11Þ

subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ /ðxÞ; a� x� b;

Wða; tÞ ¼ Wðb; tÞ ¼ 0; 0� t� T ;

where Kl
a denotes the anomalous diffusion coefficient; m is the mass of the diffusing

test particle; ga is the generalized friction constant of dimension ½ga� ¼ sa�2; V
0ðxÞ
mga

is

known as the drift coefficient, and the force is related to the external potential

through FðxÞ ¼ � dVðxÞ
dx . 0D1�a

t ð:Þ denotes the Riemann–Liouville time fractional

derivative of order 1� að0\a\1Þ defined by [44–47]

0D
1�a
t wðx; tÞ ¼ 1

CðaÞ
@

@t

Z t

0

wðx; fÞ
ðt � fÞ1�adf: ð4:12Þ

For a ! 1 and l ! 2, the standard Fokker–Planck equation [5] is recovered,
and for a ! 1 and VðxÞ � const:, i.e., in the force-free limit, the inhomogeneous
fractional diffusion Eq. (4.7) emerges.

The Riesz space fractional derivative of order mð1\m\2Þ is defined by [48, 49]
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@mWðxl; tÞ
@ xj jm ¼ � 1

2 cos pm
2

� � ðaDm
x þ xD

m
bÞWðx; tÞ; ð4:13Þ

where aDm
x and xDm

b are the left and right Riemann–Liouville space fractional
derivative operators of order m, which are, respectively, given by

aD
m
xWðx; tÞ ¼ 1

Cð2� mÞ
@2

@x2

Zx
a

Wðn; tÞ
ðx� nÞm�1dn;

xD
m
bWðx; tÞ ¼ 1

Cð2� mÞ
@2

@x2

Zb
x

Wðn; tÞ
ðn� xÞm�1dn:

Implicit Finite Difference Method for Time and Riesz Space Fractional
Fokker–Planck Equation

In order to solve Eq. (4.11) with the drift coefficient �v, fractional centered dif-
ference approximation along with Grünwald–Letnikov derivative approximation
has been used to discretize it.

From Taylor’s theorem, we have

Wkþ 1
l �Wk

l

s
¼ @W

@t

� �kþ 1=2

l
þOðs2Þ; ð4:14Þ

where the central difference with step size s=2 has been used.
Thus, using Eq. (4.14) and Lemma 4.1, we obtain the following implicit finite

difference discretization scheme

Wkþ 1
l �Wk

l

s
¼ 1

2
�vsa�1

Xk
j¼0

x1�a
j

Wk�j
lþ 1 �Wk�j

l

h

 !"

� Kl
a sa�1 h�l

Xk
j¼0

x1�a
j

Xl
i¼l�m

giW
k�j
l�i þ sa�1

Xk
j¼0

x1�a
j f k�j

l

� vsa�1
Xkþ 1

j¼0

x1�a
j

Wkþ 1�j
lþ 1 �Wkþ 1�j

l

h

 !
� Kl

a sa�1 h�l
Xkþ 1

j¼0

x1�a
j

Xl
i¼l�m

giW
kþ 1�j
l�i

þ sa�1
Xkþ 1

j¼0

x1�a
j f kþ 1�j

l

#
þ TEkþ 1=2

l ;

ð4:15Þ

for l ¼ 1; 2; . . .;m� 1, and k ¼ 0; 1; . . .;N � 1, where the local truncation error

TEkþ 1=2
l � Oðs2 þ h2Þ.
Now, omitting the local truncation error in Eq. (4.15), we obtain
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Wkþ 1
l þ vsa

2
x1�a

0

Wkþ 1
lþ 1 �Wkþ 1

l

h

� �
þKl

a
sa

2
h�lx1�a

0

Xl
i¼l�m

giW
kþ 1
l�i ¼ Wk

l

� vsa

2

Xk
r¼0

x1�a
r

Wk�r
lþ 1 �Wk�r

l

h

� �
� Kl

a
sa

2
h�l

Xk
r¼0

x1�a
r

Xl
i¼l�m

giW
k�r
l�i

þ sa

2

Xk
r¼0

x1�a
r f k�r

l þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

l

 !
� v

sa

2

Xkþ 1

r¼1

x1�a
r

Wkþ 1�r
lþ 1 �Wkþ 1�r

l

h

� �

� Kl
a
sa

2
h�l

Xkþ 1

r¼1

x1�a
r

Xl
i¼l�m

giW
kþ 1�r
l�i :

ð4:16Þ

Further, Eq. (4.16) can be written into the following matrix form

ðIþA0ÞUkþ 1 ¼ ðI � A0 � A1ÞUk � ðA1 þA2ÞUk�1 � ðA2 þA3ÞUk�2 � � � �
� ðAk þAkþ 1ÞU0 þ saFkþ 1=2;

ð4:17Þ

where Uk ¼ ðWk
1 ;W

k
2 ; . . .;W

k
m�1ÞT ,

Fkþ 1=2 ¼ 1
2

Xk
r¼0

x1�a
r f k�r

1 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

1

 !
;
1
2

Xk
r¼0

x1�a
r f k�r

2 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

2

 !
;

"

. . .;
sa

2

Xk
r¼0

x1�a
r f k�r

m�1 þ
Xkþ 1

r¼0

x1�a
r f kþ 1�r

m�1

 !#T
;

and Ai is an ðm� 1Þ � ðm� 1Þ matrix of the following form

Ai ¼ x1�a
i

� vsa
2h þ Kl

a s
a

2 h�lg0 vsa
2h þ Kl

a s
a

2 h�lg�1 . . . Kl
a s

a

2 h�lg2�m
Kl
a s

a

2 h�lg1 � vsa
2h þ Kl

a s
a

2 h�lg0 . . . Kl
a s

a

2 h�lg3�m

. . . . . . . . . . . .
Kl
a s

a

2 h�lgm�2
Kl
a s

a

2 h�lgm�3 . . . � vsa
2h þ Kl

a s
a

2 h�lg0

0BBB@
1CCCA:

ð4:18Þ

Now, we define the function space as follows: KðXÞ ¼
Wðx; tÞ @5Wðx;tÞ

@x5 ; @
4Wðx;tÞ
@x2@t2 2 CðXÞ

���n o
, where X � ½a; b� � ½0; T �. In this work, we

assume that the Problems (4.7) and (4.11) have a smooth exact solution
Wðx; tÞ 2 KðXÞ, and f ðx; tÞ and /ðxÞ are sufficiently smooth functions.
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4.3.5 Numerical Results for Riesz Fractional Diffusion
Equation and Riesz Fractional Fokker–Planck
Equation

In the present section, the numerical examples for Riesz fractional diffusion
Eq. (4.7) and time and Riesz space fractional Fokker–Planck Eq. (4.11) with the
drift coefficient �v have been presented to demonstrate the effectiveness of the
above-discussed numerical schemes for solving Riesz fractional diffusion equation
and time-space fractional Fokker–Planck equation with Riesz derivative operator.

Example 4.1 Let us consider the following Riesz fractional diffusion equation [42,
43] on the finite domain ½0; 1�.

@Wðx; tÞ
@t

¼ K
@aWðx; tÞ
@ xj ja þ f ðx; tÞ; 0\x\1; t 2 ½0; T�; ð4:19Þ

subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ x2ð1� xÞ2; 0� x� 1;

Wð0; tÞ ¼ Wð1; tÞ ¼ 0; 0� t� T

and the nonhomogenous part is

f ðx; tÞ ¼ ð1þ tÞ�1þ að�1þ xÞ2x2aþ 1
Cð5� aÞ x

�a 1þ t
1� x

� �a

ð�1þ xÞ2xað12x2
	

� 6xaþð�1þ aÞaÞ
þ ð1þ tÞax2 12ð�1þ xÞ2 þð�7þ 6xÞaþ a2

h ii
sec

pa
2

� 

:

The exact solution is

Wðx; tÞ ¼ ð1þ tÞax2ð1� xÞ2: ð4:20Þ

In this example, we take K ¼ 1, s ¼ 0:001, and h ¼ 0:05. Figures 4.1, 4.2, and
4.3 show the comparison of the exact and numerical solutions when a ¼ 1:5 at
t ¼ 1; 3; 5, respectively. It can be easily observed that the numerical solutions are in
good agreement with the exact solution.

Example 4.2 Let us consider the following time fractional Fokker–Planck equation
with Riesz space fractional derivative operator [42]

@Wðx; tÞ
@t

¼ 0D
1�a
t �v

@

@x
þKl

a
@l

@ xj jl
� �

Wðx; tÞþ f ðx; tÞ
	 


; 0\x\1; t 2 ½0; T �;

ð4:21Þ
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Fig. 4.1 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 1 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001

Fig. 4.2 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 3 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001
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subject to initial and homogeneous Dirichlet boundary conditions

Wðx; 0Þ ¼ Kl
a x

2ð1� xÞ2; 0� x� 1;

Wð0; tÞ ¼ Wð1; tÞ ¼ 0; 0� t� T ;

The exact solution is

Wðx; tÞ ¼ ðKl
a þ vt1þ aÞx2ð1� xÞ2: ð4:22Þ

In this example, we take Kl
a ¼ 25, s ¼ 0:001, h ¼ 0:05, a ¼ 0:8, and l ¼ 1:9.

Figure 4.4 shows the comparison between the exact and numerical solutions at
t ¼ 1. In Fig. 4.5, comparison of numerical solution of Wðx; tÞ with the exact
solution at t ¼ 3 has been presented for Example 4.2 with a ¼ 0:8, l ¼ 1:9,
h ¼ 0:02, and s ¼ 0:075. Figure 4.6 explores the comparison of results for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:1. It can be clearly
observed from the presented figures that the implicit finite difference solutions
highly agree with the exact solutions.

Fig. 4.3 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 5 for
Example 4.1 with a ¼ 1:5, h ¼ 0:05, and s ¼ 0:001
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Fig. 4.4 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 1 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:05, and s ¼ 0:01

Fig. 4.5 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 3 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:075
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4.3.6 Stability and Convergence of the Proposed Finite
Difference Schemes

Theorem 4.1 The numerical discretization scheme for the problem in Eq. (4.19) is
stable, if

r ¼ s
ha

� 2 cos ap2
�� ��

K ~g1�ð~g0 þ ~g2Þ
sgn cosap2ð Þ þ ~g0

� � ; for 1\a� 2:

Proof The matrix A in Eq. (4.10) can be written as

A ¼ T þR; ð4:23Þ

where T is a tridiagonal ðm� 1Þ � ðm� 1Þ matrix of the following form

T ¼
1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 0 . . . 0

� Ksh�a

2 cosap2
ð~g0 þ ~g2Þ 1� Ksh�a

cosap2
~g1 � Ksh�a

2 cosap2
ð~g0 þ ~g2Þ . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1� Ksh�a

cosap2
~g1

0BBB@
1CCCA;

ð4:24Þ

Fig. 4.6 Comparison of numerical solution of Wðx; tÞ with the exact solution at t ¼ 5 for
Example 4.2 with a ¼ 0:8, l ¼ 1:9, h ¼ 0:02, and s ¼ 0:1
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and R is a symmetric ðm� 1Þ � ðm� 1Þ matrix of the following form

R ¼
0 0 � Ksh�a

2 cosap2
~g3 . . . � Ksh�a

2 cosap2
~gm�1

0 0 0 . . . � Ksh�a

2 cosap2
~gm�2

. . . . . . . . . . . . . . .
� Ksh�a

2 cosap2
~gm�1 � Ksh�a

2 cosap2
~gm�2 � Ksh�a

2 cosap2
~gm�3 . . . 0

0BBB@
1CCCA:

Now, let ki be the eigenvalue of the matrix R. Then, according to the
Gerschgorin circle theorem [50], we have

ki � 0j j � Ksh�a

2 cos ap2
�� ��Xm�1

k¼3

~gkj j\ Ksh�a

2 cos ap2
�� ��X1

k¼3

~gk\
Ksh�a

2 cos ap2
�� �� ; ð4:25Þ

where
P1
k¼3

~gk ¼ �1þ a� aða�1Þ
2! \1.

This implies that

Rk k2¼ qðRÞ� Ksh�a

2 cos ap2
�� �� ; ð4:26Þ

since R is a real and symmetric matrix.
Now, the eigenvalues of the tridiagonal matrix T are given by [51]

km ¼ 1� Ksh�a

cos ap2
~g1 � Ksh�a

cos ap2
ð~g0 þ ~g2Þ cos mpm ; m ¼ 1; 2; . . .;m� 1: ð4:27Þ

Now, let assume that W
k
l be the computed value of Wk

l of the explicit finite
difference numerical scheme in Eq. (4.8), let ekl ¼ �Wk

l �Wk
l and

Yk ¼ ½ek1; ek2; . . .; ekm�1�T .
Then, the vector Yk satisfies the following equation

Ykþ 1 ¼ AYk: ð4:28Þ

Thus, the explicit finite difference numerical scheme in Eq. (4.8) is stable if

Ak k2¼ qðAÞ� Tk k2 þ Rk k2 � 1

This implies that

1� Ksh�a

cos ap2
~g1 � Ksh�a

cos ap2
ð~g0 þ ~g2Þ cos ðm� 1Þp

m

���� ����þ rK
2 cos ap2

���� ����� 1; ð4:29Þ
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After simplifications, from Eq. (4.29), we obtain

r� 2 cos ap2
�� ��

K ~g1�ð~g0 þ ~g2Þ
sgn cosap2ð Þ þ ~g0

� � ; ð4:30Þ

as h ! 0, m ! 1.
This completes the proof. ■

Theorem 4.2 The numerical discretization scheme for the problem in Eq. (4.21) is
unconditionally stable.

Proof The matrix Ai in Eq. (4.18) can be written as

Ai ¼ x1�a
i Pþ vsa

2h
J

� �
; i ¼ 0; 1; 2; . . .; kþ 1; ð4:31Þ

where

P ¼

Kl
a s

a

2 h�lg0
Kl
a s

a

2 h�lg�1 . . . Kl
a s

a

2 h�lg2�m

Kl
a s

a

2 h�lg1
Kl
a s

a

2 h�lg0 . . . Kl
a s

a

2 h�lg3�m

. . . . . . . . . . . .
Kl
a s

a

2 h�lgm�2
Kl
a s

a

2 h�lgm�3 . . . Kl
a s

a

2 h�lg0

0BBBB@
1CCCCA;

J ¼

�1 1 0 . . . 0

0 �1 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . �1

0BBB@
1CCCA:

Since g�j ¼ gj, P is a ðm� 1Þ � ðm� 1Þ symmetric matrix and J is a ðm� 1Þ�
ðm� 1Þ Jordan block matrix with eigenvalue �1.

Now, let kj be the eigenvalue of the matrix P. Then, according to the
Gerschgorin circle theorem [50], we have

kj � Kl
a s

a

2
h�lg0

���� ����� Kl
a s

a

2
h�l

Xm�1

k ¼ 1
k 6¼ i

gi�kj j\Kl
a s

a

2
h�lg0; ð4:32Þ

where
P1

k ¼ �1
k 6¼ 0

gkj j ¼ g0.
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This implies that

0\kj\Kl
a s

ah�lg0: ð4:33Þ

Thus, the eigenvalue of Ai satisfies the following range

�x1�a
i

vsa

h
\kðAiÞ\x1�a

i Kl
a s

ah�lg0

Therefore, we obtain

qðAiÞ\x1�a
i Kl

a s
ah�lg0 þx1�a

i
vsa

2h
: ð4:34Þ

Now, let assume that �Wk
l be the computed value of Wk

l of the second-order
accurate implicit numerical scheme in Eq. (4.16), let ekl ¼ �Wk

l �Wk
l and

Yk ¼ ½ek1; ek2; . . .; ekm�1�T .
Then, the vector Yk satisfies the following equation

Ykþ 1 ¼ ðIþA0Þ�1ðI � A0 � A1ÞYk � ðIþA0Þ�1ðA1 þA2ÞYk�1

� ðIþA0Þ�1ðA2 þA3ÞYk�2 � � � � � ðIþA0Þ�1ðAk þAkþ 1ÞY0:
ð4:35Þ

Therefore, we obtain

Ykþ 1
�� ��

2 � ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2 Yk
�� ��

2 þ ðIþA0Þ�1ðA1 þA2Þ
�� ��

2 Yk�1
�� ��

2

þ ðIþA0Þ�1ðA2 þA3Þ
�� ��

2 Yk�2
�� ��

2 þ � � � þ ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2 Y0
�� ��

2:

ð4:36Þ

Now, without loss of generality, there exists ai 2 Rþ , i ¼ 0; 1; . . .; k such that

ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðI � A0 � A1Þ�T ½ðIþA0Þ�1ðI � A0 � A1Þ�Þ�1=2 � ak;

ðIþA0Þ�1ðA1 þA2Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðA1 þA2Þ�T ½ðIþA0Þ�1ðA1 þA2Þ�Þ�1=2 � ak�1;

. . .;

ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2¼ ½qð½ðIþA0Þ�1ðAk þAkþ 1Þ�T ½ðIþA0Þ�1ðAk þAkþ 1Þ�Þ�1=2� a0:

ð4:37Þ

Consequently, we obtain

Ykþ 1
�� ��

2 � ak Yk
�� ��

2 þ ak�1 Yk�1
�� ��

2 þ ak�2 Yk�2
�� ��

2 þ � � � þ a0 Y0
�� ��

2: ð4:38Þ
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Hence, we conclude that

Ykþ 1
�� ��

2 � a0ða1 þ 1Þða2 þ 1Þ. . .ðak þ 1Þ Y0
�� ��

2: ð4:39Þ

Thus, the second-order accurate implicit numerical scheme in Eq. (4.16) for the
problem (4.21) is unconditionally stable. ■

Theorem 4.3 Assuming that the problem in Eq. (4.21) has a smooth exact solution
Wn

l ¼ Wðxl; tnÞ 2 KðXÞ and �Wn
l be the numerically computed solution of the

second-order implicit numerical scheme in Eq. (4.15). Then, the numerical solution
�Wn
l unconditionally converges to Wn

l as h and s tend to zero.

Proof Let the error at the grid point ðxl; tkÞ defined by ekl ¼ �Wk
l �Wk

l and
Ek ¼ ðek1; ek2; . . .; ekm�1ÞT . Then, from Eqs. (4.15) and (4.16) for problem 4.2, we
have

ekþ 1
l � ekl

s
¼ � v

2
sa�1

Xk
r¼0

x1�a
r

ek�r
lþ 1 � ek�r

l

h

� �
� v
2
sa�1

Xkþ 1

r¼1

x1�a
r

ekþ 1�r
lþ 1 � ekþ 1�r

l

h

� �

� Kl
a s

a�1

2
h�l

Xk
r¼0

x1�a
r

Xl
i¼l�m

giek�r
l�i

� Kl
a s

a�1

2
h�l

Xkþ 1

r¼0

x1�a
r

Xl
i¼l�m

giekþ 1�r
l�i þOðs2 þ h2Þ:

ð4:40Þ

Now, Eq. (4.40) can be written in the following matrix form

ðIþA0ÞEkþ 1 ¼ ðI � A0 � A1ÞEk � ðA1 þA2ÞEk�1

� ðA2 þA3ÞEk�2 � � � � � ðAk þAkþ 1ÞE0 þC1sðs2 þ h2ÞI: ð4:41Þ

Thus, we have

Ekþ 1 ¼ ðIþA0Þ�1ðI � A0 � A1ÞEk � ðIþA0Þ�1ðA1 þA2ÞEk�1

� ðIþA0Þ�1ðA2 þA3ÞEk�2 � � � � � ðIþA0Þ�1ðAk þAkþ 1ÞE0

þC1sðs2 þ h2ÞðIþA0Þ�1:

ð4:42Þ

Hence, we obtain

Ekþ 1
�� ��

2 � ðIþA0Þ�1ðI � A0 � A1Þ
�� ��

2 Ek
�� ��

2 þ ðIþA0Þ�1ðA1 þA2Þ
�� ��

2 Ek�1
�� ��

2

þ ðIþA0Þ�1ðA2þA3Þ
�� ��

2 Ek�2
�� ��

2 þ � � � þ ðIþA0Þ�1ðAk þAkþ 1Þ
�� ��

2 E0
�� ��

2

þC1sðs2 þ h2Þ ðIþA0Þ�1�� ��
2 � a0ða1 þ 1Þða2 þ 1Þ. . .ðak þ 1Þ E0

�� ��
2

þC1sðs2 þ h2Þ ðIþA0Þ�1�� ��
2\a0ða1 þ 1Þða2þ 1Þ. . .ðak þ 1Þ E0

�� ��
2

þ C1sðs2 þ h2Þ
1� vsa

h x0
� � �CTðs2þ h2Þ:

Consequently, Ekþ 1
�� ��

2! 0 as s ! 0, h ! 0. This completes the proof. ■
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4.4 Soliton Solutions of a Nonlinear and Nonlocal
Sine-Gordon Equation Involving Riesz Space
Fractional Derivative

In the present section, a new semi-numerical technique MHAM-FT method has
been proposed to obtain the approximate solution of nonlocal fractional
sine-Gordon equation (SGE). The fractional SGE with nonlocal Riesz derivative
operator has been first time solved by MHAM-FT method.

4.4.1 Basic Idea of Modified Homotopy Analysis Method
with Fourier Transform

Let us focus a brief overview of modified homotopy analysis method with Fourier
transform (MHAM-FT). Consider the following fractional differential equation

N u x; tð Þ½ � ¼ 0; ð4:43Þ

where N is a nonlinear differential operator containing Riesz fractional derivative
defined in Eq. (1.18) of Chap. 1, x and t denote independent variables, and u x; tð Þ is
an unknown function.

Then, applying Fourier transform Eq. (4.43) has been reduced to the following
Fourier transformed differential equation

N ûðk; tÞ½ � ¼ 0; ð4:44Þ

where ûðk; tÞ is the Fourier transform of u x; tð Þ.
According to HAM, the zeroth-order deformation equation of Eq. (4.44) reads as

1� pð ÞL / k; t; pð Þ � û0 k; tð Þ½ � ¼ p�hN / k; t; pð Þ½ �; ð4:45Þ

where L is an auxiliary linear operator, / k; t; pð Þ is an unknown function, û0 k; tð Þ is
an initial guess of û k; tð Þ, �h 6¼ 0 is an auxiliary parameter, and p 2 ½0; 1� is the
embedding parameter. In this proposed MHAM-FT, the nonlinear term appeared in
expression for nonlinear operator form has been expanded using Adomian’s type of
polynomials as

P1
n¼0 Anpn [52].

Obviously, when p ¼ 0 and p ¼ 1, we have

/ k; t; 0ð Þ ¼ û0 k; tð Þ;/ k; t; 1ð Þ ¼ û k; tð Þ; ð4:46Þ

respectively. Thus, as p increases from 0 to 1, the solution / k; t; pð Þ varies from the
initial guess û0 k; tð Þ to the solution û k; tð Þ. Expanding / x; t; pð Þ in Taylor series
with respect to the embedding parameter p, we have
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/ k; t; pð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

pmûm k; tð Þ; ð4:47Þ

where ûm k; tð Þ ¼ 1
m!

@m

@pm / k; t; pð Þ
���
p¼0

.

The convergence of the series (4.47) depends upon the auxiliary parameter �h. If
it is convergent at p ¼ 1, we have

û k; tð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

ûm k; tð Þ;

which must be one of the solutions of the original nonlinear equation.
Differentiating the zeroth-order deformation Eq. (4.45) m times with respect to

p and then setting p ¼ 0 and finally dividing them by m!, we obtain the following
mth-order deformation equation

L ûm k; tð Þ � vmûm�1 k; tð Þ½ � ¼ �h<m û0; û1; . . .; ûm�1ð Þ; ð4:48Þ

where

<m û0; û1; . . .; ûm�1ð Þ ¼ 1
m� 1ð Þ!

@m�1N / k; t; pð Þ½ �
@pm�1

����
p¼0

and

vm ¼ 1; m[ 1
0; m� 1

�
: ð4:49Þ

It should be noted that ûmðk; tÞ for m
 1 is governed by the linear Eq. (4.48)
which can be solved by symbolic computational software. Then, by applying
inverse Fourier transformation, we can get each component umðx; tÞ of the
approximate series solution

uðx; tÞ ¼
X1
m¼0

umðx; tÞ:

In the present analysis, for reducing Riesz space fractional differential equation
to ordinary differential equation, we applied here Fourier transform. In this modified
homotopy analysis method, with Fourier transform (MHAM-FT), we applied the
inverse Fourier transform for getting the solution of Riesz space fractional differ-
ential equation. This MHAM-FT technique has been first time proposed by the
author.
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4.4.2 Implementation of the MHAM-FT Method
for Approximate Solution of Nonlocal Fractional SGE

In this section, we first consider two examples for the application of MHAM-FT for
the solution of nonlocal fractional SGE Eq. (4.1).

Example 4.3 In this example, we shall find the approximate solution of the non-
local fractional SGE Eq. (4.1) with given initial conditions [52–54]

u x; 0ð Þ ¼ 0; ut x; 0ð Þ ¼ 4 sec hx ð4:50Þ

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Eqs. (4.1)
and (4.50), we get

ûttðk; tÞþ kj jaûðk; tÞþFðsin uÞ ¼ 0; ð4:51Þ

with initial conditions

û k; 0ð Þ ¼ 0; ûtðk; 0Þ ¼ 2
ffiffiffiffiffiffi
2p

p
sec h

kp
2

� �
; ð4:52Þ

where F denotes the Fourier transform and k is called the transform parameter for
Fourier transform.

Expanding / k; t; pð Þ in Taylor series with respect to p, we have

/ k; t; pð Þ ¼ û0 k; tð Þþ
Xþ1

m¼1

pmûm k; tð Þ; ð4:53Þ

where

ûm k; tð Þ ¼ 1
m!

@m/ k; t; pð Þ
@pm

����
p¼0

:

To obtain the approximate solution of the fractional SGE in Eq. (4.51), we
choose the linear operator

L / k; t; pð Þ½ � ¼ /tt k; t; pð Þ: ð4:54Þ

From Eq. (4.44), we define a nonlinear operator as

N / k; t; pð Þ½ � ¼ /tt k; t; pð Þþ kj ja/ k; t; pð ÞþF sin / k; t; pð Þð Þð Þ; ð4:55Þ

where the nonlinear term sin / k; t; pð Þð Þ is expanded in terms of Adomian-like
polynomials.
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The nonlinear term sin / k; t; pð Þð Þ has been taken as

sin / k; t; pð Þð Þ ¼
X1
n¼0

pnAn;

where An ¼ 1
n!

@n

@pn sin û0 k; tð Þþ Pþ1

m¼1
pmûm k; tð Þ

� �� �
p¼0

, n
 0.

Using Eq. (4.45), we construct the so-called zeroth-order deformation equation

1� pð ÞL / k; t; pð Þ � û0 k; tð Þ½ � ¼ p�hN / k; t; pð Þ½ �: ð4:56Þ

Obviously, when p ¼ 0 and p ¼ 1, Eq. (4.56) yields

/ k; t; 0ð Þ ¼ û0 k; tð Þ;/ k; t; 1ð Þ ¼ û k; tð Þ:

Therefore, as the embedding parameter p increases from 0 to 1, / k; t; pð Þ varies
from the initial guess to the exact solution û k; tð Þ.

If the auxiliary linear operator, the initial guess, and the auxiliary parameter �h are
so properly chosen, the above series in Eq. (4.53) converges at p = 1, and we
obtain

ûðk; tÞ ¼ /ðk; t; 1Þ ¼ û0ðk; tÞþ
Xþ1

m¼1

ûmðk; tÞ: ð4:57Þ

According to Eq. (4.48), we have the mth-order deformation equation

L ûm k; tð Þ � vmûm�1 k; tð Þ½ � ¼ �h<m û0; û1; . . .; ûm�1ð Þ;m
 1; ð4:58Þ

where

<m û0; û1; . . .; ûm�1ð Þ ¼ 1
m� 1ð Þ!

@m�1

@pm�1 N / k; t; pð Þ½ �
����
p¼0

¼ @2ûm�1 k; t; pð Þ
@t2

þ kj jaûm�1 k; t; pð ÞþF Am�1ð Þ:
ð4:59Þ

Now, the solution of the mth-order deformation Eq. (4.58) for m
 1 becomes

ûmðk; tÞ ¼ vmûm�1ðk; tÞþ �hL�1 <m û0; û1; . . .; ûm�1ð Þ½ �: ð4:60Þ

From Eq. (4.60), we have the following equations
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û0ðk; tÞ ¼ ûðk; 0Þþ tûtðk; 0Þ;

û1ðk; tÞ ¼ �hL�1 @2û0 k; t; pð Þ
@t2

þ kj jaû0 k; t; pð ÞþF A0ð Þ
� �

;

û2ðk; tÞ ¼ û1ðk; tÞþ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A2ð Þ
� �

;

ð4:61Þ

and so on.
But here for the sake of efficient computation for the nonlinear term, the above

scheme in Eq. (4.61) has been modified in the following way

û0ðk; tÞ ¼ ûðk; 0Þ;

û1ðk; tÞ ¼ tûtðk; 0Þþ �hL�1 @2û0 k; t; pð Þ
@t2

þ kj jaû0 k; t; pð ÞþF A0ð Þ
� �

;

û2ðk; tÞ ¼ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A2ð Þ
� �

;

û4ðk; tÞ ¼ û3ðk; tÞþ �hL�1 @2û3 k; t; pð Þ
@t2

þ kj jaû3 k; t; pð ÞþF A3ð Þ
� �

;

ð4:62Þ

and so on.
By putting the initial conditions in Eq. (4.52) into Eq. (4.62) and solving them,

we now successively obtain

û0ðk; tÞ ¼ 0; ð4:63Þ

û1ðk; tÞ ¼ 2
ffiffiffiffiffiffi
2p

p
t sec h

kp
2

� �
; ð4:64Þ

û2ðk; tÞ ¼ �h
1
3

ffiffiffiffiffiffi
2p

p
t3 sec h

kp
2

� �
þ 1

3

ffiffiffiffiffiffi
2p

p
t3 kj jasec h

kp
2

� �� �
; ð4:65Þ

and so on.
Then, by applying the inverse Fourier transform of Eqs. (4.63)–(4.65), we

determine

142 4 Numerical Solutions of Riesz Fractional Partial Differential …



u0ðx; tÞ ¼ 0;

u1ðx; tÞ ¼ 4t sec hx;

u2ðx; tÞ ¼ 1
3
t3�h 2 sec hxþ 2�ap�1�aCð1þ aÞ�

f 1þ a;
p� 2ix
4p

� �
þ f 1þ a;

pþ 2ix
4p

� ��
�f 1þ a;

3
4
� ix
2p

� �
� f 1þ a;

3
4
þ ix

2p

� ���
;

and so on, where fðs; aÞ ¼P1
k¼0

1
ðkþ aÞs is called Hurwitz zeta function which is a

generalization of the Riemann zeta function fðsÞ and also known as the generalized
zeta function.

In this manner, the other components of the homotopy series can be easily
obtained by which uðx; tÞ can be evaluated in a series form as

uðx; tÞ ¼ u0ðx; tÞþ u1ðx; tÞþ u2ðx; tÞþ � � �

¼ 4t sec hxþ 1
3
t3�h 2 sec hxþ 2�ap�1�aCð1þ aÞ�

f 1þ a;
p� 2ix
4p

� ��
þ f 1þ a;

pþ 2ix
4p

� �
� f 1þ a;

3
4
� ix
2p

� �
�f 1þ a;

3
4
þ ix

2p

� ���
þ � � � :

ð4:66Þ

Example 4.4 In this case, we shall find the approximate solution of the nonlocal
fractional SGE Eq. (4.1) with given initial conditions [55–57]

uðx; 0Þ ¼ pþ e cosðlxÞ; utðx; 0Þ ¼ 0: ð4:67Þ

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Eqs. (4.1)
and (4.67), we get

ûttðk; tÞþ kj jaûðk; tÞþFðsin uÞ ¼ 0; ð4:68Þ

with initial conditions

û k; 0ð Þ ¼
ffiffiffi
2

p
p3=2dðkÞþ

ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞ; ûtðk; 0Þ ¼ 0; ð4:69Þ

where F denotes the Fourier transform, k is called the transform parameter for
Fourier transform, and dð:Þ denotes the Dirac delta function.

Analogous to arguments as discussed in Example 4.3, we may obtain the fol-
lowing equations
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û0ðk; tÞ ¼
ffiffiffi
2

p
p3=2dðkÞ;

û1ðk; tÞ ¼
ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞþ �hL�1 @2û0 k; t; pð Þ

@t2
þ kj jaû0 k; t; pð ÞþF A0ð Þ

� �
;

û2ðk; tÞ ¼ �hL�1 @2û1 k; t; pð Þ
@t2

þ kj jaû1 k; t; pð ÞþF A1ð Þ
� �

;

û3ðk; tÞ ¼ û2ðk; tÞþ �hL�1 @2û2 k; t; pð Þ
@t2

þ kj jaû2 k; t; pð ÞþF A1ð Þ
� �

;

û4ðk; tÞ ¼ û3ðk; tÞþ �hL�1 @2û3 k; t; pð Þ
@t2

þ kj jaû3 k; t; pð ÞþF A3ð Þ
� �

;

ð4:70Þ

and so on.
Solving Eq. (4.70), we now successively obtain

û0ðk; tÞ ¼
ffiffiffi
2

p
p3=2dðkÞ; ð4:71Þ

û1ðk; tÞ ¼
ffiffiffi
p
2

r
edðk � lÞþ

ffiffiffi
p
2

r
edðkþ lÞ; ð4:72Þ

û2ðk; tÞ ¼ �h � 1
2

ffiffiffi
p
2

r
t2edðk � lÞþ 1

2

ffiffiffi
p
2

r
t2e kj jadðk � lÞ � 1

2

ffiffiffi
p
2

r
t2edðkþ lÞ

�
þ 1

2

ffiffiffi
p
2

r
t2e kj jadðkþ lÞ

�
;

ð4:73Þ

and so on.
Then, by applying the inverse Fourier transform of Eqs. (4.71)–(4.73), we have

u0ðx; tÞ ¼ p;

u1ðx; tÞ ¼ e cosðlxÞ;
u2ðx; tÞ ¼ 1

2
t2e�h �1þ lað Þ cosðlxÞ;

u3ðx; tÞ ¼ 1
24

t2e�h �1þ lað Þ 12� �12þ t2
� �

�hþ t2�hla
� �

cosðlxÞ;

and so on.
In this manner, the other components of the homotopy series can be easily

obtained by which uðx; tÞ can be evaluated in a series form as
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uðx; tÞ ¼ u0ðx; tÞþ u1ðx; tÞþ u2ðx; tÞþ � � �
¼ 1

24
24pþ e 24þ 12t2�hð2þ �hÞ �1þ lað Þþ t4�h2 �1þ lað Þ2

� 

cosðlxÞ

� 

þ � � � :
ð4:74Þ

The After-Treatment Technique

Padé approximation may be used to enable us in order to increase the radius of
convergence of the series. This method can be used for analytic continuation of a
series for extending the radius of convergence. A Padé approximant is the ratio of
two polynomials constructed from the coefficients of the Maclaurin series expan-
sion of a function. Given a function f ðtÞ expanded in a Maclaurin series
f ðtÞ ¼P1

n¼0 cnt
n, we can use the coefficients of the series to represent the function

by a ratio of two polynomials denoted by L=M½ � and called the Padé approximant,
i.e.,

L
M

	 

¼ PLðtÞ

QMðtÞ ; ð4:75Þ

where PLðtÞ is a polynomial of degree at most L and QMðtÞ is a polynomial of
degree at most M. The polynomials PLðtÞ and QMðtÞ have no common factors. Such
rational fractions are known to have remarkable properties of analytic continuation.
Even though the series has a finite region of convergence, we can obtain the limit of
the function as t ! 1 if L ¼ M.

In case of Example 4.4, uðx; tÞ can be evaluated in a series form as

uðx; tÞ ¼ 1
24

24pþ e 24þ 12t2�hð2þ �hÞ �1þ lað Þþ t4�h2 �1þ lað Þ2
� 


cosðlxÞ
� 


:

ð4:76Þ

Putting x ¼ 0:05; �h ¼ �1; e ¼ 0:01; l ¼ 1ffiffi
2

p and a ¼ 2 and applying Padé

approximant [5/5] to Eq. (4.76), we obtain

uð0:05; tÞ ¼ 3:15158� 0:066294 t2 þ 0:00072717 t4

1� 0:021828 t2 þ 0:00021501 t4

� �
: ð4:77Þ

The �h-Curve and Numerical Simulations for MHAM-FT Method and
Discussions

As pointed out by Liao [58] in general, by means of the so-called �h-curve, it is
straightforward to choose a proper value of �h which ensures that the solution series
is convergent.
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To investigate the influence of �h on the solution series, we plot the so-called �h-
curve of partial derivatives of u x; tð Þ at 0; 0ð Þ obtained from the sixth-order
MHAM-FT solutions as shown in Fig. 4.7. In this way, it is found that our series
converges when �h ¼ �1.

In this present numerical experiment, Eq. (4.66) obtained by MHAM-FT has
been used to draw the graphs as shown in Fig. 4.8 for a ¼ 1:75. The numerical
solutions of Riesz fractional SGE in Eq. (4.1) have been shown in Fig. 4.8 with the
help of third-order approximation for the homotopy series solution of uðx; tÞ, when
�h ¼ �1.

In this present analysis, Eq. (4.74) obtained by MHAM-FT has been used to
draw the graphs as shown in Fig. 4.9 for fractional-order value a ¼ 1:75. The
numerical solutions of fractional SGE Eq. (4.1) have been shown in Fig. 4.9 with
the help of sixth-order approximation for the homotopy series solution of uðx; tÞ,
when �h ¼ �1.

In order to examine the numerical results obtained by the proposed method, both
Examples 4.3 and 4.4 have been solved by a numerical method involving
Chebyshev polynomial. The comparison of the approximate solutions for fractional
SGE Eq. (4.1) given in Examples 4.3 and 4.4 has been exhibited in Tables 4.1 and
4.4 which are constructed using the results obtained by MHAM and Chebyshev
polynomial at different values of x and t taking a ¼ 1:75 and 1:5, respectively.
Similarly, Tables 4.2 and 4.5 show the comparison of absolute errors for classical
SGE given in Examples 4.3 and 4.4, respectively. To show the accuracy of the
proposed MHAM over Chebyshev polynomials, L2 and L1 error norms for classical
order SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and
4.6, respectively. Agreement between present numerical results obtained by
MHAM with Chebyshev polynomials and exact solutions appear very satisfactory
through illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The following Fig. 4.10

Fig. 4.7 �h-curve for partial derivatives of uðx; tÞ at ð0; 0Þ for the sixth-order MHAM-FT solution
when a ¼ 2
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demonstrates a graphical comparison of the numerical solutions for uð0:05; tÞ
obtained by MHAM-FT and Padé approximation with regard to the exact solution
for Example 4.3.

Fig. 4.8 a MHAM-FT method solution for uðx; tÞ and b corresponding solution for uðx; tÞ when
t ¼ 0:4

Fig. 4.9 Numerical results for uðx; tÞ obtained by MHAM-FT for a e ¼ 0:001, b e ¼ 0:05,
c e ¼ 0:1, and d e ¼ 1:0
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Table 4.1 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example
4.3 at various points of x and t taking a ¼ 1:75 and 1:5 with �h ¼ �1

x a ¼ 1:75 a ¼ 1:5

t ¼ 0:01 t ¼ 0:02 t ¼ 0:01 t ¼ 0:02

uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM

0.01 0.033828 0.039996 0.0600056 0.079986 0.034480 0.039996 0.059515 0.079986

0.02 0.018271 0.039991 0.0571674 0.079974 0.033566 0.039991 0.062218 0.079974

0.03 0.010936 0.039981 0.0562336 0.079954 0.033364 0.039981 0.064389 0.079954

0.04 0.009624 0.039966 0.0566734 0.079926 0.033664 0.039966 0.066099 0.079926

0.05 0.012513 0.039948 0.0580476 0.079890 0.034294 0.039948 0.067413 0.079890

0.06 0.018109 0.039926 0.0599977 0.079846 0.035114 0.039926 0.068388 0.079846

0.07 0.025213 0.039901 0.0622362 0.079794 0.036014 0.039901 0.069075 0.079794

0.08 0.032879 0.039871 0.0645376 0.079734 0.036907 0.039871 0.069521 0.079735

0.09 0.040384 0.039837 0.0667305 0.079667 0.037728 0.039837 0.069766 0.079667

0.1 0.047194 0.039799 0.0686896 0.079592 0.038433 0.039799 0.069845 0.079592

Table 4.2 Comparison of absolute errors obtained by modified homotopy analysis method and
Chebyshev polynomial of second kind for SGE equation given in Example 4.3 at various points of
x and t taking a ¼ 2 and �h ¼ �1

x t uExact � uChebyshev
�� �� uExact � uMHAMj j

0.02 0.02 1.45347E−5 2.55671E−9

0.04 0.02 1.46767E−5 2.54906E−9

0.06 0.02 1.48475E−5 2.53636E−9

0.08 0.02 1.50368E−5 2.51869E−9

0.1 0.02 1.52361E−5 2.49619E−9

0.02 0.04 5.26987E−5 8.17448E−8

0.04 0.04 5.32093E−5 8.15001E−8

0.06 0.04 5.38216E−5 8.10941E−8

0.08 0.04 5.45030E−5 8.05296E−8

0.1 0.04 5.52250E−5 7.98104E−8

0.02 0.06 1.07843E−5 6.19865E−7

0.04 0.06 1.08860E−4 6.18011E−7

0.06 0.06 1.10091E−4 6.14935E−7

0.08 0.06 1.11471E−4 6.10656E−7

0.1 0.06 1.12943E−4 6.05206E−7

0.02 0.08 1.75050E−4 2.60691E−6

0.04 0.08 1.76623E−4 2.59912E−6

0.06 0.08 1.78561E−4 2.58619E−6

0.08 0.08 1.80758E−4 2.56821E−6

0.1 0.08 1.83120E−4 2.54531E−6

0.02 0.1 2.50768E−4 7.93538E−6

0.04 0.1 2.52867E−4 7.91169E−6
(continued)
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Table 4.3 L2 andL1 error norm for SGE Eq. (4.1) given in Example 4.3 at various points of
x and t taking a ¼ 2

t MHAM Chebyshev polynomial

L2 L1 L2 L1
0.02 5.6606E−9 2.55671E−9 3.32469E−5 1.52361E−5

0.04 1.80985E−7 8.17448E−8 1.20522E−4 5.52250E−5

0.06 1.37240E−6 6.19865E−7 2.46541E−4 1.12943E−4

0.08 5.77184E−6 2.60691E−6 3.99911E−4 1.83120E−4

0.10 1.75695E−5 7.93538E−6 5.72312E−4 2.61864E−4

Table 4.4 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example
4.4 at various points of x and t taking a ¼ 1:75 and 1:5 with �h ¼ �1

x a ¼ 1:75 a ¼ 1:5

t ¼ 0:01 t ¼ 0:02 t ¼ 0:01 t ¼ 0:02

uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM uChebyshev uMHAM

0.10 3.13459 3.151570 3.08713 3.1515800 3.15003 3.151567 3.14319 3.15156847

0.15 3.15900 3.151536 3.18638 3.1515373 3.16211 3.151540 3.19226 3.15153726

0.20 3.16542 3.15149 3.20162 3.1514930 3.16066 3.151492 3.18787 3.15149362

0.25 3.15980 3.15144 3.18315 3.1514377 3.15390 3.151438 3.16158 3.15143760

0.30 3.15161 3.15137 3.15421 3.1513693 3.14879 3.15136 3.14129 3.15136928

0.35 3.14675 3.15129 3.13604 3.1512888 3.14823 3.15128 3.13897 3.15128874

0.40 3.14623 3.15120 3.13282 3.1511961 3.15131 3.15119 3.15122 3.15119609

0.45 3.14781 3.15109 3.13733 3.1510915 3.15506 3.15108 3.16632 3.15109143

0.50 3.14867 3.15097 3.14015 3.1509749 3.15662 3.150970 3.17283 3.15097489

Table 4.5 Absolute errors obtained by modified homotopy analysis method and Chebyshev
polynomial of second kind for classical SGE equation given in Example 4.4 at various points of
x and t taking �h ¼ �1

x t uChebyshev � uMHAM

�� ��
0.2 0.2 5.09463E−5

0.4 0.2 8.84127E−5

0.6 0.2 1.48843E−4

0.8 0.2 2.20924E−4
(continued)

Table 4.2 (continued)

x t uExact � uChebyshev
�� �� uExact � uMHAMj j

0.06 0.1 2.55516E−4 7.87237E−6

0.08 0.1 2.58561E−4 7.81770E−6

0.1 0.1 2.61864E−4 7.74804E−6
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Table 4.6 L2 andL1 error norm obtained by MHAM and Chebyshev polynomial with regard to
HAM for SGE Eq. (4.1) given in Example 4.4 at various points of x and t taking e ¼ 1 and a ¼ 2

t MHAM Chebyshev polynomial

L2 L1 L2 L1
0.02 3.61832E−6 1.62617E−6 3.16274E−6 1.98279E−6

0.04 1.44585E−5 6.49802E−6 2.02068E−5 9.70659E−6

0.06 3.24763E−5 1.45956E−5 4.76627E−5 2.21017E−5

0.08 5.75978E−5 2.58855E−5 8.09011E−5 3.87676E−5

0.10 8.97196E−5 5.92957E−5 1.30016E−4 5.85008E−5

Table 4.5 (continued)

x t uChebyshev � uMHAM

�� ��
1.0 0.2 2.85454E−4

0.2 0.4 2.00397E−5

0.4 0.4 1.11716E−4

0.6 0.4 3.30001E−4

0.8 0.4 5.79195E−4

1.0 0.4 8.02329E−4

0.2 0.6 4.93420E−4

0.4 0.6 2.19299E−4

0.6 0.6 2.24080E−4

0.8 0.6 7.26968E−4

1.0 0.6 1.19255E−4

0.2 0.8 1.56021E−3

0.4 0.8 1.09038E−3

0.6 0.8 3.68090E−4

0.8 0.8 4.64603E−4

1.0 0.8 1.30778E−3

0.2 1.0 3.30232E−3

0.4 1.0 2.56352E−3

0.6 1.0 1.50743E−3

0.8 1.0 2.41294E−4

1.0 1.0 1.22502E−3
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4.5 Conclusion

In the present chapter, shifted Grünwald approximation has been used in order to
discretize the Riesz fractional diffusion equation. This equation has been solved by
explicit finite difference method. The numerical solution of time and space Riesz
fractional Fokker–Planck equation has been obtained from the discretization by
fractional centered difference approximation of the Riesz space fractional deriva-
tive. The implicit finite difference method has been applied in order to solve the
Riesz fractional Fokker–Planck equation. The above numerical schemes are quite
accurate and efficient, and the numerical results demonstrated here exhibit the pretty
good agreement with the exact solutions.

Moreover, in this chapter, a new semi-numerical technique MHAM-FT method
has been proposed to obtain the approximate solution of nonlocal fractional SGE.
The fractional SGE with nonlocal Riesz derivative operator has been first time
solved by MHAM-FT method in order to justify the applicability of the proposed
method. The approximate solutions obtained by MHAM-FT provide us with a
convenient way to control the convergence of approximate series solution and
solves the problem without any need for the discretization of the variables. To
control the convergence of the solution, we can choose the proper values of �h; here
we choose �h ¼ �1. In order to examine the numerical results obtained by the
proposed method, both Examples 4.3 and 4.4 have been solved by a numerical
method involving Chebyshev polynomial. To show the accuracy of the proposed
MHAM over Chebyshev polynomials, L2 and L1 error norms for classical order
SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and 4.6,
respectively. Agreement between present numerical results obtained by MHAM
with Chebyshev polynomials and exact solutions appears very satisfactory through

Fig. 4.10 Graphical comparison of the numerical solutions uð0:05; tÞ obtained by MHAM-FT and
Padé approximation with regard to the exact solution for Example 4.3
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illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The proposed MHAM-FT method
is very simple and efficient for solving the nonlinear fractional sine-Gordon
equation with nonlocal Riesz derivative operator. Thus, the proposed MHAM-FT
method can be elegantly applied for solving other Riesz fractional differential
equations.
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Chapter 5
New Exact Solutions
of Fractional-Order Partial Differential
Equations

5.1 Introduction

Fractional differential equations (FDEs) have been used nowadays frequently in
various applications for modeling anomalous diffusion, heat transfer, seismic wave
analysis, signal processing, sound wave propagation, and many other fractional
dynamical systems [1–6]. The FDEs are used in modeling many problems in
physics and engineering. The fractional derivatives introduced in physical models
can describe sound attenuation in complex media. When introduced into the con-
stitutive equations, they build a wave equation in which attenuation obeys a fre-
quency power law characteristic of many media [7].

The last few decades have witnessed rapid development in novel diagnostic and
therapeutic applications of ultrasound in biology and medicine. Nonlinear ultra-
sound modeling has become gradually important for accurate evaluation and sim-
ulation of ultrasound in a number of purposes. Ultrasound beams in the therapeutic
modalities are finite amplitude in nature. Accurate nonlinear ultrasound models and
their competent applications are required for accurate modeling and simulation of
those models of ultrasound applications. Additionally, accurate and efficient exact
solutions of nonlinear ultrasound models will significantly help us in order to
understand the complicated physical phenomena of ultrasound and the associated
bioeffects. The main motivation of this work is to develop the exact solutions of
fractional-order nonlinear acoustic wave equations.

The study of numerous approximations to the Burgers–Hopf equations in (5.1)
has a prominent history concerning the symbiotic interaction of mathematical
model and scientific computing to gain insight into the topic.

The propagation of focused and intense ultrasound beams is accompanied by
nonlinearity, diffraction, and absorption. For modeling of nonlinear propagation of
ultrasound beams in soft tissue, among others, the combined effects of nonlinearity,
absorption, and diffraction must be taken into consideration. The description of
large amplitude ultrasonic beams requires an accurate representation of
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nonlinearity, absorption, and diffraction. One of the extensively used nonlinear
models for the propagation of diffractive ultrasound in dissipative media is the
Khokhlov–Zabolotskaya–Kuznetsov (KZK) nonlinear acoustic wave equation [8,
9]. The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation is a nonlinear beam
equation that has been used to model nonlinear wave propagation in therapeutic
ultrasound.

Recently, a considerable number of research works have been rendered by the
notable researchers to develop the solutions of fractional partial differential equa-
tions, fractional ordinary differential equations, and integral equations of physical
interest. The fractional differential equations can be described best in discontinuous
media, and the fractional order is equivalent to its fractional dimensions. Fractal
media which are complex appear in different fields of engineering and physics. In
this context, the local fractional calculus theory is very important for modeling
problems for fractal mathematics and engineering on Cantorian space in fractal
media. Several analytical and numerical methods have been proposed to attain exact
and approximate solutions of fractional differential equations [10–22].

With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space. The first integral method [23–27] can be
devised to establish the exact solutions for some time fractional differential equa-
tions. The present work focuses on the first time the applicability and efficacy of the
first integral method on fractional nonlinear acoustic wave equations. To the best
information of the author, the exact analytical solutions for the above nonlinear
fractional-order acoustic wave equations have been obtained first time ever in this
chapter.

In recent years, fractional calculus has played a very important role in various
applications for modeling anomalous diffusion, heat transfer, seismic wave analysis,
signal processing, control theory, image processing, and many other fractional
dynamical systems [1–6]. Fractional differential equations (FDEs) are the gener-
alization of classical differential equations of integer order. The FDEs are inherently
multidisciplinary with its application across diverse disciplines of applied science
and engineering. Recently, FDEs have attracted great interest due to their appli-
cations in various real physical problems. The descriptions of properties of several
physical phenomena are found to be best described by fractional differential
equations. For this purpose, a reliable and efficient technique is essential for the
solution of nonlinear fractional differential equations. In this connection, it is
worthwhile to mention the recent notable works on the solutions of fractional
differential equations, integral equations, and fractional partial differential equations
of physical interest. Several analytical and numerical methods have been employed
to develop approximate and exact solutions of fractional differential equations
[10, 12–14, 16, 17, 19–22, 28, 29].

The sound propagation in a fluid is determined by nonlinearity, diffraction,
absorption, and dispersion. For modeling of nonlinear sound propagation in fluid,
the combined effects of nonlinearity, absorption, dispersion, and diffraction should
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be taken into account. The description of sound propagation in fluid requires an
accurate representation of nonlinearity, dispersion, absorption, and diffraction.

The KdV-Khokhlov–Zabolotskaya–Kuznetsov (KdV-KZK) equation describes
all the basic physical mechanisms of sound propagation in fluids [30]. The
KdV-KZK equation for fluids has profound applications in aerodynamics, acous-
tics, and also its extension to solids has applications in biomedical engineering and
in nonlinear acoustical nondestructive testing.

Nonlinear FDEs can be transformed into integer-order nonlinear ordinary dif-
ferential equations via fractional complex transform with the help of modified
Riemann–Liouville fractional derivative and corresponding useful formulae. The
present methods [31–36] under study can be devised to develop the exact analytical
solutions for time fractional KdV-KZK equation. The main motivation of this work
is to develop the exact solutions of the fractional-order KdV-KZK equation. To the
best information of the author, the exact analytical solutions for the fractional
KdV-KZK equation have been reported first time ever in this chapter.

In recent decades, FDEs have attracted increasing attention as they are widely
used to describe various complex phenomena in many fields [1, 37–41], such as the
fluid dynamics, acoustic dissipation, geophysics, relaxation, creep, viscoelasticity,
rheology, chaos, control theory, economics, signal and image processing, systems
identification, biology, and other areas. Most of the classical mechanic techniques
have been used in studies of conservative systems, but most of the processes
observed in the physical real world are nonconservative. If the Lagrangian of a
conservative system is constructed using fractional derivatives, the resulting
equations of motion can be nonconservative. In view of the fact that most physical
phenomena may be considered as nonconservative, they can be described using
fractional-order differential equations. Therefore, in many cases, the real physical
processes could be modeled in a reliable manner using fractional-order differential
equations rather than integer-order equations [39].

In particular, the fractional derivative is useful in describing the memory and
hereditary properties of materials and processes. The fractional differential equa-
tions can be described best in discontinuous media, and the fractional order is
equivalent to its fractional dimensions. Fractal media which are complex appear in
different fields of engineering and physics. In this context, the local fractional
calculus theory is very important for modeling problems for fractal mathematics
and engineering on Cantorian space in fractal media. Among the investigations for
fractional differential equations, finding numerical and exact solutions to fractional
differential equations is a prior matter of concern. Many efficient methods have
been proposed so far to obtain numerical solutions and exact solutions of fractional
differential equations. Most nonlinear physical phenomena that appear in many
areas of scientific fields, such as plasma physics, solid state physics, fluid dynamics,
optical fibers, mathematical biology, and chemical kinetics, can be best modeled by
nonlinear fractional partial differential equations.
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With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space.

In this chapter, we present the traveling wave solutions of the fractional (2 + 1)-
dimensional Davey–Stewartson equation and doubly periodic solutions of new
integrable Davey–Stewartson-type equation. We employ the mixed dn-sn method
[42] approach via fractional complex transform in order to obtain exact solutions to
the fractional (2 + 1)-dimensional Davey–Stewartson equation and the new inte-
grable Davey–Stewartson-type equation.

5.2 Outline of the Present Study

In this chapter, new exact solutions of fractional nonlinear acoustic wave equations
have been devised. The traveling periodic wave solutions of fractional Burgers–
Hopf equation and Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation have
obtained by the first integral method. Nonlinear ultrasound modeling is found to
have an increasing number of applications in both medical and industrial areas
where due to high-pressure amplitudes the effects of nonlinear propagation are no
longer negligible. Taking nonlinear effects into account, the ultrasound beam
analysis makes more accurate in these applications. The Burgers–Hopf equation is
one of the extensively studied models in mathematical physics. In addition, the
KZK parabolic nonlinear wave equation is one of the most widely employed
nonlinear models for the propagation of 3D diffraction sound beams in dissipative
media. In the present chapter, these nonlinear equations have solved by the first
integral method. As a result, new exact analytical solutions have been obtained first
time ever for these fractional-order acoustic wave equations. The obtained results
are presented graphically to demonstrate the efficiency of this proposed method.

Also in this chapter, new exact solutions of time fractional KdV-Khokhlov–
Zabolotskaya–Kuznetsov (KdV-KZK) equation have been established by classical
Kudryashov method and modified Kudryashov method, respectively. In this pur-
pose, modified Riemann–Liouville derivative has been applied to convert nonlinear
time fractional KdV-KZK equation into the nonlinear ordinary differential equation.
In the present chapter, the classical Kudryashov method and modified Kudryashov
method both have been applied successively to compute the analytical solutions of
time fractional KdV-KZK equation. As a result, new exact solutions have been
obtained first time ever involving symmetric Fibonacci function, hyperbolic func-
tion, and exponential function. The methods under consideration are reliable, effi-
cient and can be used as an alternative to establish new exact solutions of different
types of fractional differential equations arising in mathematical physics. The
obtained results are exhibited graphically in order to demonstrate the efficiency and
applicability of these proposed methods for solving nonlinear time fractional
KdV-KZK equation.
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Moreover, the Jacobi elliptic function method, viz. mixed dn-sn method, has
been presented in this chapter for finding the traveling wave solutions of the
Davey–Stewartson equations. As a result, some solitary wave solutions and doubly
periodic solutions are obtained in terms of Jacobi elliptic functions. Furthermore,
solitary wave solutions are obtained as simple limits of doubly periodic functions.
These solutions can be useful to explain some physical phenomena, viz. evolution
of a three-dimensional wave packet on the water of finite depth. The proposed
Jacobi elliptic function method is efficient, powerful and can be used in order to
establish more newly exact solutions for other kinds of nonlinear fractional partial
differential equations arising in mathematical physics.

5.2.1 Time Fractional Nonlinear Acoustic Wave Equations

Let us consider the time fractional Burgers–Hopf equation [43]

@zp ¼ cD2a
s pþ bDa

sp
2 ð5:1Þ

and the (3 + 1)-dimensional time fractional Khokhlov–Zabolotskaya–Kuznetsov
(KZK) equation [44–46]

@zD
a
sp ¼ c0

2
D?pþ cD3a

s pþ bD2a
s p2 ð5:2Þ

where 0\a� 1, c ¼ D
2c30
, and b ¼ ~b

2q0c
3
0
. Here, p is the acoustic pressure, z is the

direction of propagation, s ¼ t � z
c0

is the retarded time variable, c0 is the small
signal speed of sound, D is the diffusivity parameter, and q0 is the ambient fluid
density.

The first term on the right-hand side of Eq. (5.2) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and
nonlinearity is described in the third term. The coefficient of nonlinearity ~b is
defined by ~b ¼ 1þB=2A, where B=A is the nonlinearity parameter of the medium.
The transverse Laplacian can be written in Cartesian coordinates as

D?p ¼ @2p
@x2

þ @2p
@y2

ð5:3Þ

The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation is an augmented type
of Burgers’ equation. In addition to absorption and nonlinearity, it is also involved
with diffraction. This last term allows the KZK equation to describe
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three-dimensional directional nonlinear sound beams; the form generated through
the ultrasonic transducer. The nonlinear parabolic KZK wave equation describes the
effects of diffraction, absorption, and nonlinearity.

5.2.2 Time Fractional KdV-Khokhlov–Zabolotskaya–
Kuznetsov Equation

Let us consider the (3 + 1)-dimensional time fractional KdV-KZK equation

@zD
a
sp ¼ c0

2
D?pþA1D

3a
s pþA2D

2a
s p2 � cD4a

s p ð5:4Þ

where 0\a� 1, A1 ¼ b
2c30q0

, and A2 ¼ e
2q0c

3
0
. Here, p is the acoustic pressure, z is the

direction of sound propagation, s ¼ t � z
c0
is the retarded time variable, c0 is the

small signal speed of sound, e is the parameter of nonlinearity, b is the diffusivity
parameter, q0 is the ambient fluid density, and c is the adiabatic index defined by
c ¼ cp=cv, where cp and cv are the specific heats at constant pressure and constant
volume.

The first term on the right-hand side of Eq. (5.4) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and
nonlinearity is described in the third term. In comparison to KdV–Burgers equation,
the KdV-KZK equation has only one extra term. The diffusivity parameter b is
defined by b ¼ fþ 4g=3, where f and g are the bulk and shear viscosity. The
transverse Laplacian can be written in Cartesian coordinates as

D?p ¼ @2p
@x2

þ @2p
@y2

ð5:5Þ

The KdV-KZK equation is an augmented form of the KdV–Burgers equation. In
addition to absorption, dispersion, and nonlinearity, it also accounts for diffraction.
The nonlinear parabolic KdV-KZK equation describes the combined effects of
diffraction, absorption, dispersion, and nonlinearity.

5.2.3 Time Fractional (2 + 1)-Dimensional
Davey–Stewartson Equations

Davey–Stewartson (DS) equations have been used for various applications in fluid
dynamics. It was proposed initially for the evolution of weakly nonlinear pockets of
water waves in the finite depth by Davey and Stewartson [47].
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Time Fractional (2 + 1)-Dimensional Davey–Stewartson Equation (Type I)

Let us consider the fractional (2 + 1)-dimensional Davey–Stewartson equation [48]

iDa
t qþ aðD2b

x qþD2c
y qÞþ b qj j2nq� kqr ¼ 0; ð5:6Þ

D2b
x rþD2c

y rþ dD2b
x qj j2n
� �

¼ 0; ð5:7Þ

where 0\a; b; c� 1, q � qðx; y; tÞ, and r � rðx; y; tÞ. Also, a, b, k, and d are all
constant coefficients. The exponent n is the power law parameter. It is necessary to
have n[ 0. In Eqs. (5.6) and (5.7), qðx; y; tÞ is a complex-valued function which
stands for wave amplitude, while rðx; y; tÞ is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49–51].

Time Fractional (2 + 1)-Dimensional New Integrable Davey–Stewartson-Type
Equation (Type II)

Let us consider the fractional (2 + 1)-dimensional new integrable Davey–Stewartson-
type equation

iDa
sWþ L1WþWUþWv ¼ 0;

L2v ¼ L3 Wj j2; ð5:8Þ

Db
nU ¼ Dc

gvþ lDc
g Wj j2
� �

; l ¼ �1; 0\a; b; c� 1

where the linear differential operators are given by

L1 � b2�a2
4

� �
D2b

n � aDb
nD

c
g � D2c

g ;

L2 � b2 þ a2
4

� �
D2b

n þ aDb
nD

c
g þD2c

g ;

L3 � � 1
4 b2 þ a2 þ 8b2ða�1Þ

ða�2Þ2�b2

� �
D2b

n � aþ 2b2

ða�2Þ2�b2

� �
Db

nD
c
g � D2c

g ;

where W � Wðn; g; sÞ is complex, while U � Uðn; g; sÞ, v � vðn; g; sÞ are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko–Dubrovsky (KD) equation [53].

5.3 Algorithm of the First Integral Method
with Fractional Complex Transform

In this section, we deal with the explicit solutions of Eqs. (5.1) and (5.2) by using the
first integral method [54]. The main steps of this method are described as follows:
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Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and t, is given by

Pðu; ux; uxx; uy; uyy; uz; ut;Da
t u;D

2a
t u;D3a

t u; @zD
a
t u; . . .Þ ¼ 0; 0\a� 1 ð5:9Þ

where u ¼ uðx; y; z; tÞ is an unknown function, P is a polynomial in u and its
various partial derivatives in which the highest order derivatives and nonlinear
terms are involved.

Step 2: By using the fractional complex transform [55–58]:

uðx; y; z; tÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ kta

C ðaþ 1Þ ð5:10Þ

where l, m, k, and k are constants.
By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

Da
z u ¼ rzunD

a
zn;

where rt, rx, ry, and rz are the fractal indexes [57, 58], without loss of generality
we can take rt ¼ rx ¼ ry ¼ rz ¼ j, where j is a constant.

Thus, the FPDE (5.9) is transformed to the following ordinary differential
equation (ODE) for uðx; y; z; tÞ ¼ UðnÞ:

PðU; kU0; k2U00; k3U000; lU0; l2U00;mU0;m2U00; . . .; kkU00; . . .Þ ¼ 0; ð5:11Þ

where prime denotes the derivative with respect to n.

Step 3: We suppose that Eq. (5.11) has a solution in the form

UðnÞ ¼ XðnÞ ð5:12Þ

and introduce a new independent variable YðnÞ ¼ UnðnÞ, which leads to a system of
ODEs of the form

dXðnÞ
dn

¼ YðnÞ; ð5:13Þ

dYðnÞ
dn

¼ FðXðnÞ; YðnÞÞ:
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In general, it is very difficult to solve a two-dimensional autonomous planar
system of ODEs, such as Eq. (5.13).

Step 4: By using the qualitative theory of differential equations [59], if we can find
the integrals to Eq. (5.13) under the same conditions, then the general solutions to
Eq. (5.13) can be derived directly. With the aid of the division theorem for two
variables in the complex domain C which is based on Hilbert’s Nullstellensatz
theorem [60], one first integral to Eq. (5.13) can be obtained. This first integral can
reduce Eq. (5.11) to a first-order integrable ordinary differential equation. Then by
solving this equation directly, the exact solution to Eq. (5.9) is obtained.

Now, let us recall the division theorem.

Theorem 5.1 (Division theorem)
Let Qðx; yÞ and Rðx; yÞ are polynomials in C½½x; y��, and Qðx; yÞ is irreducible in

C½½x; y��. If Rðx; yÞ vanishes at all zero points of Qðx; yÞ, then there exists a poly-
nomial Hðx; yÞ in C½½x; y�� such that

Rðx; yÞ ¼ Qðx; yÞHðx; yÞ: ð5:14Þ

5.4 Algorithm of the Kudryashov Methods Applied
with Fractional Complex Transform

In this section, an algorithm has been presented for the analytical solutions of
Eq. (5.4) by using both the classical Kudryashov method and modified Kudryashov
method [31, 34, 35]. The main steps of this method are described as follows:

Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and t, is given by

Pðu; ux; uxx; uy; uyy; uz; ut;Da
t u;D

2a
t u;D3a

t u; @zD
a
t u; . . .Þ ¼ 0; 0\a� 1 ð5:15Þ

where Da
t u, D

2a
t u and D3a

t u are modified Riemann–Liouville derivatives of u, where
u ¼ uðx; y; z; tÞ is an unknown function, P is a polynomial in u, and its various
partial derivatives in which the highest order derivatives and nonlinear terms are
involved.

Step 2: By using the fractional complex transform [55, 56]:

uðx; y; z; tÞ ¼ UðnÞ n ¼ lxþmyþ kzþ kta

Cðaþ 1Þ ð5:16Þ

where l, m, k, and k are constants.
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By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

Da
z u ¼ rzunD

a
zn;

where rt, rx, ry, and rz are the fractal indexes [57, 58], without loss of generality
we can take rt ¼ rx ¼ ry ¼ rz ¼ j, where j is a constant.

Thus, the FPDE (5.15) is reduced to the following nonlinear ordinary differential
equation (ODE) for uðx; y; z; tÞ ¼ UðnÞ:

PðU; kU0; k2U00; k3U000; lU0; l2U00;mU0;m2U00; . . .; kkU00; . . .Þ ¼ 0: ð5:17Þ

Step 3: We assume that the exact solution of Eq. (5.17) can be expressed in the
following form

UðnÞ ¼
XN
i¼0

aiQ
iðnÞ; ð5:18Þ

where ai ði ¼ 0; 1; 2; . . .;NÞ are constants to be determined later, such that aN 6¼ 0,
while QðnÞ has the following form

I. Classical Kudryashov method

QðnÞ ¼ 1
1þ expðnÞ : ð5:19Þ

This function QðnÞ satisfies the first-order differential equation

QnðnÞ ¼ QðnÞðQðnÞ � 1Þ: ð5:20Þ

II. Modified Kudryashov method

QðnÞ ¼ 1
1� an

: ð5:21Þ

This function satisfies the first-order differential equation

QnðnÞ ¼ QðnÞðQðnÞ � 1Þ ln a: ð5:22Þ
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Step 4: To determine the dominant term with the highest order of singularity, we
substitute

U ¼ n�p; ð5:23Þ

to all terms of Eq. (5.17). Then, the degrees of all terms of Eq. (5.17) are compared,
and consequently two or more terms with the lowest degree are chosen. The
maximum value of p is the pole of Eq. (5.17), and it is equal to N. This method can
be employed when N is integer. If N is noninteger, the equation under study needs
to be transformed, and then, the above procedure to be repeated.

Step 5: The necessary number of derivatives of the function UðnÞ with respect to n
can be calculated using the computer algebra systems of any mathematical
software.
Step 6: Substituting the derivatives of function UðnÞ along with Eq. (5.18) in
Eq. (5.17) in case of classical Kudryashov method or substituting the derivatives of
function UðnÞ along with Eq. (5.18) in Eq. (5.17) in case of modified Kudryashov
method, Eq. (5.17) becomes the following form

U½QðnÞ� ¼ 0; ð5:24Þ

where U½QðnÞ� is a polynomial in QðnÞ. Then, after collecting all terms with the
same powers of QðnÞ and equating every coefficient of this polynomial to zero yield
a set of algebraic equations for ai(i = 0,1,2,…, N) and k.

Step 7: Solving the algebraic equations system thus obtained in step 6 and sub-
sequently substituting these values of the constants ai(i = 0, 1, 2,…, N) and k, we
can obtain the explicit exact solutions of Eq. (5.4) instantly. The obtained solutions
may involve in the symmetric hyperbolic Fibonacci functions [61, 62]. The sym-
metric Fibonacci sine, cosine, tangent, and cotangent functions are, respectively,
defined as follows:

sFsðxÞ ¼ ax � a�xffiffiffi
5

p ; cFsðxÞ ¼ ax þ a�xffiffiffi
5

p

tan FsðxÞ ¼ ax � a�x

ax þ a�x
; cot FsðxÞ ¼ ax þ a�x

ax � a�x
:

5.5 Algorithm of the Mixed Dn-Sn Method
with Fractional Complex Transform

In this present analysis, we deal with the determination of explicit solutions of
fractional (2 + 1)-dimensional Davey–Stewartson equation by using the mixed
dn-sn method. The main steps of this method are described as follows:
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Step 1: Suppose that coupled nonlinear FPDEs, say in three independent variables
x, y, and t, is given by

Fðu; v;ux; vx;uy; vy;ut; vt; iDa
t u;D

a
t v;D

2b
x u;D2b

x v;D2c
y u;D

2c
y v; . . .Þ ¼ 0; 0\a;b; c�1

ð5:25aÞ

Gðu; v;ux; vx;uy; vy;ut; vt;Da
t u;D

a
t v;D

2b
x u;D2b

x v;D2c
y u;D

2c
y v; . . .Þ ¼ 0; 0\a;b; c�1

ð5:25bÞ

where u ¼ uðx; y; tÞ and v ¼ vðx; y; tÞ are unknown functions, F and G are poly-
nomials in u, v, and its various partial derivatives in which the highest order
derivatives and nonlinear terms are involved.

Step 2: We use the fractional complex transform [55–58]:

uðx; y; tÞ ¼ eihuðnÞ; vðx; y; tÞ ¼ vðnÞ;

h ¼ h1xb

Cð1þ bÞ þ
h2yc

Cð1þ cÞ þ
h3ta

Cð1þ aÞ and n ¼ n1xb

Cð1þ bÞ þ
n2yc

Cð1þ cÞ þ
n3ta

Cð1þ aÞ ;

ð5:26Þ

where h1, h2, h3, n1, n2, and n3 are real constants to be determined later.
By using the chain rule [55, 58], we have

Da
t u ¼ rtunD

a
t n;

Da
xu ¼ rxunD

a
xn;

Da
yu ¼ ryunD

a
yn;

where rt, rx, and ry are the fractal indexes [57, 58], without loss of generality we
can take rt ¼ rx ¼ ry ¼ j, where j is a constant.

Using fractional complex transform Eq. (5.26), the FPDE (5.25) can be con-
verted to couple nonlinear ordinary differential equations (ODEs) involving UðnÞ ¼
uðx; y; tÞ and WðnÞ ¼ vðx; y; tÞ. Then eliminating WðnÞ between the resultant cou-
pled ODEs, the following ODE for UðnÞ is obtained

FðU; h3U0; h23U
00; h33U

000; n3U0; n23U
00; n33U; . . .Þ ¼ 0; ð5:27Þ

where prime denotes the derivative with respect to n.

Step 3: Let us assume that the exact solution of Eq. (5.27) is to be defined in the
polynomial /ðnÞ of the following form:
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UðnÞ ¼
XN
i¼0

ci/
iðnÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2ðnÞ

q XN�1

i¼0

di/
iðnÞ; ð5:28Þ

where /ðnÞ satisfies the following elliptic equation:

/n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � /2Þð/2 � k2ð1� mÞÞ

q
: ð5:29Þ

The solutions of Eq. (5.29) are given by

/ðnÞ ¼ kdnðknjmÞ;

/ðnÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðknjmÞ; ð5:30Þ

where dnðknjmÞ and ndðknjmÞ ¼ 1
dnðknjmÞ are the Jacobi elliptic functions with

modulus m ð0\m\1Þ.
If /ðnÞ ¼ kdnðknjmÞ, then Eq. (5.28) becomes

UðnÞ ¼
XN
i¼0

cik
idniðknjmÞþ k

ffiffiffiffi
m

p
snðknjmÞ

XN�1

i¼0

dik
idniðknjmÞ;

while if /ðnÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðknjmÞ, then Eq. (5.28) becomes

UðnÞ ¼
XN
i¼0

cik
ið1� mÞi=2ndiðknjmÞþ k

ffiffiffiffi
m

p
cdðknjmÞ

XN�1

i¼0

dik
ið1� mÞi=2ndiðknjmÞ;

where cdðknjmÞ ¼ cnððknjmÞ=dnðknjmÞ and cn is the Jacobi cnoidal function. If
di ¼ 0, i ¼ 0; 1; 2; . . .;N � 1, then Eq. (5.28) constitutes the dn (or nd) expansions.

Step 4: According to the proposed method, we substitute UðnÞ ¼ n�p in all terms of
Eq. (5.27) for determining the highest order singularity. Then, the degree of all
terms of Eq. (5.27) has been taken into the study, and consequently, the two or
more terms of lower degree are chosen. The maximum value of p is known as the
pole and it is denoted as “N.” If “N” is an integer, then the method only can be
implemented, and otherwise if “N” is a noninteger, the above Eq. (5.27) may be
transferred and the above procedure is to be repeated.
Step 5: Substituting Eq. (5.28) into Eq. (5.27) yields the following algebraic
equation

Pð/Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2

q
Qð/Þ ¼ 0; ð5:31Þ
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where Pð/Þ and Qð/Þ are the polynomials in /ðnÞ. Setting the coefficients of the
various powers of / in Pð/Þ and Qð/Þ to zero will yield a system of algebraic
equations in the unknowns ci, di, k, and m. Solving this system, we can determine
the value of these unknowns. Therefore, we can obtain several classes of exact
solutions involving the Jacobi elliptic functions sn, dn, nd, and cd functions.

The Jacobi elliptic functions snðknjmÞ, cnðknjmÞ, and dnðknjmÞ are double
periodic and have the following properties:

sn2ðknjmÞþ cn2ðknjmÞ ¼ 1;

dn2ðknjmÞþmsn2ðknjmÞ ¼ 1:

Especially when m ! 1, the Jacobi elliptic functions degenerate to the hyper-
bolic functions, i.e.,

snðknj1Þ ! tanhðknÞ;
cnðknj1Þ ! sec hðknÞ;
dnðknj1Þ ! sec hðknÞ;

and when m ! 0, the Jacobi elliptic functions degenerate to the trigonometric
functions, i.e.,

snðknj0Þ ! sinðknÞ;
cnðknj0Þ ! cosðknÞ;
dnðknj0Þ ! 1:

Further explanations in detail about the Jacobi elliptic functions can be found
in [63].

5.6 Implementation of the First Integral Method for Time
Fractional Nonlinear Acoustic Wave Equations

In this section, the new exact analytical solutions of time fractional nonlinear
acoustic wave equations have been obtained first time ever using the first integral
method.

5.6.1 The Burgers–Hopf Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.1):
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pðz; sÞ ¼ UðnÞ; n ¼ kzþ ksa

C ðaþ 1Þ ð5:32Þ

where k and k are constants.
By applying the fractional complex transform (5.32), Eq. (5.1) can be trans-

formed to the following nonlinear ODE:

kU0ðnÞ ¼ ck2U00ðnÞþ 2kbUðnÞU0ðnÞ: ð5:33Þ

Using Eqs. (5.12), (5.13), and (5.33) can be written as the following
two-dimensional autonomous system

dXðnÞ
dn

¼ YðnÞ; ð5:34Þ

dYðnÞ
dn

¼ k

k2c
YðnÞ � 2b

kc
XðnÞYðnÞ:

According to the first integral method, we assume that XðnÞ and YðnÞ are the
nontrivial solutions of Eq. (5.34) and

QðX; YÞ ¼
Xm
i¼0

aiðXÞYi

is an irreducible polynomial in the complex domain C½X; Y � such that

Q½XðnÞ; YðnÞ� ¼
Xm
i¼0

aiðXðnÞÞYðnÞi ¼ 0; ð5:35Þ

where aiðXðnÞÞ, i ¼ 0; 1; 2; . . .;m are polynomials in X and amðXÞ 6¼ 0.
Equation (5.35) is called the first integral to Eq. (5.34). Applying the division
theorem, there exists a polynomial gðXÞþ hðXÞY in the complex domain C½X; Y �
such that

dQ
dn

¼ @Q
@X

dX
dn

þ @Q
@Y

dY
dn

¼ ðgðXÞþ hðXÞYÞ
Xm
i¼0

aiðXÞYi: ð5:36Þ

Let us suppose that m ¼ 1 in Eq. (5.35), and then by equating the coefficients of
Yi, i ¼ 0; 1 on both sides of Eq. (5.36), we have

Y0 : a0ðXÞgðXÞ ¼ 0 ð5:37Þ
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Y1 : _a0ðXÞþ a1ðXÞ k

k2c
� 2bX

kc

� �
¼ a0ðXÞhðXÞþ a1ðXÞgðXÞ ð5:38Þ

Y2 : _a1ðXÞ ¼ a1ðXÞhðXÞ ð5:39Þ

Since, aiðXÞ, i ¼ 0; 1 are polynomials in X, from Eq. (5.39) we infer that a1ðXÞ
is a constant and hðXÞ ¼ 0. For simplicity, we take a1ðXÞ ¼ 1. Then balancing the
degrees of gðXÞ and a0ðXÞ in Eq. (5.38), we conclude that degðgðXÞÞ ¼ 1 only.
Now suppose that

gðXÞ ¼ b1X þ b0; a0ðXÞ ¼ A2

2
X2 þA1X þA0; ðb1 6¼ 0;A2 6¼ 0Þ ð5:40Þ

where b1, b0, A2, A1, and A0 are all constants to be determined. Using Eq. (5.38),
we find that

b0 ¼ A1 þ k

k2c
;

b1 ¼ A2 � 2b
kc

:

Next, substituting a0ðXÞ and gðXÞ in Eq. (5.37) and consequently equating the
coefficients of Xi, i ¼ 0; 1; 2; 3 to zero, we obtain the following system of nonlinear
algebraic equations:

X0 : A0 A1 þ k

k2c

� �
¼ 0 ð5:41Þ

X1 : A0 A2 � 2b
kc

� �
þA1 A1 þ k

k2c

� �
¼ 0; ð5:42Þ

X2 : A1 A2 � 2b
kc

� �
þ A2

2
A1 þ k

k2c

� �
¼ 0; ð5:43Þ

X3 :
A2

2
A2 � 2b

kc

� �
¼ 0: ð5:44Þ

Solving the above system of Eqs. (5.41)–(5.44) simultaneously, we get the
following nontrivial solution

A0 ¼ 0; A1 ¼ � k

k2c
; A2 ¼ 2b

kc
; ð5:45Þ
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Using Eqs. (5.45) into Eq. (5.35), we obtain

YðnÞ ¼ � b
kc

X2 þ k

k2c
X: ð5:46Þ

Combining Eq. (5.46) with the system given by Eq. (5.34), the exact solution to
Eq. (5.33) can be obtained as

pðz; sÞ ¼ XðnÞ ¼ k

bkþ cosh kn
k2c

� kC1

� �
� sinh kn

k2c
� kC1

� � ; ð5:47Þ

where C1 is an arbitrary constant.

5.6.2 The Khokhlov–Zabolotskaya–Kuznetsov Equation

First, we introduce the following fractional complex transform in Eq. (5.2):

pðx; y; z; sÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ ksa

Cðaþ 1Þ ð5:48Þ

where l, m, k, and k are constants.
By applying the fractional complex transform (5.48), Eq. (5.2) can be transferred

to the following nonlinear ODE:

kkU00ðnÞ ¼ c0
2
ðl2 þm2ÞU00ðnÞþ ck3U000ðnÞþ 2k2bðUðnÞU00ðnÞþU0ðnÞ2Þ: ð5:49Þ

Then integrating Eq. (5.49) once, we obtain

~n0 þ kkU0ðnÞ ¼ c0
2
ðl2 þm2ÞU0ðnÞþ ck3U00ðnÞþ k2bðU2ðnÞÞ0; ð5:50Þ

where ~n0 ¼ k3cn0 is an integration constant.
Using Eqs. (5.12), (5.13), and (5.50) can be written as the following

two-dimensional autonomous system

dXðnÞ
dn

¼ YðnÞ; ð5:51Þ

dYðnÞ
dn

¼ n0 þ
k

k2c
YðnÞ � c0

2
ðl2 þm2Þ

k3c
YðnÞ � 2b

kc
XðnÞYðnÞ:
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According to the first integral method, we suppose that XðnÞ and YðnÞ are the
nontrivial solutions of Eq. (5.51) and

QðX; YÞ ¼
Xm
i¼0

aiðXÞYi

is an irreducible polynomial in the complex domain C½X; Y � such that

Q½XðnÞ; YðnÞ� ¼
Xm
i¼0

aiðXðnÞÞYðnÞi ¼ 0; ð5:52Þ

where aiðXðnÞÞ, i ¼ 0; 1; 2; . . .;m are polynomials in X and amðXÞ 6¼ 0.
Equation (5.52) is called the first integral to Eq. (5.51). Applying the division
theorem, there exists a polynomial gðXÞþ hðXÞY in the complex domain C½X; Y �
such that

dQ
dn

¼ @Q
@X

dX
dn

þ @Q
@Y

dY
dn

¼ ðgðXÞþ hðXÞYÞ
Xm
i¼0

aiðXÞYi: ð5:53Þ

Let us suppose that m ¼ 1 in Eq. (5.52), and then by equating the coefficients of
Yi, i ¼ 0; 1 on both sides of Eq. (5.53), we have

Y0 : a1ðXÞn0 ¼ a0ðXÞgðXÞ; ð5:54Þ

Y1 : _a0ðXÞ ¼ a0ðXÞhðXÞ � a1ðXÞ � c0
2
ðl2 þm2Þ

k3c
þ k

k2c
� 2b

kc
X

� �
þ a1ðXÞgðXÞ;

ð5:55Þ

Y2 : _a1ðXÞ ¼ a1ðXÞhðXÞ; ð5:56Þ

Since aiðXÞ, i ¼ 0; 1 are polynomials in X, from Eq. (5.56) we infer that a1ðXÞ is
a constant and hðXÞ ¼ 0. For simplicity, we take a1ðXÞ ¼ 1. Then balancing the
degrees of a0ðXÞ and gðXÞ, Eq. (5.55) implies that degðgðXÞÞ� degða0ðXÞÞ, and
thus from Eq. (5.55), we infer that degðgðXÞÞ ¼ 0 or 1. If degðgðXÞÞ ¼ 0, suppose
that gðXÞ ¼ A, then from Eq. (5.55), we find

_a0ðXÞ ¼ Aþ c0
2
ðl2 þm2Þ

k3c
� k

k2c
þ 2b

kc
X: ð5:57Þ

172 5 New Exact Solutions of Fractional …



Solving Eq. (5.57), we have

a0ðXÞ ¼ AX þ c0
2
ðl2 þm2Þ

k3c
X � k

k2c
Xþ b

kc
X2 þB; ð5:58Þ

where B is an arbitrary constant.
Next, replacing a0ðXÞ, a1ðXÞ, and gðXÞ in Eq. (5.54) and consequently equating

the coefficients of Xi, i ¼ 0; 1; 2 to zero, we obtain the following system of non-
linear algebraic equations:

X0 : AB ¼ n0 ð5:59Þ

X1 : A2 þ c0
2
ðl2 þm2Þ

k3c
A� k

k2c
A ¼ 0 ð5:60Þ

X2 :
b
kc

A ¼ 0 ð5:61Þ

Solving the above system of Eqs. (5.59)–(5.61) simultaneously, we get

A ¼ 0: ð5:62Þ

Using Eqs. (5.62) into Eq. (5.52), we obtain

YðnÞ ¼ � c0
2
ðl2 þm2Þ

k3c
X þ k

k2c
X � b

kc
X2 � B: ð5:63Þ

Combining Eq. (5.63) with the system given by Eq. (5.51), the exact solution to
Eq. (5.50) can be obtained as

pðx; y; z; sÞ ¼ XðnÞ ¼ �1

4k2b
c0ðl2 þm2Þ � 2kkþ ffiffiffi

g
p

tan
ffiffiffi
g

p
4k3c

n� 2k3cC1
� �� �� �

;

ð5:64Þ

where g ¼ �c20ðl2 þm2Þ2 þ 4c0kkðl2 þm2Þ � 4k2ðk2 � 4Bbck3Þ and C1 is an
arbitrary constant.

The established solutions (5.63) and (5.64) have been checked by putting them
into the original Eqs. (5.1) and (5.2). Thus, the new exact solutions (5.63) and
(5.64) of fractional Burgers–Hopf and KZK equations, respectively, have been first
time obtained in this present work.
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5.6.3 Numerical Results and Discussions for Nonlinear
Fractional Acoustic Wave Equations

In this present numerical experiment, two exact solutions of Eqs. (5.1) and (5.2)
have been used to draw the graphs as shown in Figs. 5.1, 5.2, 5.3, and 5.4 for
different fractional-order values of a.
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(a) (b)

Fig. 5.1 a The periodic traveling wave solution for pðz; sÞ appears in Eq. (5.47) of Case I,
b corresponding solution for pðz; sÞ, when s ¼ 0
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Fig. 5.2 a The periodic traveling wave solution for pðz; sÞ appears in Eq. (5.47) of Case II,
b corresponding solution for pðz; sÞ, when s ¼ 3
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Numerical Simulations for Fractional Burgers–Hopf Equation

Case I: For a ¼ 0:5 (Fractional order)

Case II: For a ¼ 0:95 (Fractional order)

Numerical Simulations for Fractional KZK Equation

Case III: For a ¼ 0:5 (Fractional order)

Case IV: For a ¼ 0:95 (Fractional order)

In the present numerical simulation, the traveling wave 3-D solutions surfaces and
corresponding 2-D solution graphs have been drawn for the obtained exact solu-
tions of Eqs. (5.1) and (5.2) in case of fractional-order time derivative. It can be
observed that in all the above cases, the obtained exact solutions represent the
kink-type traveling wave solutions with regard to various fractional-order solutions.
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Fig. 5.3 a The periodic traveling wave solution for pðx; y; z; sÞ obtained in Eq. (5.64) of Case III,
b corresponding solution for pðx; y; z; sÞ, when s ¼ 0
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Fig. 5.4 a The periodic traveling wave solution for pðx; y; z; sÞ obtained in Eq. (5.64) of Case IV,
b corresponding solution for pðx; y; z; sÞ, when s ¼ 4
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5.7 Exact Solutions of Time Fractional KdV-KZK
Equation

In the present section, the new exact analytical solutions of time fractional
KdV-KZK equation have been obtained first time ever using the Kudryashov
method and modified Kudryashov method, respectively.

5.7.1 Kudryashov Method for Time Fractional
KdV-KZK Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.4):

pðx; y; z; sÞ ¼ UðnÞ; n ¼ lxþmyþ kzþ ksa

Cðaþ 1Þ ; ð5:65Þ

where k and k are constants.
By applying the fractional complex transform (5.65), Eq. (5.4) can be trans-

formed to the following nonlinear ODE:

kkUnn ¼ c0
2
ðl2 þm2ÞUnn þA1k

3Unnn þ 2A2k
2½UUnn þðUnÞ2� � ck4Unnnn: ð5:66Þ

Integrating Eq. (5.66) with respect to n once, we have

C1 þ kkU0ðnÞ ¼ c0
2
ðl2 þm2ÞU0ðnÞþA1k

3U00ðnÞþ 2A2k
2UðnÞU0ðnÞ � ck4U000ðnÞ;

ð5:67Þ

where C1 is the integration constant.
The dominant terms with highest order of singularity are ck4U000ðnÞ and

2A2k
2UðnÞU0ðnÞ. Thus, the pole order of Eq. (5.67) is N ¼ 2.

Therefore, we sought for a solution in the form

UðnÞ ¼ a0 þ a1QðnÞþ a2QðnÞ2 ð5:68Þ

where a0, a1, and a2 are constants to be determined later.
Substituting the derivatives of function UðnÞ with respect to n and taking into

account ansatz (5.68) in Eq. (5.67), we obtain a system of algebraic equations in the
following form
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Q1 : � 1
2
a1c0ðl2 þm2Þ ln aþ a1kk ln a� 2a0a1A2k

2 ln a

þ a1A1k
3ðln aÞ2 þ a1ck

4ðln aÞ3 ¼ 0

Q2 :
1
2
a1c0ðl2 þm2Þ ln a� a2c0ðl2 þm2Þ ln a� a1kk ln aþ 2a2kk ln a

þ 2a0a1A2k
2 ln a� 2a21A2k

2 ln a� 4a0a2A2k
2 ln a� 3a1A1k

3ðln aÞ2

þ 4a2A1k
3ðln aÞ2 � 7a1ck

4ðln aÞ3 þ 8a2ck
4ðln aÞ3 ¼ 0

Q3 : a2c0ðl2 þm2Þ ln a� 2a2kk ln aþ 2a21A2k
2 ln aþ 4a0a2A2k

2 ln a

� 6a1a2A2k
2 ln aþ 2a1A1k

3ðln aÞ2 � 10A1a2k
3ðln aÞ2

þ 12a1ck
4ðln aÞ3 � 38a2ck

4ðln aÞ3 ¼ 0

Q4 : 6a1a2A2k
2 ln a� 4a22A2k

2 ln aþ 6a2A1k
3ðln aÞ2

� 6a1ck
4ðln aÞ3 þ 54a2ck

4ðln aÞ3 ¼ 0

Q5 : 4a22A2k
2 ln a� 24a2ck

4ðln aÞ3 ¼ 0

Solving this system, we obtain the following family of solutions

Case I:

a0 ¼ � 12A4
1 þ 250A1kc2 þ 625c0ðl2 þm2Þc3

100A2
1A2c

;

a1 ¼ 0;

a2 ¼ 6A2
1

25A2c
;

k ¼ �A1

5c
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

pðx; y; z; sÞ ¼ UðnÞ
¼ � 125c2ð2kA1 þ 5c0ðl2 þm2ÞcÞþ 6A4

1 sec h2 n
2

� �ð1þ sinhðnÞÞ
100A2

1A2c
;

ð5:69Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ � A1

5c.
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Case II:

a0 ¼ 12A4
1 þ 250A1kc2�625c0ðl2 þm2Þc3

100A2
1A2c

;

a1 ¼ � 12A2
1

25A2c
;

a2 ¼ 6A2
1

25A2c
;

k ¼ A1
5c :

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

pðx; y; z; sÞ ¼ UðnÞ ¼ 125c2ð2kA1 � 5c0ðl2 þm2ÞcÞ � 6A4
1sech

2 n
2

� �ð1� sinhðnÞÞ
100A2

1A2c
;

ð5:70Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ A1

5c.

5.7.2 Modified Kudryashov Method for Time Fractional
KdV-KZK Equation

Following the same preceding argument, Eq. (5.67) is to be acquired. Then sub-
stituting the derivatives of function UðnÞ with respect to n into Eq. (5.67) and the
ansatz given by Eq. (5.68) into the resulting Eq. (5.67), we obtain a system of
algebraic equations in the following form

Q1 : � 1
2 a1c0ðl2þm2Þ ln aþ a1kk ln a� 2a0a1A2k

2 ln aþ a1A1k
3ðln aÞ2 þ a1ck

4ðln aÞ3 ¼ 0;

Q2 : 12 a1c0ðl2þm2Þ ln a� a2c0ðl2 þm2Þ ln a� a1kk ln aþ 2a2kk ln aþ 2a0a1A2k
2 ln a� 2a21A2k

2 ln a

�4a0a2A2k
2 ln a� 3a1A1k

3ðln aÞ2þ 4a2A1k
3ðln aÞ2 � 7a1ck

4ðln aÞ3þ 8a2ck
4ðln aÞ3 ¼ 0;

Q3 : a2c0ðl2 þm2Þ ln a� 2a2kk ln aþ 2a21A2k
2 ln aþ 4a0a2A2k

2 ln a� 6a1a2A2k
2 ln aþ 2a1A1k

3ðln aÞ2

�10A1a2k
3ðln aÞ2þ 12a1ck

4ðln aÞ3 � 38a2ck
4ðln aÞ3 ¼ 0;

Q4 : 6a1a2A2k
2 ln a� 4a22A2k

2 ln aþ 6a2A1k
3ðln aÞ2 � 6a1ck

4ðln aÞ3 þ 54a2ck
4ðln aÞ3 ¼ 0;

Q5 : 4a22A2k
2 ln a� 24a2ck

4ðln aÞ3 ¼ 0:

Solving this system we obtain the following family of solutions

178 5 New Exact Solutions of Fractional …



Case I:

a0 ¼ � 12A4
1 þ 250A1kc2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2

100A2
1A2c

;

a1 ¼ 0;

a2 ¼ 6A2
1

25A2c
;

k ¼ � A1

5c ln a
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)

p1ðx; y; z; sÞ ¼ � 1
100A2

1A2c
12 1� 1� tanFs n

2

� �� �2
2

 !"
A4
1 þ 250A1kc

2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2
i
;

ð5:71Þ

p2ðx; y; z; sÞ ¼ � 1
100A2

1A2c
12 1� 1� cotFs n

2

� �� �2
2

 !"
A4
1 þ 250A1kc

2 ln aþ 625c0ðl2 þm2Þc3ðln aÞ2
i
;

ð5:72Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ � A1

5c ln a.

Case II:

a0 ¼ 12A4
1 þ 250A1kc2 ln a� 625c0ðl2 þm2Þc3ðln aÞ2

100A2
1A2c

;

a1 ¼ � 12A2
1

25A2c
;

a2 ¼ 6A2
1

25A2c
;

k ¼ A1

5c ln a
:

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)
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p1ðx; y; z; sÞ ¼ 12ð�1� 2anþ a2nÞA4
1 þ 250ð1þ anÞ2A1kc2 ln a� 625ð1þ anÞ2c0ðl2 þm2Þc3ðln aÞ2

100ð1þ anÞ2A2
1A2c

;

ð5:73Þ

p2ðx; y; z; sÞ ¼ 12ð�1þ 2an þ a2nÞA4
1 þ 250ð�1þ anÞ2A1kc2 ln a� 625ð�1þ anÞ2c0ðl2 þm2Þc3ðln aÞ2

100ð�1þ anÞ2A2
1A2c

;

ð5:74Þ

where n ¼ lxþmyþ kzþ kta
Cðaþ 1Þ and k ¼ A1

5c ln a.

5.7.3 Numerical Results and Discussions

In this section, the numerical simulations of time fractional KdV-KZK equation
have been presented graphically. Here, the exact solutions (5.69) and (5.70)
obtained by classical Kudryashov method and also the exact solutions (5.71)–(5.74)
obtained by modified Kudryashov method have been used to draw the 3-D solution
graphs.

Numerical Simulations for the Solutions Obtained by Classical Kudryashov
Method

In the present analysis, Eqs. (5.69) and (5.70) have been used for drawing the
solution graphs for time fractional KdV-KZK equation in case of both fractional
and classical orders (Figs. 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10).

Fig. 5.5 Solitary wave solutions for Eq. (5.69) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a when a ¼ 0:5 and b when a ¼ 1
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Fig. 5.6 Solitary wave solutions for Eq. (5.70) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a when a ¼ 0:5 and b when a ¼ 1

Fig. 5.7 Solitary wave solutions for Eq. (5.71) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 0:25 and b when a ¼ 1

Fig. 5.8 Solitary wave solutions for Eq. (5.72) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 1 and b when a ¼ 0:5
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Numerical Simulations for the Solutions Obtained by the Modified
Kudryashov Method

In the present analysis, Eqs. (5.71)–(5.74) have been used for drawing the solution
graphs for time fractional KdV-KZK equation in case of both fractional and clas-
sical orders.

In the present numerical simulations, the solitary wave solutions for Eqs. (5.69)–
(5.74) have been demonstrated in 3-D graphs. From the above figures, it may be
observed that the solution surfaces obtained by classical Kudryashov for Eq. (5.69)
are anti-kink solitary waves. On the other hand, the solution surfaces obtained by
classical Kudryashov for Eq. (5.70) show the kink solitary waves. Similarly, the
solution surfaces obtained by modified Kudryashov for Eqs. (5.71) and (5.73) show
the anti-kink and kink solitary waves, respectively. However, in case of the solution
surfaces obtained by modified Kudryashov for Eqs. (5.72) and (5.74), single soliton
solitary waves of different shapes have been observed.

Fig. 5.9 Solitary wave solutions for Eq. (5.73) at A1 ¼ 10, A2 ¼ 20, c ¼ 0:5, k ¼ l ¼ m ¼ 0:5,
c0 ¼ 1, a ¼ 10 a when a ¼ 0:25 and b when a ¼ 1

Fig. 5.10 Solitary wave solutions for Eq. (5.74) at A1 ¼ A2 ¼ c ¼ k ¼ l ¼ m ¼ c0 ¼ 1, a ¼ 10,
a when a ¼ 1 and b when a ¼ 0:75
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5.7.4 Physical Significance for the Solution of KdV-KZK
Equation

The KdV-KZK equation covers all the four basic physical mechanisms of nonlinear
acoustics, viz. diffraction, nonlinearity, dissipation, and dispersion. The solution of
the KdV-KZK equation describes a shock wave as a transition between two con-
stant velocity values. This transition can undergo oscillations due to the dispersion.

The obtained results are related to the physical phenomenon in Cantorian
time-space. These results enrich the properties of the genuinely nonlinear phe-
nomenon. To the best of the author information, the obtained solutions of this work
have not been reported earlier in the open literature. The reported results have a
potential application in observing the structure of KdV-KZK equation from
micro-physical to macro-physical behavior of substance in the real world.

5.8 Implementation of the Jacobi Elliptic Function
Method

In this section, the new exact analytical solutions of fractional (2 + 1)-dimensional
Davey–Stewartson equation and new integrable Davey–Stewartson-type equation
have been obtained using the mixed dn-sn method.

5.8.1 Exact Solutions of Fractional (2 + 1)-Dimensional
Davey–Stewartson Equation

Let us consider the fractional (2 + 1)-dimensional Davey–Stewartson equation [48]

iDa
t qþ aðD2b

x qþD2c
y qÞþ b qj j2nq� kqr ¼ 0; ð5:75Þ

D2b
x rþD2c

y rþ dD2b
x qj j2n
� �

¼ 0; ð5:76Þ

where 0\a; b; c� 1, q � qðx; y; tÞ, and r � rðx; y; tÞ. Also, a, b, k, and d are all
constant coefficients. The exponent n is the power law parameter. It is necessary to
have n[ 0. In Eqs. (5.75) and (5.76), qðx; y; tÞ is a complex-valued function which
stands for wave amplitude, while rðx; y; tÞ is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49–51].

We first transform the fractional (2 + 1)-dimensional Davey–Stewartson
Eqs. (5.75) and (5.76) to a system of nonlinear ordinary differential equations in
order to derive its exact solutions.
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By applying the following fractional complex transform

qðx; y; tÞ ¼ eihuðnÞ; rðx; y; tÞ ¼ vðnÞ;

h ¼ h1xb

Cð1þ bÞ þ
h2yc

Cð1þ cÞ þ
h3ta

Cð1þ aÞ and n ¼ n1xb

Cð1þ bÞ þ
n2yc

Cð1þ cÞ þ
n3ta

Cð1þ aÞ ;

Equations (5.75) and (5.76) can be reduced to the following couple nonlinear
ODEs:

�ðh3 þ ah21 þ ah22Þuþðan21 þ an22Þunn þ bu2nþ 1 � kuv ¼ 0; ð5:77Þ

n21vnn þ n22vnn þ dn21 u2n
� �

nn¼ 0; ð5:78Þ

where n3 has been set to �2an1h1 � 2an2h2. Equation (5.78) is then integrated term
by term twice with respect to n where integration constants are considered zero.
Thus, we obtain

v ¼ � dn21u
2n

n21 þ n22
: ð5:79Þ

Substituting Eq. (5.79) into Eq. (5.77) yields

�ðh3 þ ah21 þ ah22Þuþðan21 þ an22Þunn þ bu2nþ 1 þ k
dn21u

2nþ 1

n21 þ n22
¼ 0: ð5:80Þ

Using the transformation

uðnÞ ¼ U
1
nðnÞ;

Equation (5.80) further reduces to

� ðh3 þ ah21 þ ah22Þn2U2 þðan21 þ an22Þð1� nÞU2
n

þðan21 þ an22ÞnUnn þ bn2U4 þ k
dn21n

2U4

n21 þ n22
¼ 0

ð5:81Þ

By balancing the terms UUnn and U4 in Eq. (5.81), the value of N can be
determined, which is N ¼ 1 in this problem.

Therefore, the solution of Eq. (5.81) can be written in the following ansatz as

UðnÞ ¼ c0 þ c1/ðnÞþ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � /2ðnÞ

q
; ð5:82Þ
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where c0, c1, and d0 are constants to be determined later and /ðnÞ satisfies
Eq. (5.29).

Now substituting Eq. (5.82) along with Eq. (5.29) into Eq. (5.81) and then
equating each coefficient of /iðnÞ, i = 0,1,2,… to zero, we can get a set of algebraic
equations for c0, c1, d0, h3, and m as follows:

� ðan21 þ an22Þð�k4ð�1þmÞðn21 þ n22Þc21 þ k4ð�1þmÞnðn21 þ n22Þðc21 þ d20Þ
þ n2ðh21 þ h22Þðc20 þ k2d20ÞÞ
þ n2ð�h3ðn21 þ n22Þðc20 þ k2d20Þþ ðkdn21 þ bðn21 þ n22ÞÞ
ðc40 þ 6k2c20d

2
0 þ k4d40ÞÞ ¼ 0

� nc0c1ðaðn21 þ n22Þð2nðh21 þ h22Þþ k2ð�2þmÞðn21 þ n22ÞÞ
� 2nð�h3ðn21 þ n22Þþ 2ðkdn21 þ bðn21 þ n22ÞÞðc20 þ 3k2d20ÞÞÞ ¼ 0

� ðan21 þ an22Þð2k2nðn21 þ n22Þd20 þ n2ðh21 þ h22Þðc21 þ d20Þ
þ k2ðn21 þ n22Þðð�2þmÞÞc21 � ð�1þmÞd20ÞÞ
� n2ðh3ðn21 þ n22Þðc21 � d20Þ � 2ðkdn21 þ bðn21 þ n22ÞÞð3c20ðc21 � d20Þ
� k2d20ð�3c21 þ d20ÞÞÞ ¼ 0

� 2nc0c1ðaðn21 þ n22Þ2 � 2nðkdn21 þ bðn21 þ n22ÞÞðc21 � 3d20ÞÞ ¼ 0

� að1þ nÞðn21 þ n22Þ2ðc21 � d20Þþ n2ðkdn21 þ bðn21 þ n22ÞÞðc41 � 6c21d
2
0 þ d40Þ ¼ 0

nc0d0ð�aðn21 þ n22Þð2nðh21 þ h22Þþ k2ð�1þmÞðn21 þ n22ÞÞ
þ 2nð�h3ðn21 þ n22Þþ 2ðkdn21 þ bðn21 þ n22ÞÞðc20 þ k2d20ÞÞÞ ¼ 0

c1d0ðaðn21 þ n22Þð�2n2ðh21 þ h22Þ � 2k2ð�1þmÞðn21 þ n22Þ
þ k2nðn21 þ n22ÞÞþ 2n2ð�h3ðn21 þ n22Þ
þ 2ðkdn21 þ bðn21 þ n22ÞÞð3c20 þ k2d20ÞÞÞ ¼ 0

� 2nc0d0ðaðn21 þ n22Þ2 � 2nðkdn21 þ bðn21 þ n22ÞÞð3c21 � d20ÞÞ ¼ 0

� 2c1d0ðað1þ nÞðn21 þ n22Þ2 � 2n2ðkdn21 þ bðn21 þ n22ÞÞðc21 � d20ÞÞ ¼ 0

ð5:83Þ

Solving the above algebraic Eqs. (5.83), we have the set of coefficients for the
nontrivial solutions of Eq. (5.81) as given below:

Case 1:

c0 ¼ 0; c1 ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q ; d0 ¼ 0;m ¼ 1; h3

¼ � aðn2h21 þ n2h22 � k2n21 � k2n22Þ
n2

; ð5:84Þ
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where n3 ¼ �2an1h1 � 2an2h2 and k is the free parameter.
Substituting Eqs. (5.84) into Eq. (5.28) and using special solutions (5.30) of

Eq. (5.29), we obtain

UðnÞ ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
which yields the following solitary wave solutions of Eqs. (5.75) and (5.76):

uðx; y; tÞ ¼ UðnÞ1n ¼ � i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
0B@

1CA
1
n

; ð5:85aÞ

vðx; y; tÞ ¼ � að1þ nÞdn21ðn21 þ n22Þk sec h2ðknÞ
ðbn2n21 þ n2dkn21 þ bn2n22Þ

: ð5:85bÞ

Case 2:

c0 ¼ 0; c1 ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q ; d0 ¼ 0;m ¼ 1; h3

¼ � aðn2h21 þ n2h22 � k2n21 � k2n22Þ
n2

; ð5:86Þ

where n3 ¼ �2an1h1 � 2an2h2 and k is the free parameter.
Substituting Eqs. (5.86) into Eq. (5.28) and using special solutions (5.30) of

Eq. (5.29), we obtain

UðnÞ ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
which yields the following solitary wave solutions of Eqs. (5.75) and (5.76):

uðx; y; tÞ ¼ UðnÞ1n ¼ i
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ðn21 þ n22Þk sec hðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bn2n21 � n2dkn21 � bn2n22

q
0B@

1CA
1
n

; ð5:87aÞ

vðx; y; tÞ ¼ � að1þ nÞdn21ðn21 þ n22Þk sec h2ðknÞ
ðbn2n21 þ n2dkn21 þ bn2n22Þ

: ð5:87bÞ
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5.8.2 Exact Solutions of the Fractional (2 + 1)-Dimensional
New Integrable Davey–Stewartson-Type Equation

Let us consider the fractional (2 + 1)-dimensional new integrable Davey–Stewartson-
type equation

iDa
sWþ L1WþWUþWv ¼ 0;

L2v ¼ L3 Wj j2; ð5:88Þ

Db
nU ¼ Dc

gvþ lDc
g Wj j2
� �

; l ¼ �1; 0\a; b; c� 1

where the linear differential operators are given by

L1 � b2 � a2

4

� �
D2b

n � aDb
nD

c
g � D2c

g ;

L2 � b2 þ a2

4

� �
D2b

n þ aDb
nD

c
g þD2c

g ;

L3 � � 1
4

b2 þ a2 þ 8b2ða� 1Þ
ða� 2Þ2 � b2

 !
D2b

n � aþ 2b2

ða� 2Þ2 � b2

 !
Db

nD
c
g � D2c

g ;

where W � Wðn; g; sÞ is complex while U � Uðn; g; sÞ, v � vðn; g; sÞ are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko–Dubrovsky (KD) equation [53].

In the present analysis, the Jacobi elliptic function method has been used to
investigate for new types of doubly periodic exact solutions in terms of Jacobi
elliptic functions.

According to the algorithm discussed in Sect. 5.5, let us consider the following
fractional complex transform

Wðn; g; sÞ ¼ WðXÞeih; Uðn; g; sÞ ¼ UðXÞ; vðn; g; sÞ ¼ vðXÞ;

X ¼ k
nb

Cð1þ bÞ þ l
gc

Cð1þ cÞ þ k
sa

Cð1þ aÞ

 !
; h

¼ h1n
b

Cð1þ bÞ þ
h2gc

Cð1þ cÞ þ
h3sa

Cð1þ aÞ ; ð5:89Þ

where k, l, k, h1, h2, and h3 are constants.
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By applying the fractional complex transform (5.89), Eq. (5.88) can be reduced
to the following couple nonlinear ODEs:

k2M1
d2WðXÞ
dX2 þM0WðXÞþWðXÞUðXÞþWðXÞvðXÞ ¼ 0; ð5:90Þ

k2M2
d2vðXÞ
dX2 ¼ k2M3

d2W2ðXÞ
dX2 ; ð5:91Þ

k
dUðXÞ
dX

¼ kl
dvðXÞ
dX

þ lkl
dW2ðXÞ

dX
; ð5:92Þ

where k has been set to aðlh1 þ h2Þþ 2lh2 � h1ðb2�a2Þ
2 .

Here,

M0 ¼ �h3 � ðb2 � a2Þ
4

h21 þ ah1h2 þ h22;

M1 ¼ �al� l2 þ ðb2 � a2Þ
4

;

M2 ¼ alþ l2 þ ðb2 þ a2Þ
4

;

M3 ¼ �l2 � aþ 2b2

ða� 2Þ2 � b2

 !
l� 1

4
b2 þ a2 þ 8b2ða� 1Þ

ða� 2Þ2 � b2

 !
:

Now, Eqs. (5.92) and (5.91) are integrated once and twice term by term with
respect to X where integration constants are considered zero. Thus, we obtain

vðXÞ ¼ M3

M2
W2ðXÞ;

UðXÞ ¼ l
M3

M2
þ ll

� �
W2ðXÞ: ð5:93Þ

Eliminating vðXÞ, UðXÞ from Eqs. (5.90) and (5.93), we arrive at

k2M1
d2WðXÞ
dX2 þM0WðXÞþ lM3

M2
þ llþ M3

M2

� �
W3ðXÞ ¼ 0 ð5:94Þ

By balancing the nonlinear term W3ðXÞ and highest order derivative term d2
WðXÞ
dX2

in Eq. (5.94), the value of N can be determined, which is N ¼ 1 in this problem.
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Therefore, the solution of Eq. (5.94) can be written in the following ansatz as

WðXÞ ¼ c0 þ c1/ðXÞþ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � /2ðXÞ

q
; ð5:95Þ

where c0, c1, and d0 are constants to be determined later, and /ðXÞ satisfies the
elliptic equation:

d/ðXÞ
dX

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � /2ðXÞÞð/2ðXÞ � p2ð1� mÞÞ

q
; ð5:96Þ

whose solutions are given by

/ðXÞ ¼ pdnðpXjmÞ;

/ðXÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
ndðpXjmÞ; ð5:97Þ

Now substituting Eq. (5.95) along with Eq. (5.96) into Eq. (5.94) and then
equating each coefficient of /iðXÞ, i = 0,1,2,… to zero, we can get a set of algebraic
equations for c0, c1, d0, p, and m as follows:

c0ðM0M2 þðM3 þ lM3 þ lM2lÞðc20 þ 3p2d20ÞÞ ¼ 0;
c1ðM0M2 � k2ð�2þmÞM1M2p2 þ 3ðM3 þ lM3 þ lM2lÞðc20 þ p2d20ÞÞ ¼ 0;

3ðM3 þ lM3 þ lM2lÞc0ðc21 � d20ÞÞ ¼ 0;
c1ð�2k2M1M2 þðM3 þ lM3 þ lM2lÞðc21 � 3d20ÞÞ ¼ 0;

d0ðM0M2 þ k2M1M2p2 � k2mM1M2p2 þ 3M3c20 þ 3lM3c20 þ 3lM2lc20
þM3p2d20 þ lM3p2d20 þ lM2lp2d20Þ ¼ 0;

6ðM3 þ lM3 þ lM2lÞc0c1d0 ¼ 0;
d0ð�2k2M1M2 þðM3 þ lM3 þ lM2lÞð3c21 � d20ÞÞ ¼ 0:

ð5:98Þ

Solving the above algebraic Eq. (5.98), we have the set of coefficients for the
nontrivial traveling wave solutions of Eq. (5.94) as given below:

Case 1:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ;

d0 ¼ 0;m ¼ M0 þ 2M1k2p2

M1k2p2
:

W11ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p dnðpXjmÞ;

U11ðXÞ ¼ l
M3

M2
þ ll

� �
W2

11ðXÞ;
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v11ðXÞ ¼
M3

M2
W2

11ðXÞ;

W12ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ndðpXjmÞ;

U12ðXÞ ¼ l
M3

M2
þ ll

� �
W2

12ðXÞ;

v12ðXÞ ¼
M3

M2
W2

12ðXÞ:

Case 2:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ;

d0 ¼ 0;m ¼ M0 þ 2M1k2p2

M1k2p2
:

W21ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p dnðpXjmÞ;

U21ðXÞ ¼ l
M3

M2
þ ll

� �
W2

21ðXÞ;

v21ðXÞ ¼
M3

M2
W2

21ðXÞ;

W22ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
llM2 þðlþ 1ÞM3

p ndðpXjmÞ;

U22ðXÞ ¼ l
M3

M2
þ ll

� �
W2

22ðXÞ

v22ðXÞ ¼
M3

M2
W2

22ðXÞ:

Case 3:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:
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W31ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞ

� p
ffiffiffiffi
m

p
snðpXjmÞ k

ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;

U31ðXÞ ¼ l
M3

M2
þ ll

� �
W2

31ðXÞ;

v31ðXÞ ¼
M3

M2
W2

31ðXÞ;

W32ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞ

� p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� mÞnd2ðpXjmÞ

p k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U32ðXÞ ¼ l
M3

M2
þ ll

� �
W2

32ðXÞ;

v32ðXÞ ¼
M3

M2
W2

32ðXÞ:

Case 4:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W41ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þðlþ 2ÞM3

p dnðpXjmÞ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U41ðXÞ ¼ l
M3

M2
þ ll

� �
W2

41ðXÞ;

v41ðXÞ ¼
M3

M2
W2

41ðXÞ;

W42ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þðlþ 2ÞM3

p ndðpXjmÞ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;
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U42ðXÞ ¼ l
M3

M2
þ ll

� �
W2

42ðXÞ;

v42ðXÞ ¼
M3

M2
W2

42ðXÞ:

Case 5:

c0 ¼ 0; c1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W51ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3

p ;

U51ðXÞ ¼ l
M3

M2
þ ll

� �
W2

51ðXÞ;

v51ðXÞ ¼
M3

M2
W2

51ðXÞ;

W52ðXÞ ¼ � kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ndðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U52ðXÞ ¼ l
M3

M2
þ ll

� �
W2

52ðXÞ;

v52ðXÞ ¼
M3

M2
W2

52ðXÞ:

Case 6:

c0 ¼ 0; c1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ;

d0 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;m ¼ 2M0 þM1k2p2

2M1k2p2
:

W61ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p dnðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;
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U61ðXÞ ¼ l
M3

M2
þ ll

� �
W2

61ðXÞ;

v61ðXÞ ¼
M3

M2
W2

61ðXÞ;

W62ðXÞ ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2llM2 þ 2ðlþ 1ÞM3

p ndðpXjmÞþ k
ffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2llM2 � 2ðlþ 1ÞM3
p ;

U62ðXÞ ¼ l
M3

M2
þ ll

� �
W2

62ðXÞ;

v62ðXÞ ¼
M3

M2
W2

62ðXÞ:

5.9 Conclusion

In this chapter, several traveling wave exact solutions of nonlinear fractional
acoustic wave equations, namely the time fractional Burgers–Hopf and KZK
equations have been successfully obtained by the first integral method with the help
of fractional complex transform. The fractional complex transform can easily
convert a fractional differential equation into its equivalent ordinary differential
equation form. So, fractional complex transform has been efficiently used for
solving fractional differential equations. Here, the fractional complex transform has
been considered which is derived from the local fractional calculus defined on
fractals.

The first integral method has been successfully employed to solve nonlinear
fractional acoustic wave equations. The obtained solutions may be worthwhile for
an explanation of some physical phenomena accurately. The present analysis
indicates that the first integral method is effective and efficient for solving nonlinear
fractional acoustic wave equations. The performance of this method is reliable, and
it provides the exact traveling wave solutions. In this present analysis, the focused
method clearly avoids linearization, discretization, and unrealistic assumptions, and
therefore, it provides exact solutions efficiently and accurately.

Also, in this chapter, the new exact solutions of time fractional KdV-KZK
equation have been obtained by classical Kudryashov and modified Kudryashov
method, respectively, with the help of fractional complex transform. The fractional
complex transform is employed in order to convert a fractional differential equation
into its equivalent ordinary differential equation form. So, the fractional complex
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transform facilitates solving fractional differential equations. Two methods are
successfully applied to solve nonlinear time fractional KdV-KZK equation. The
new obtained exact solutions may be useful for the explanation of some physical
phenomena accurately. The present analysis indicates that the focused methods are
effective and efficient for analytically solving the time fractional KdV-KZK equa-
tion. It also demonstrates that performances of these methods are substantially
influential and absolutely reliable for finding new exact solutions in terms of
symmetric hyperbolic Fibonacci function solutions. In this present analysis, the
discussed methods clearly avoid linearization, discretization, and unrealistic
assumptions, and therefore, these methods provide exact solutions efficiently and
accurately. To the best information of the author, new exact analytical solutions of
the time fractional KdV-KZK equation are obtained for the first time in this respect.

The Jacobi elliptic function method has been also used to determine the exact
solutions of time fractional (2 + 1)-dimensional Davey–Stewartson equation and
new integrable Davey–Stewartson-type equation. In both problems, with the help of
fractional complex transform, the Davey–Stewartson system was first transformed
into a system of nonlinear ordinary differential equations, which were then solved to
obtain the exact solutions. Here also, the fractional complex transform has been
considered which is derived from the local fractional calculus defined on fractals.
The proposed method is more general than the dn-function method [64] and may be
applied to other nonlinear evolution equations. Several classes of traveling wave
solutions of the fractional Davey–Stewartson equation have been derived from the
solitary wave solutions in Jacobi elliptic functions. Using this proposed method,
some new solitary wave solutions and double-periodic solutions have been
obtained. This method can also be used for many other nonlinear evolution equa-
tions or coupled ones. To the best information of the author, these solitary wave
solutions of the fractional Davey–Stewartson equation are new exact solutions
which are not reported earlier. Being concise and powerful, this current method can
also be extended to solve many other fractional partial differential equations arising
in mathematical physics.
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Chapter 6
New Exact Traveling Wave Solutions
of the Coupled Schrödinger–Boussinesq
Equations and Tzitzéica-Type Evolution
Equations

6.1 Introduction

In the recent years, the investigation of finding new exact solutions of nonlinear
partial differential equations (NLPDEs) plays an important role in the study of
nonlinear physical phenomena such as fluid mechanics, plasma physics, statistical
physics, quantum physics, solid state physics, optics, and so on [1, 2]. NLPDEs are
widely used to describe complex physical phenomena arising in the various fields
of science and engineering. Several methods for finding the exact solutions to
nonlinear equations in mathematical physics have been presented, such as the
inverse scattering method [3], Bäcklund transformation [4, 5], the truncated
Painlevé expansion method [6, 7], Hirota’s bilinear method [8], tanh- function
method [9, 10], exp-function method [11], ðG0=GÞ-expansion method [12, 13],
Jacobi elliptic function method [14–17], the first integral method [18–21], Riccati
equation rational expansion method [22], Kudryashov method [23, 24], modified
decomposition method [25, 26], and other methods [27–30].

It is commonly known that many problems in applied science and engineering
are described by nonlinear partial differential equations (NLPDEs). One of the most
significant advances of theoretical physics and nonlinear science has been the
development of methods to determine the exact solutions for NLPDEs. When a
NLPDE is analyzed, the main objective is the construction of the exact solutions for
the equation.

Many powerful methods have been presented, such as the inverse scattering
transform method [3] and the Hirota bilinear transform method [8] are known as
impressive methods to find solutions of exactly solvable NLPDEs. The truncated
Painlevé expansion method [6], Bäcklund transformation method [4], the homo-
geneous balance method [31], the tanh-function method [32–36], the modified
extended tanh-function method [10, 37], the exp-function method [38], the ðG0=GÞ-
expansion method [12, 39], the auxiliary equation method [40], the extended
auxiliary equation method [41, 42], the Jacobi elliptic function method [14, 43], the
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simplest equation method [44], the extended simplest equation method [45], and the
Weierstrass elliptic function method [46] are useful in many applications to find the
exact solutions of NLPDEs.

There are many physical phenomena around us that are best described by
nonlinear evolution equations. The Tzitzeica-type nonlinear evolution equations,
including Tzitzeica, Dodd–Bullough–Mikhailov (DBM), and Tzitzéica–Dodd–
Bullough (TDB) equations are a class of such equations which have gained sig-
nificant attention during the last few decades. The objective of this work is to find
the Jacobi elliptic function solutions, including the hyperbolic and trigonometric
solutions for the DBM and TDB equations using a new extended auxiliary equation
method. These two equations appear in problems varying from fluid flow to
quantum field theory. The great deals of efforts have been devoted to solve these
equations using a variety of methods that some of them are reviewed here. Abazari
[47] used the ðG0=GÞ-expansion method to find more general exact solutions of the
Tzitzéica-type nonlinear evolution equations. Manafian and Lakestani [48] utilized
the improved tanðUðnÞ=2Þ-expansion method and gained new and more general
exact traveling wave solutions of the Tzitzéica-type nonlinear equations. In [49],
Hosseini et al. employed first the Painlevé transformation and Lie symmetry
method to convert the DBM and TDB equations into nonlinear ordinary differential
equations and then, a modified version of improved tanðUðnÞ=2Þ-expansion method
has been adopted to generate new exact solutions of the reduced equations. Wazwaz
[36] exerted the tanh method to generate solitons and periodic solutions of the
Tzitzéica-type nonlinear evolution equations, viz. DBM and TDB equations.
Hosseini et al. [50] used the modified Kudryashov method and acquired new exact
traveling wave solutions of the Tzitzéica-type equations.

6.2 Outline of the Present Study

In this present chapter, an improved algebraic method based on the generalized
Jacobi elliptic function method with symbolic computation is used to construct
more new exact solutions for coupled Schrödinger–Boussinesq equations. As a
result, several families of new generalized Jacobi double periodic elliptic function
wave solutions are obtained by using this method, some of them are degenerated to
solitary wave solutions in the limiting cases. The present generalized method is
efficient, powerful, straightforward, and concise, and it can be used in order to
establish more entirely new exact solutions for other kinds of nonlinear partial
differential equations arising in mathematical physics.

Also in this chapter, new types of Jacobi elliptic function solutions of Dodd–
Bullough–Mikhailov (DBM) and Tzitzeica–Dodd–Bullough (TDB) equations have
been obtained using a new extended auxiliary equation method. A new family of
explicit traveling wave solutions is derived. The solitary wave solutions and peri-
odic solutions for these equations are formally derived from the Jacobi elliptic
function solutions. The proposed method has been efficiently applied to solve the
DBM and TDB equations.
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6.2.1 Coupled Schrödinger–Boussinesq Equations

The objective in this work is to use a generalized Jacobi elliptic function expansion
method to construct the new exact solutions of the coupled Schrödinger–
Boussinesq equations (CSBEs)

iut þ uxx þ au� uv ¼ 0; x 2 R; t[ 0; ð6:1Þ

3vtt � vxxxx þ 3 v2
� �

xx þ bvxx ¼ uj j2
� �

xx
; x 2 R; t[ 0; ð6:2Þ

where the complex-valued function uðx; tÞ represents the short-wave amplitude,
vðx; tÞ represents the long-wave amplitude, and a and b are real parameters.
Equations (6.1) and (6.2) were considered as a model of the interactions between
short and intermediate long waves, and were originated in describing the dynamics
of Langmuir soliton formation, the interaction in plasma [51, 52], the diatomic
lattice system [53], etc.

6.2.2 Tzitzéica-Type Nonlinear Evolution Equations

A new extended auxiliary equation method is used to produce new exact traveling
wave solutions of Dodd–Bullough–Mikhailov and Tzitzeica–Dodd–Bullough
equations

The Dodd–Bullough–Mikhailov Equation

Let us consider the Dodd–Bullough–Mikhailov equation as follows

uxt þ eu þ e�2u ¼ 0: ð6:3Þ

In a traveling wave variable n ¼ kxþxt, Eq. (6.3) reads in the form

kxfnn þ e f þ e�2f ¼ 0; ð6:4Þ

where uðx; tÞ ¼ f ðnÞ.
Using the Painlevé transformation v ¼ e f or f ¼ ln v, the Dodd–Bullough–

Mikhailov Eq. (6.4) can be written as follows

kxvvnn � kxðvnÞ2 þ v3 þ 1 ¼ 0: ð6:5Þ
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The Tzitzeica–Dodd–Bullough Equation

Now, we consider the Tzitzeica–Dodd–Bullough (TDB) equation as follows

uxt ¼ e�u þ e�2u: ð6:6Þ

The traveling wave transformation n ¼ kxþxt reduces Eq. (6.6) to the following
ODE

kxfnn � e�f � e�2f ¼ 0; ð6:7Þ

where uðx; tÞ ¼ f ðnÞ.
Using the Painlevé transformation v ¼ e�f or f ¼ � ln v, the Tzitzeica–Dodd–

Bullough (6.7) can be written as follows

kxvvnn � kxðvnÞ2 þ v3 þ v4 ¼ 0: ð6:8Þ

6.3 Algorithms for the Improved Generalized Jacobi
Elliptic Function Method and the Extended Auxiliary
Equation Method

In this section, algorithms for improved generalized Jacobi elliptic function method
and extended auxiliary equation method have been presented.

6.3.1 Algorithm for the Improved Generalized Jacobi
Elliptic Function Method

In this present analysis, the determination of exact solutions for coupled
Schrödinger–Boussinesq equations have been described using the proposed
method. The main steps of this present method are described as follows:

Step 1: Suppose that the coupled nonlinear NLPDEs in the class of coupled
Schrödinger–Boussinesq equations, say in two independent variables x, and t are
given by

F u; v; ux; vx; iut; vt; uxx; vxx; uxt; vxt; . . .ð Þ ¼ 0; ð6:9aÞ

G u; v; ux; vx; ut; vt; uxx; vxx; uxt; vxt; . . .ð Þ ¼ 0; ð6:9bÞ
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where u ¼ uðx; tÞ and v ¼ vðx; tÞ are unknown functions, F and G are polynomials
in u, v and its various partial derivatives in which the highest order derivatives and
nonlinear terms are involved.

Step 2: We introduce the following traveling wave transformations:

uðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ; vðx; tÞ ¼ VðnÞ; ð6:10Þ

n ¼ x� 2ktþ g0 ð6:11Þ

where k, and c are real constants to be determined later; and f0, and g0 are arbitrary
constants.

Using the above traveling wave transformations, the NLPDEs (6.9a and 6.9b)
can be transformed to couple nonlinear ordinary differential equations (ODEs)
involving UðnÞ and VðnÞ. Then, the resultant coupled ODEs are obtained

P U;V ; kU; kV ; cU; cV ;Un;Vn; kUn; kVn; cUn; cVn;Unn;Vnn; . . .ð Þ ¼ 0; ð6:12Þ

Q U;V ; kU; kV ; cU; cV ;Un;Vn; kUn; kVn; cUn; cVn;Unn;Vnn; . . .ð Þ ¼ 0; ð6:13Þ

where the suffix denotes the derivative with respect to n.

Step 3: Let us assume that the exact solutions of Eqs. (6.12) and (6.13) are to be
defined in the polynomial uðnÞ of the following forms:

UðnÞ ¼ a10 þ
XM
i¼1

a1i/
iðnÞþ b1i/

�iðnÞþ c1i/
i�1ðnÞ/0ðnÞþ d1i/

�iðnÞ/0ðnÞ� �
;

ð6:14Þ

VðnÞ ¼ a20 þ
XN
j¼1

a2j/
jðnÞþ b2j/

�jðnÞþ c2j/
j�1ðnÞ/0ðnÞþ d2j/

�jðnÞ/0ðnÞ� �
;

ð6:15Þ

where /ðnÞ satisfies the following Jacobi elliptic equation:

ð/nðnÞÞ2 ¼ p/4ðnÞþ q/2ðnÞþ r; ð6:16Þ

where p, q, r, a10, a1i, b1i, c1i, d1i i ¼ 1; 2; . . .;Mð Þ, a20, a2j, b2j, c2j, d2j
j ¼ 1; 2; . . .;Nð Þ are constants to be determined later.

Step 4: We determine the positive integers M, N in Eqs. (6.14) and (6.15) by
balancing the highest order derivatives and the nonlinear terms in Eqs. (6.12) and
(6.13), respectively.
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Step 5: Substituting Eqs. (6.14) and (6.15) along with Eq.(6.16) into Eqs. (6.12)
and (6.13) and collecting all the coefficients of ulðnÞ l ¼ 0; 1; 2; . . .ð Þ and
/mðnÞ/0ðnÞ m ¼ 0; 1; 2; . . .ð Þ, then equating these coefficients to zero, yield a set of
algebraic equations, which can be solved by using the Mathematica or Maple to find
the values of a10, a1i, b1i, c1i, d1i i ¼ 1; 2; . . .;Mð Þ, a20, a2j, b2j, c2j, d2j
(j ¼ 1; 2; . . .;N), k, c.

Step 6: It may be referred to that Eq. (6.16) has families of Jacobi elliptic function
solutions as follows [54].

It may be mentioned that there are other Jacobi elliptic function solutions of
Eq. (6.16) which are excluded here for simplicity.

Step 7: Substituting the values of a10, a1i, b1i, c1i, d1i i ¼ 1; 2; . . .;Mð Þ, a20, a2j, b2j,
c2j, d2j j ¼ 1; 2; . . .;Nð Þ, p, q, r as well as the solutions of Eq. (6.16) provided in
Step 6, into Eqs. (6.14) and (6.15), we can obtain several classes of exact solutions
for CSBEs involving the Jacobi elliptic functions sn, cn, ns, nc, cs, and sc functions.

In Table 6.1, snn ¼ snðn;m2Þ, cnn ¼ cnðn;m2Þ, dnn ¼ dnðn;m2Þ, nsn ¼
nsðn;m2Þ, csn ¼ csðn;m2Þ, dsn ¼ dsðn;m2Þ, scn ¼ scðn;m2Þ, sdn ¼ sdðn;m2Þ are
the Jacobi elliptic functions with modulus m, 0\m\1.

The Jacobi elliptic functions snn, cnn, and dnn are double periodic and have the
following properties:

sn2nþ cn2n ¼ 1;
dn2nþm2sn2n ¼ 1:

In addition to these, these functions satisfy the followings:

ðsnnÞ0 ¼ cnndnn; ðcnnÞ0 ¼ �snndnn; ðdnnÞ0 ¼ �m2snncnn; ðnsnÞ0 ¼ �csndsn;

ðcsnÞ0 ¼ �nsndsn; ðdsnÞ0 ¼ �nsncsn; ðscnÞ0 ¼ ncndcn; ðncnÞ0 ¼ scndcn;

ðdcnÞ0 ¼ ð1� m2Þncnscn; ðsdnÞ0 ¼ ndncdn; ðcdnÞ0 ¼ ðm2 � 1Þsdnndn;
ðndnÞ0 ¼ m2cdnsdn:

Further explanations in details about the Jacobi elliptic functions can be found in
[55].

Table 6.1 Jacobi elliptic
function solutions of
Eq. (6.16)

S.
no.

p q r /ðnÞ

1. m2 � 1þm2ð Þ 1 snn

2. 1 � 1þm2ð Þ m2 nsn ¼ ðsnnÞ�1

3. �m2 2m2 � 1 1� m2 cnn

4. 1� m2 2m2 � 1 �m2 ncn ¼ ðcnnÞ�1

5. 1
4

1�2m2

2
1
4

nsn� csn

6. 1�m2

4
m2 þ 1

2
1�m2

4
ncn� scn
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6.3.2 Algorithm for the New Extended Auxiliary Equation
Method

Let us consider the following nonlinear PDE

U u; ux; ut; uxx; utt; . . .ð Þ ¼ 0; ð6:17Þ

where u ¼ uðx; tÞ is an unknown function, U is a polynomial in u and its partial
derivatives in which the highest order derivatives and the nonlinear terms are
involved. The main steps of the new extended auxiliary equation method [56] can
be summarized as follows:

Step 1: The following traveling wave transformation

uðx; tÞ ¼ UðnÞ; n ¼ kxþxt; ð6:18Þ

where k and x are constants, has been considered to reduce Eq. (6.17) to the
following nonlinear ordinary differential equation (ODE):

H U;U0;U00; . . .ð Þ ¼ 0; ð6:19Þ

where H is a polynomial in UðnÞ and its total derivatives U0ðnÞ, U00ðnÞ, and so on.

Step 2: Let us assume that Eq. (6.19) has the formal solution

UðnÞ ¼
X2N
i¼0

aiF
iðnÞ; ð6:20Þ

where FðnÞ satisfies the first-order ODE:

F0ðnÞð Þ2¼ c0 þ c2F
2ðnÞþ c4F

4ðnÞþ c6F
6ðnÞ; ð6:21Þ

where cjðj ¼ 0; 2; 4; 6Þ and ai i ¼ 0; . . .; 2Nð Þ are arbitrary constants to be
determined.

Step 3: By balancing the highest order nonlinear terms and the highest order
derivatives of UðnÞ in Eq. (6.19), the balance number N of Eq. (6.20) can be
determined.

Step 4: Substituting Eq. (6.20) alongwith (6.21) into Eq. (6.19), collecting all the
coefficients of F jðF0Þl (j ¼ 0; 1; 2; . . .) and (l = 0, 1), and set them to zero, leads to
a system of algebraic equations for cj j ¼ 0; 2; 4; 6ð Þ, ai i ¼ 0; . . .; 2Nð Þ, k, and x.
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Step 5: The system of algebraic equations obtained in Step 4 is solved to find
cj j ¼ 0; 2; 4; 6ð Þ, ai i ¼ 0; . . .; 2Nð Þ, k, and x.

Step 6: It is well familiar that Eq. (6.21) has the following solutions [56, 57]:

FðnÞ ¼ 1
2

� c4
c6

ð1� /iðnÞÞ
� 	1=2

; ð6:22Þ

where the function /iðnÞ i ¼ 1; 2; . . .; 12ð Þ can be expressed through the Jacobi
elliptic function snðn;mÞ, cnðn;mÞ, dnðn;mÞ, and so on, where 0\m\1 is the
modulus of the Jacobi elliptic functions. When m approaches to 1 or 0, the Jacobi
elliptic functions degenerate to hyperbolic functions and trigonometric functions,
respectively. Further explanations in details about the Jacobi elliptic functions can
be found in Ref. [55].

The function /iðnÞ in Eq. (6.22) has 12 forms as follows [41]:

Type I:

If c0 ¼ c34ðm2�1Þ
32c26m

2 , c2 ¼ c24ð5m2�1Þ
16c6m2 , c6 [ 0, then /iðnÞ in Eq. (6.22) takes the form

/1ðnÞ ¼ snðjnÞ; /2ðnÞ ¼
1

msnðjnÞ ; j ¼ c4
2m

1ffiffiffiffiffi
c6

p : ð6:23Þ

Type II:

If c0 ¼ c34ð1�m2Þ
32c26

, c2 ¼ c24ð5�m2Þ
16c6

, c6 [ 0, then /iðnÞ in Eq. (6.22) takes the form

/3ðnÞ ¼ msnðjnÞ; /4ðnÞ ¼
1

snðjnÞ ; j ¼ c4
2

1ffiffiffiffiffi
c6

p : ð6:24Þ

Type III:

If c0 ¼ c34
32m2c26

, c2 ¼ c24ð4m2 þ 1Þ
16c6m2 , c6\0, then /iðnÞ in Eq. (6.22) takes the form

/5ðnÞ ¼ cnðjnÞ; /6ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
snðjnÞ

dnðjnÞ ; j ¼ c4
ffiffiffiffiffiffiffiffi�c6

p
2mc6

: ð6:25Þ

Type IV:

If c0 ¼ c34m
2

32c26ðm2�1Þ, c2 ¼
c24ð5m2�4Þ
16c6ðm2�1Þ, c6\0, then /iðnÞ in Eq. (6.22) takes the form

/7ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
dnðjnÞ

1� m2 ; /8ðnÞ ¼
1

dnðjnÞ ; j ¼ c4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6ðm2 � 1Þp

2c6ðm2 � 1Þ : ð6:26Þ
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Type V:

If c0 ¼ c34
32c26ð1�m2Þ, c2 ¼

c24ð4m2�5Þ
16c6ðm2�1Þ, c6 [ 0, then /iðnÞ in Eq. (6.22) takes the form

/9ðnÞ ¼
1

cnðjnÞ ; /10ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
dnðjnÞ

ð1� m2ÞsnðjnÞ ; j ¼ c4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c6ð1� m2Þp

2c6ð1� m2Þ : ð6:27Þ

Type VI:

If c0 ¼ m2c34
32c26

, c2 ¼ c24ðm2 þ 4Þ
16c6

, c6\0, then /iðnÞ in Eq. (6.22) takes the form

/11ðnÞ ¼ dnðjnÞ; /12ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p

dnðjnÞ ; j ¼ c4
ffiffiffiffiffiffiffiffi�c6

p
2c6

: ð6:28Þ

Step 7: Substituting Eq. (6.22) together with Eqs. (6.23–6.28) into Eq. (6.20),
some new types of Jacobian elliptic function solutions of Eq. (6.17) can be obtained
elegantly.

6.4 New Explicit Exact Solutions of Coupled
Schrödinger–Boussinesq Equations

In this present analysis, an investigation has been made in searching the new
generalized Jacobi elliptic function solutions for Eqs. (6.1) and (6.2) by using the
proposed method discussed in Sect. 6.3.1. According to the technique discussed in
the Algorithm of Sect. 6.3.1, we adopt the ansatz solutions of Eqs. (6.1) and (6.2)
in the following forms

uðx; tÞ ¼ Uðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ; ð6:29Þ

and

vðx; tÞ ¼ Vðx; tÞ ¼ VðnÞ; ð6:30Þ

respectively. Here, n ¼ x� 2ktþ g0, where k and c are real constants to be eval-
uated later; and f0 and g0 are arbitrary constants.

Now, plugging Eqs. (6.29) and (6.30) into Eqs. (6.1) and (6.2) and then, inte-
grating the second Eq. (6.2) of the coupled Schrödinger–Boussinesq equations
twice with respect to n, we have

Unn � ðk2 þ c� aÞU � UV ¼ 0; ð6:31Þ

Vnn � 12k2V � 3V2 � bV þU2 ¼ 0; ð6:32Þ
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Balancing the highest derivative term Unn with the nonlinear term UV in Eq. (6.31)
and the highest derivative term Vnn with the nonlinear term U2 in Eq. (6.32) leads to
M ¼ N ¼ 2. Thus, the exact solutions of Eqs. (6.1) and (6.2) have the following
forms:

UðnÞ ¼ a10 þ
X2
i¼1

a1i/
iðnÞþ b1i/

�iðnÞþ c1i/
i�1ðnÞ/0ðnÞþ d1i/

�iðnÞ/0ðnÞ� �
;

ð6:33Þ

VðnÞ ¼ a20 þ
X2
j¼1

a2j/
jðnÞþ b2j/

�jðnÞþ c2j/
j�1ðnÞ/0ðnÞþ d2j/

�jðnÞ/0ðnÞ� �
:

ð6:34Þ

Now, substituting Eqs. (6.33) and (6.34) alongwith Eq. (6.16) into Eqs. (6.31) and
(6.32), and then collecting all the coefficients of /lðnÞ ðl ¼ 0; 1; 2; . . .Þ and
/mðnÞ/0ðnÞ ðm ¼ 0; 1; 2; . . .Þ, then equating these coefficients to zero, yield a set of
over-determined algebraic equations for a10, a1i, b1i, c1i, d1i (i ¼ 1; 2), a20, a2j, b2j,
c2j, d2j (j ¼ 1; 2), k, c. Using the Mathematica and the Wu’s elimination methods,
the algebraic equations have been solved and thus, the following results have been
obtained.

Result 1:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼ � 4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:

Result 2:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼
4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:
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Result 3:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼
4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:

Result 4:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼ � 4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:

Substituting the results obtained above into Eqs. (6.33) and (6.34) alongwith the
Jacobi elliptic function solutions provided in Table 6.1, we can obtain following
families of exact solutions to Eqs. (6.1) and (6.2).

Set 1:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼ � 4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:

Case I: If p ¼ �m2, q ¼ 2m2 � 1, r ¼ 1� m2 and /ðnÞ ¼ cnn, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

u11ðx; tÞ ¼ UðnÞeiðkxþ ctþ f0Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm2 � 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p snndnn
cnn

eiðkxþ ctþ f0Þ; 1=2\m2\1;

v11ðx; tÞ ¼ VðnÞ ¼ �2m2cn2nþ 2 1� m2� �
nc2n;
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where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p ; and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :

Case II: If p ¼ 1� m2, q ¼ 2m2 � 1, r ¼ �m2 and /ðnÞ ¼ ncn, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

u12ðx; tÞ ¼ UðnÞeiðkxþ ctþ f0Þ ¼ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm2 � 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p scndcn
ncn

ei kxþ ctþ f0ð Þ; 1=2\m2\1;

v12ðx; tÞ ¼ VðnÞ ¼ 2 1� m2� �
nc2n� 2m2cn2n;

where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p ; and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :

Case III: If p ¼ 1
4, q ¼ 1�2m2

2 , r ¼ 1
4 and /ðnÞ ¼ nsn� csn, then we get the fol-

lowing double periodic solutions

u13ðx; tÞ ¼ UðnÞeiðkxþ ctþ f0Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4m2

p csndsn� nsndsn
nsn� csn

ei kxþ ctþ f0ð Þ;m2\1=2;

v13ðx; tÞ ¼ VðnÞ ¼ 1
2
ðnsn� csnÞ2 þ 1

2
ðnsn� csnÞ�2

where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 8m4 þ 2m2ð�4þ bÞ � b

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 6m2

p ; and

c ¼ 3þ 8m4 � 12a� bþ 2m2ð�4þ 12aþ bÞ
�12þ 24m2 :

Case IV: If p ¼ 1�m2

4 , q ¼ 1þm2

2 , r ¼ 1�m2

4 and /ðnÞ ¼ ncn� scn, then we get the
following Jacobi elliptic function solutions
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u14ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ �
ffiffiffi
2

p ðm2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p dcn ei kxþ ctþ f0ð Þ; 0\m\1;

v14ðx; tÞ ¼ VðnÞ ¼ 1� m2

2
cnn

1� snn

� �2

þ 1� m2

2
cnn

1� snn

� ��2

;

where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 3m4 � m2ð�2þ bÞ � b

p
2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ; and

c ¼ �3� 3m4 þ 12aþ bþm2ð�2þ 12aþ bÞ
12ð1þm2Þ :

Case V: If p ¼ m2, q ¼ �ð1þm2Þ, r ¼ 1 and /ðnÞ ¼ snn, then we get the fol-
lowing Jacobi elliptic function solutions

u15ðx; tÞ ¼ UðnÞeiðkxþ ctþ f0Þ ¼ � 4mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 � 1

p cnndnn
snn

ei kxþ ctþ f0ð Þ

v15ðx; tÞ ¼ VðnÞ ¼ 2m2sn2nþ 2ns2n;

where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p ; and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :

Case VI: If p ¼ 1, q ¼ �ð1þm2Þ, r ¼ m2 and /ðnÞ ¼ snn, then we get the fol-
lowing Jacobi elliptic function solutions

u16ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ 4mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 � 1

p csndsn
nsn

ei kxþ ctþ f0ð Þ;

v16ðx; tÞ ¼ VðnÞ ¼ 2ns2nþ 2m2sn2n;

where

n ¼ x� 2ktþ g0; k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :
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Set 2:

a10 ¼ 0; a11 ¼ 0; a12 ¼ 0; b11 ¼ 0; b12 ¼ 0; c11 ¼ 0; c12 ¼ 0; d11 ¼
4
ffiffiffiffiffi
pr

pffiffiffi
q

p ; d12 ¼ 0;

a20 ¼ 0; a21 ¼ 0; a22 ¼ 2p; b21 ¼ 0; b22 ¼ 2r; c21 ¼ 0; c22 ¼ 0; d21 ¼ 0; d22 ¼ 0;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ 8pr � bq

p
2
ffiffiffi
3

p ffiffiffi
q

p and c ¼ �4q2 � 8prþ 12aqþ bq
12q

:

Case I: If p ¼ �m2, q ¼ 2m2 � 1, r ¼ 1� m2 and /ðnÞ ¼ cnn, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

u21ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm2 � 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p snndnn
cnn

ei kxþ ctþ f0ð Þ; 1=2\m2\1;

v21ðx; tÞ ¼ VðnÞ ¼ �2m2cn2nþ 2ð1� m2Þnc2n;

where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p ; and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :

Case II: If p ¼ 1� m2, q ¼ 2m2 � 1, r ¼ �m2 and /ðnÞ ¼ ncn, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

u22ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðm2 � 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p scndcn
ncn

ei kxþ ctþ f0ð Þ; 1=2\m2\1;

v22ðx; tÞ ¼ VðnÞ ¼ 2ð1� m2Þnc2n� 2m2cn2n;

where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24m4 þ b� 2m2ð12þ bÞp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3þ 6m2

p ; and

c ¼ � 4þ 24m4 þ 12aþ b� 2m2ð12þ 12aþ bÞ
�12þ 24m2 :
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Case III: If p ¼ 1
4, q ¼ 1�2m2

2 , r ¼ 1
4 and /ðnÞ ¼ nsn� csn, then we get the fol-

lowing double periodic solutions

u23ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4m2

p csndsn� nsndsn
nsn� csn

ei kxþ ctþ f0ð Þ;m2\1=2;

v23ðx; tÞ ¼ VðnÞ ¼ 1
2
ðnsn� csnÞ2 þ 1

2
ðnsn� csnÞ�2;

where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 8m4 þ 2m2ð�4þ bÞ � b

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 6m2

p ; and

c ¼ 3þ 8m4 � 12a� bþ 2m2ð�4þ 12aþ bÞ
�12þ 24m2 :

Case IV: If p ¼ 1�m2

4 , q ¼ 1þm2

2 , r ¼ 1�m2

4 and /ðnÞ ¼ ncn� scn, then we get the
following Jacobi elliptic function solutions

u24ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ �
ffiffiffi
2

p ðm2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p dcnei kxþ ctþ f0ð Þ; 0\m\1;

v24ðx; tÞ ¼ VðnÞ ¼ 1� m2

2
cnn

1� snn

� �2

þ 1� m2

2
cnn

1� snn

� ��2

;

where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 3m4 � m2ð�2þ bÞ � b

p
2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ; and

c ¼ �3� 3m4 þ 12aþ bþm2ð�2þ 12aþ bÞ
12ð1þm2Þ :

Case V: If p ¼ m2, q ¼ �ð1þm2Þ, r ¼ 1 and /ðnÞ ¼ snn, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

u25ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ 4mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 � 1

p cnndnn
snn

ei kxþ ctþ f0ð Þ;

v25ðx; tÞ ¼ VðnÞ ¼ 2m2sn2nþ 2ns2n;
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where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4m4 þ bþm2ð16þ bÞp

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� m2

p ; and

c ¼ 4þ 4m4 þ 12aþ bþm2ð16þ 12aþ bÞ
12ð1þm2Þ :

Case VI: If p ¼ 1, q ¼ �ð1þm2Þ, r ¼ m2 and /ðnÞ ¼ nsn, then we get the fol-
lowing double periodic solutions

u26ðx; tÞ ¼ UðnÞei kxþ ctþ f0ð Þ ¼ � 4mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 � 1

p csndsn
nsn

ei kxþ ctþ f0ð Þ;

v26ðx; tÞ ¼ VðnÞ ¼ 2ns2nþ 2m2sn2n;

where

n ¼ x� 2ktþ g0; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4m4 þ bþm2ð16þ bÞp

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� m2

p ; and

c ¼ 4þ 4m4 þ 12aþ bþm2ð16þ 12aþ bÞ
12ð1þm2Þ :

Similarly, as the established solutions for Set 1 and Set 2, we can construct
corresponding exact solutions to Eqs. (6.1) and (6.2) for Set 3 and Set 4, which are
omitted here.

6.4.1 Numerical Simulations for the Solutions of Coupled
Schrödinger–Boussinesq Equations

In the present analysis, the first solutions of Case IV of Set 1 have been used for
drawing the solution graphs Figs. 6.1 and 6.2 for coupled Schrödinger–Boussinesq
equations.

Again, the solutions of Case V of Set 2 have been used for drawing the solution
graphs Figs. 6.3 and 6.4 for coupled Schrödinger–Boussinesq equations.

In the present numerical simulations, the double periodic wave solutions for the
first solutions of u14ðx; tÞ and v14ðx; tÞ have been demonstrated in 3D graphs of
Figs. 6.1 and 6.2 with elliptic modulus m ¼ 0:5. Also, the double periodic wave
solutions for u25ðx; tÞ and v25ðx; tÞ have been demonstrated in 3D graphs of
Figs. 6.3 and 6.4 with elliptic modulus m ¼ 0:5.
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Fig. 6.1 a Double periodic wave solutions for the first solution of u14ðx; tÞ when a ¼ 1, b ¼ �1,
f0 ¼ 0, n0 ¼ 0, and m ¼ 0:5, and b the corresponding 2D solution graph when t ¼ 0:005

Fig. 6.2 a Double periodic wave solutions for the first solution of v14ðx; tÞ when a ¼ 1, b ¼ �1,
f0 ¼ 0, n0 ¼ 0, and m ¼ 0:5, and b the corresponding 2D solution graph when t ¼ 0:01

Fig. 6.3 a Double periodic wave solutions for u25ðx; tÞ when a ¼ 1, b ¼ �1, f0 ¼ 0, n0 ¼ 0, and
m ¼ 0:5, and b the corresponding 2D solution graph when t ¼ 0:005
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6.5 Implementation of New Extended Auxiliary
Equation Method to the Tzitzéica-Type Nonlinear
Evolution Equations

In the present section, the Jacobi elliptic function solutions, including the hyper-
bolic and trigonometric solutions for the DBM and TDB equations have been
obtained using a new extended auxiliary equation method.

6.5.1 New Exact Solutions of Dodd–Bullough–Mikhailov
(DBM) Equation

In this part, we apply the new extended auxiliary equation method to determine the
new exact solutions for Dodd–Bullough–Mikhailov Eq. (6.3).

Suppose the traveling wave solution of Eq. (6.5) can be expressed as

UðnÞ ¼ vðnÞ ¼
X2N
i¼0

aiF
iðnÞ; ð6:35Þ

where FðnÞ satisfies Eq. (6.21).
Balancing the highest order derivative term vvnn and the nonlinear term v3 by

using homogenous principle the following result could be obtained

NþN þ 2 ¼ 3N;

Fig. 6.4 a Double periodic wave solutions for v25ðx; tÞ when a ¼ 1, b ¼ �1, f0 ¼ 0, n0 ¼ 0, and
m ¼ 0:5, and b the corresponding 2D solution graph when t ¼ 0:01
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yielding

N ¼ 2:

Therefore, the ansatz for the solution of Eq. (6.5) can be written as

UðnÞ ¼ a0 þ a1FðnÞþ a2F
2ðnÞþ a3F

3ðnÞþ a4F
4ðnÞ; ð6:36Þ

where FðnÞ satisfies

FðnÞ ¼ 1
2

� c4
c6

ð1� /iðnÞÞ
� 	1=2

; i ¼ 1; 2; . . .; 12: ð6:37Þ

By substituting (6.36) and (6.21) into Eq. (6.5), the coefficients of each power of
Fi, i ¼ 0; 1; 2. . . are collected, which are then set to zero. Thus, it leads to a system
of algebraic equations.

The derived system of algebraic equations has been solved by using mathe-
matical software, yielding the following results:

a0 ¼ 21=331=6 � 21=332=3

2
; a2 ¼ �221=631=12

ffiffiffiffiffi
a4

p
;

c2 ¼
25=6

ffiffiffiffiffi
a4

p
96� 35=12c0 þ 11� 311=12c0
� �

156
; c4 ¼ � 2

13
4� 22=331=3a4c0 þ 22=335=6a4c0
� �

;

c6 ¼ 1
26

a3=24 4
ffiffiffi
2

p
31=4c0 þ

ffiffiffi
2

p
33=4c0

� �
;x ¼ 3

ffiffiffi
2

p
31=4 � 4

ffiffiffi
2

p
33=4

24kl2
;

where l ¼ a1=44
ffiffiffiffiffi
c0

p
.

Without loss of generality, let us assume a4 [ 0 and c0 [ 0, and hence c6 [ 0.
Thus, /ðnÞ satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Eqs. (6.23), (6.36), and (6.37), the Jacobi elliptic function solutions of

Eq. (6.5) have been deduced as follows

U11ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� sn
2

11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13 ð4þ

ffiffiffi
3

p Þ
q

m
n

0@ 1A0@ 1A
þ 21=631=12
� �2

1� sn
2

11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13 ð4þ

ffiffiffi
3

p Þ
q

m
n

0@ 1A0@ 1A2

;

ð6:38Þ
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U12ðnÞ ¼ 1
22=3

31=6 � 32=3
� �

� 2 21=631=12
� �2

1� 1

msn
2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13ð4þ

ffiffi
3

p Þ
p

m n

� �
0BB@

1CCA

þ 21=631=12
� �2

1� 1

msn
2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13ð4þ

ffiffi
3

p Þ
p

m n

� �
0BB@

1CCA
2

;

ð6:39Þ

where n ¼ kxþ 3
ffiffi
2

p
31=4�4

ffiffi
2

p
33=4

24kl2 t and l ¼ a1=44
ffiffiffiffiffi
c0

p
.

If m ! 1, then sn ðnÞ ! tanh ðnÞ, and we have the hyperbolic function solutions
of Eq. (6.5)

U13ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� tanh 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !

þ 21=631=12
� �2

1� tanh 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !2

;

ð6:40Þ

U14ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� coth 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !

þ 21=631=12
� �2

1� coth 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !2

;

ð6:41Þ

Set II:
From Eqs. (6.24), (6.36), and (6.37), the Jacobi elliptic function solutions of

Eq. (6.5) have been obtained as follows

U21ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� msn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !

þ 21=631=12
� �2

1� msn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !2

;

ð6:42Þ
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U22ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� 1

sn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13 ð4þ

ffiffiffi
3

p Þ
q

n
� �

0B@
1CA

þ 21=631=12
� �2

1� 1

sn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13 ð4þ

ffiffiffi
3

p Þ
q

n
� �

0B@
1CA

2

:

ð6:43Þ

If m ! 0, then sn ðnÞ ! sinðnÞ, and we have the following trigonometric
function solutions of Eq. (6.5)

U23ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 21=631=12
� �2

U24ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� csc 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !

þ 21=631=12
� �2

1� csc 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
13

ð4þ
ffiffiffi
3

p
Þ

r
n

 ! !2

:

ð6:44Þ

If m ! 1, then we have the same hyperbolic function solutions (6.40) and
(6.41).

Set III:
From Eqs. (6.27), (6.36) and (6.37), the Jacobi elliptic function solutions of

Eq. (6.5) have been derived as follows

U31ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1� 1

cn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

13ð1�m2Þ ð4þ
ffiffiffi
3

p Þ
q

n
� �

0B@
1CA

þ 21=631=12
� �2

1� 1

cn 2
11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

13ð1�m2Þ ð4þ
ffiffiffi
3

p Þ
q

n
� �

0B@
1CA

2

;

ð6:45Þ
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U32ðnÞ ¼ 1
22=3

ð31=6 � 32=3Þ � 2 21=631=12
� �2

1�
dn 2

11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

13ð1�m2Þ ð4þ
ffiffiffi
3

p Þ
q

n
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
sn 2

11
123

5
24l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

13ð1�m2Þ ð4þ
ffiffiffi
3

p Þ
q

n
� �

0B@
1CA

þ 21=631=12
� �2

1�
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If m ! 0, then dnðnÞ ! 1, snðnÞ ! sinðnÞ, cnðnÞ ! cosðnÞ, and hence, the
following trigonometric solutions of Eq. (6.5) have been obtained
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It may be noted that the solution (6.44) is in agreement with the solution (6.48).

6.5.2 New Exact Solutions of Tzitzeica–Dodd–Bullough
(TDB) Equation

Suppose the traveling wave solution of Eq. (6.8) can be expressed as

WðnÞ ¼ vðnÞ ¼
X2N
i¼0

aiF
iðnÞ; ð6:49Þ

where FðnÞ satisfies Eq. (6.21).
Balancing the highest order derivative term vvnn and the nonlinear term v4 by

using homogenous principle the following result could be obtained
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NþN þ 2 ¼ 4N;

yielding
N ¼ 1:

Therefore, the ansatz for the solution of Eq. (6.8) can be written as

WðnÞ ¼ a0 þ a1FðnÞþ a2F
2ðnÞ; ð6:50Þ

where FðnÞ satisfies

FðnÞ ¼ 1
2

� c4
c6

1� /iðnÞð Þ
� 	1=2

; i ¼ 1; 2; . . .; 12: ð6:51Þ

Substituting (6.50) and (6.21) into Eq. (6.8) and collecting the coefficients of
each power of Fi, i ¼ 0; 1; 2. . . and set them to zero, we obtain a system of
algebraic equations.

Solving this system of algebraic equations by using mathematical software, we
obtain the following result:

c2 ¼ 4þ 5a0ð Þa2c0
2a0 1þ a0ð Þ ; c4 ¼ 1þ 2a0ð Þa22c0

a20 1þ a0ð Þ ; c6 ¼ a32c0
2a20 1þ a0ð Þ ;x ¼ �a20 � a30

2ka2c0
:

Without loss of generality, let us assume a0 [ 0, a2 [ 0 and c0 [ 0, and hence
c6 [ 0. Thus, /ðnÞ satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Eqs. (6.23), (6.50), and (6.51), the following Jacobi elliptic function

solutions of Eq. (6.8) have been derived.
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where n ¼ kxþ �a20�a30
2ka2c0

t and l ¼ a2c0.
If m ! 1, then snðnÞ ! tanhðnÞ, and we have the hyperbolic function solutions

of Eq. (6.8)
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Set II:
From Eqs. (6.24), (6.50) and (6.51), the following Jacobi elliptic function

solutions of Eq. (6.8) have been obtained.
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If m ! 0, then snðnÞ ! sinðnÞ, and we have the following solutions of Eq. (6.8)

W23ðnÞ ¼ � 1
2
; ð6:58Þ
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If m ! 1, then we can obtain the same hyperbolic function solutions (6.54) and
(6.55).

Set III:
From Eqs. (6.27), (6.50), and (6.51), the following Jacobi elliptic function

solutions of Eq. (6.8) have been derived.
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If m ! 0, then dnðnÞ ! 1,snðnÞ ! sinðnÞ, cnðnÞ ! cosðnÞ, and hence, the
following trigonometric solutions of Eq. (6.8) have been obtained
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It may be noted that the solution (6.59) is in agreement with the solution (6.63).

6.5.3 Physical Interpretations of the Solutions

In the present analysis, three-dimensional and the corresponding two-dimensional
graphs of the obtained solutions to the nonlinear evolution equations, viz. Dodd–
Bullough–Mikhailov (DBM) and Tzitzeica–Dodd–Bullough (TDB) equations have
been presented. To this aim, some special values of the parameters are selected.
Here, the physical significance of the obtained solutions of the above equations has
been discussed.

In Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12, the 3D solution graphs of
U11ðnÞ, U13ðnÞ, U21ðnÞ, U34ðnÞ,W11ðnÞ,W13ðnÞ,W21ðnÞ,W34ðnÞ, respectively, have
been presented with appropriate selection of parameters. The three-dimensional

Fig. 6.5 a 3D double periodic solution surface for v(x, t) appears in Eq. (6.38) as U11ðnÞ in Set 1,
when k ¼ 1, l ¼ 1, x ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1
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Fig. 6.6 a 3D soliton solution surface of v(x, t) appears in Eq. (6.40) as U13ðnÞ in Set 1, when
k ¼ 1, l ¼ 1, x ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1

Fig. 6.7 a 3D double periodic solution surface of v(x, t) appears in Eq. (6.42) as U21ðnÞ in Set 2,
when k ¼ 1, l ¼ 1, x ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1

Fig. 6.8 a 3D periodic solution surface of v(x, t) appears in Eq. (6.48) as U34ðnÞ in Set 3, when
k ¼ 1, l ¼ 0:5, x ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1
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Fig. 6.9 a 3D double periodic solution surface of v(x, t) appears in Eq. (6.52) as W11ðnÞ in Set I,
when k ¼ 1, l ¼ 1, x ¼ 0:5, m ¼ 0:3, a0 ¼ 0:5, b the corresponding 2D graph for v(x, t), when
t = 1

Fig. 6.10 a 3D soliton solution surface of v(x, t) appears in Eq. (6.54) as W13ðnÞ in Set I, when
k ¼ 1, l ¼ 1, x ¼ 0:5, a0 ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1

Fig. 6.11 a 3D double periodic solution surface of v(x, t) appears in Eq. (6.56) as W21ðnÞ in
Set II, when k ¼ 1, l ¼ 1, x ¼ 0:5, a0 ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t),
when t = 1
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graphs of Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 have been depicted when
�10� x� 10, �10� t� 10. To the best knowledge of information, these solutions
have not been reported earlier in the open literature.

In Figs. 6.5 and 6.7, the double periodic solutions for U11 and U21 of DBM
equation, have been displayed. Also, the double periodic solutions for W11 and W21

of TDB equation have been demonstrated in Figs. 6.9 and 6.11, respectively.
Figures 6.6 and 6.10 show the solutions for U13 and W13 representing the soliton
wave solutions of DBM and TDB equations, respectively. Furthermore, the peri-
odic traveling wave solutions for U34 and W34 of DBM and TDB equations have
been illustrated in Figs. 6.8 and 6.12, respectively.

6.6 Conclusion

In this chapter, an improved generalized Jacobi elliptic function method is suc-
cessfully employed for acquiring new exact solutions of the coupled Schrödinger–
Boussinesq equations. By using this present method, some new exact solutions of
the coupled Schrödinger–Boussinesq equations are found. More importantly, the
present method is more efficient and powerful to determine the new exact solutions
to CSBEs. This proposed method can also be utilized for numerous other nonlinear
evolution equations or coupled ones. To the best information of the author, these
double periodic wave solutions of the CSBEs are new exact solutions which are not
reported earlier. Being concise and powerful, this current method can also be
extended to solve many other NLPDEs arising in mathematical physics.

Moreover, in the present chapter, a new extended auxiliary equation method is
used to construct many new types of Jacobi elliptic function solutions of Dodd–
Bullough–Mikhailov and Tzitzeica–Dodd–Bullough equations. Thus, as an
achievement, a family of new exact traveling wave solutions of Dodd–Bullough–
Mikhailov and Tzitzeica–Dodd–Bullough equations has been formally generated.

Fig. 6.12 a 3D periodic solution surface of v(x, t) appears in Eq. (6.63) as W34ðnÞ in Set III, when
k ¼ 1, l ¼ 0:1, x ¼ 0:5, a0 ¼ 0:5, m ¼ 0:3, b the corresponding 2D graph for v(x, t), when t = 1
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It clearly manifests that the employed approach is useful and efficient to find the
various kinds of traveling wave solutions. Also, the physical interpretations of the
obtained results for Tzitzéica-type nonlinear evolution equations have been sur-
veyed as well. Therefore, the performance of the proposed method is effective and it
can be applied to study many other nonlinear evolution equations which frequently
arise in nonlinear optics, quantum theory, and other mathematical physics and
engineering problems.
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Chapter 7
New Techniques on Fractional Reduced
Differential Transform Method

7.1 Introduction

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. There is a long-standing interest in
extending the classical calculus to noninteger orders because fractional differential
equations are suitable models for many physical problems. Fractional calculus has
been used to model physical and engineering processes which are found to be best
described by fractional differential equations. In recent years, considerable interest
in fractional differential equations has been stimulated due to their numerous
applications in the areas of physics and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Lévy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1–8]. The solution of differential equations
of fractional order is much involved. Though many exact solutions for linear
fractional differential equation had been found, in general, there is a scarcity of
analytical method, available in the open literature, which yields an exact solution
for nonlinear fractional differential equations.

In the past decades, both mathematicians and physicists have devoted consid-
erable effort to the study of explicit and numerical solutions to nonlinear differential
equations of integer order. Many methods have been presented [9–19]. Our main
interest lies in determining an efficient and accurate method that provides an
effective procedure for explicit and numerical solutions of a wide and general class
of differential systems representing real physical problems. In this paper, we solve
fractional KdV equations by the modified fractional reduced differential transform
method (MFRDTM) which is presented with some modification of the reduced
differential transformation method [20–22]. In this new approach, the nonlinear
term is replaced by its Adomian polynomials. Thus, the nonlinear initial-value
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problem can be easily solved with less computational effort. The main advantage of
the method emphasizes the fact that it provides an explicit analytical approximate
solution and also numerical solution elegantly. The merits of the new method are as
follows: (1) no discretization required and (2) linearization or small perturbation
also not required. Thus, it reduces the amount of numerical computation consid-
erably. Application of this attractive new method may be taken into account for
further research.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Levy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1–7, 12, 23–26]. Fractional calculus has
been used to model physical and engineering processes that are found to be best
described by fractional differential equations. For that reason, we need a reliable
and efficient technique for the solution of fractional differential equations. An
immense effort has been expended over the last many years to find robust and
efficient numerical and analytical methods for solving such fractional differential
equations. In the present analysis, a new approximate numerical technique, coupled
fractional reduced differential transform method (CFRDTM), has been proposed
which is applicable for coupled fractional differential equations. The proposed
method is a very powerful solver for linear and nonlinear coupled fractional dif-
ferential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

In the field of engineering, physics, and other fields of applied sciences, many
phenomena can be obtained very successfully by models using mathematical tools
in the form of fractional calculus [1, 4, 12, 23–27]. In the past decades, the frac-
tional differential equations have been widely used in various fields of applied
science and engineering. Many important phenomena in electromagnetics, acous-
tics, viscoelasticity, electrochemistry, control theory, neutron point kinetics model,
anomalous diffusion, vibration and control, continuous time random walk, Lévy
statistics, Brownian motion, signal and image processing, relaxation, creep, chaos,
fluid dynamics, and material science are well described by differential equations of
fractional order. Fractional calculus has been used to model physical and engi-
neering processes that are found to be best described by fractional differential
equations. For that reason, we need a reliable and efficient technique for the solution
of fractional differential equations. An immense effort has been expended over the
last many years to find robust and efficient numerical and analytical methods for
solving such fractional differential equations. In the present analysis, a new
approximate numerical technique, coupled fractional reduced differential transform
method (CFRDTM), has been applied which is applicable for coupled fractional
differential equations. The new method is a very powerful solver for linear and
nonlinear coupled fractional differential equations. It is relatively a new approach to
provide the solution very efficiently and accurately.
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In the field of engineering, physics, chemistry, and other sciences, many phe-
nomena can be modeled very successfully by using mathematical tools in the form
of fractional calculus, e.g., anomalous transport in disordered systems, some per-
colations in porous media, and the diffusion of biological populations [1, 25–28].
Fractional calculus has been used to model physical and engineering systems that
are found to be more accurately described by fractional differential equations. Thus,
we need a reliable and competent technique for the solution of fractional differential
equations. In this paper, the predator–prey system [29] has been discussed in the
form of the fractional coupled reaction-diffusion equation. In the present analysis, a
new approximate numerical technique, coupled fractional reduced differential
transform method (CFRDTM), has been presented which is appropriate for coupled
fractional differential equations. The proposed method is an impressive solver for
linear and nonlinear coupled fractional differential equations. It is comparatively a
new approach to provide the solution very effectively and competently.

The significant advantage of the proposed method is the fact that it provides its
user with an analytical approximation, in many instances an exact solution, in a
rapidly convergent sequence with elegantly computed terms. This technique does
not involve any linearization, discretization, or small perturbations, and therefore it
reduces significantly the numerical computation. This method provides extraordi-
nary accuracy for the approximate solutions when compared to the exact solutions,
particularly in large-scale domain. It is not affected by computation round-off errors,
and hence one does not face the need for large computer memory and time. The
results reveal that the CFRDTM is very effective, convenient, and quite accurate to
the system of nonlinear equations.

Several analytical as well as numerical methods have been implemented by
various authors to solve fractional differential equations. Wei et al. [30] applied the
homotopy method to determine the unknown parameters of solute transport with
spatial fractional derivative advection-dispersion equation. Saha Ray and Gupta
proposed numerical schemes based on the Haar wavelet method for finding
numerical solutions of Burger–Huxley, Huxley, modified Burgers, and mKdV
equations [31, 32]. An approximate analytical solution of the time fractional
Cauchy reaction diffusion equation by using the fractional-order reduced differential
transform method (FRDTM) has been proposed by Shukla et al. [33].

Nonlinear partial differential equations are useful in describing various phe-
nomena. The solutions of the nonlinear evolution equations play an important role
in the field of nonlinear wave phenomena. The exact solutions facilitate the veri-
fication of numerical methods when they exist. These equations arise in various
areas of physics, mathematics, and engineering such as fluid dynamics, nonlinear
optics, plasma physics, nuclear physics, mathematical biology, Brusselator model
of the chemical reaction–diffusion, and many other areas.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
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numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

Nonlinear partial differential equations are useful in describing various phe-
nomena. These equations arise in various areas of physics, mathematics, and
engineering such as fluid dynamics, nonlinear optics, plasma physics, nuclear
physics, mathematical biology, Brusselator model of the chemical reaction–diffu-
sion, and many other areas. In fluid dynamics, the nonlinear evolution equations
show up in the context of shallow water waves. Some of the commonly studied
equations are the Korteweg–de Vries (KdV) equation, modified KdV equation,
Boussinesq equation, and Whitham–Broer–Kaup equation. In this paper, Whitham–

Broer–Kaup equations have been solved by a new novel method revealed by Saha
Ray [34, 35] and it is inherited from generalized Taylor’s series.

The investigation of the traveling wave solutions to nonlinear partial differential
equations (NLPDEs) plays an important role in the study of nonlinear physical
phenomena.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

7.2 Outline of the Present Study

In this chapter, the modified fractional reduced differential transform method
(MFRDTM) has been proposed and it is implemented for solving fractional
Korteweg–de Vries (KdV) equations. The fractional derivatives are described in the
Caputo sense. The reduced differential transform method is modified to be easily
employed to solve wide kinds of nonlinear fractional differential equations. In this
new approach, the nonlinear term is replaced by its Adomian polynomials. Thus,
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the nonlinear initial-value problem can be easily solved with less computational
effort. In order to show the power and effectiveness of the present modified method
and to illustrate the pertinent features of the solutions, several fractional KdV
equations with different types of nonlinearities are considered. The results reveal
that the proposed method is very effective and simple for obtaining approximate
solutions of fractional KdV equations.

A very new technique, coupled fractional reduced differential transform, has
been implemented in this chapter to obtain the numerical approximate solution of
coupled time fractional KdV equations. The fractional derivatives are described in
the Caputo sense. By using the present method, we can solve many linear and
nonlinear coupled fractional differential equations. The obtained results are com-
pared with the exact solutions. Numerical solutions are presented graphically to
show the reliability and efficiency of the method.

Newly proposed coupled fractional reduced differential transform has been
implemented to obtain the soliton solutions of coupled time fractional modified
KdV equations. This new method has been revealed by the author. The fractional
derivatives are described in the Caputo sense. By using the present method, we can
solve many linear and nonlinear coupled fractional differential equations. The
results reveal that the proposed method is very effective and simple for obtaining
approximate solutions of fractional coupled modified KdV equations. Numerical
solutions are presented graphically to show the reliability and efficiency of the
method. Solutions obtained by this new method have been also compared with
Adomian decomposition method (ADM).

A relatively very new technique, viz. coupled fractional reduced differential
transform, has been executed to attain the approximate numerical solution of the
predator–prey dynamical system. The fractional derivatives are defined in the
Caputo sense. Utilizing the present method, we can solve many linear and nonlinear
coupled fractional differential equations. The results thus obtained are compared
with those of other available methods. Numerical solutions are also presented
graphically to show the simplicity and authenticity of the method for solving the
fractional predator–prey dynamical system.

Also in this chapter, fractional coupled Schrödinger–Korteweg–de Vries (or
Sch–KdV) equation with appropriate initial values has been solved by using a new
novel method. The fractional derivatives are described in the Caputo sense. By
using the present method, we can solve many linear and nonlinear coupled frac-
tional differential equations. Basically, the present method originated from gener-
alized Taylor’s formula [36]. The results reveal that the proposed method is very
effective and simple for obtaining approximate solutions of fractional coupled
Schrödinger–KdV equation. Numerical solutions are presented graphically to show
the reliability and efficiency of the method. The method does not need linearization,
weak nonlinearity assumptions, or perturbation theory. The convergence of the
method as applied to Sch–KdV is illustrated numerically as well as derived ana-
lytically. Moreover, the derived results are compared with those obtained by the
Adomian decomposition method (ADM).
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The analytical approximate traveling wave solutions of Whitham–Broer–Kaup
(WBK) equations, which contain blow-up solutions and periodic solutions, have
been obtained by using the coupled fractional reduced differential transform method
[34, 35, 37–39]. By using this method, the solutions were calculated in the form of
a generalized Taylor’s series with easily computable components. The convergence
of the method as applied to the Whitham–Broer–Kaup equations is illustrated
numerically as well as analytically. By using the present method, we can solve
many linear and nonlinear coupled fractional differential equations. The results
justify that the proposed method is also very efficient, effective, and simple for
obtaining approximate solutions of fractional coupled modified Boussinesq and
fractional approximate long wave equations. Numerical solutions are presented
graphically to show the reliability and efficiency of the method. Moreover, the
results are compared with those obtained by the Adomian decomposition method
(ADM) and variational iteration method (VIM) revealing that the present method is
superior to others.

7.2.1 Fractional KdV Equation

The aim of this work is to directly apply the MFRDTM to determine the approx-
imate solution of the nonlinear fractional KdV equation with time fractional
derivative of the form

Da
t uþ umð Þx þ unð Þxxx ¼ 0; m[ 0; 1� n� 3; t[ 0; 0\a� 1 ð7:1Þ

which is a generalization of the Korteweg–de Vries equation, denoted by Kðm; nÞ for
the different values of m and n, respectively. These Kðm; nÞ equations have the
property that for certain values of m and n, their solitary wave solutions have
compact support which is known as compactons [40]. Here, the fractional derivative
is considered in the Caputo sense [5, 6]. In the case of a ¼ 1, fractional Eq. (1.1)
reduces to the classical nonlinear KdV equation [14, 16].

7.2.2 Time Fractional Coupled KdV Equations

For solving time fractional coupled KdV equations, two model equations have been
considered in the present chapter.

I. Consider the following time fractional coupled KdV equations [41]

Da
t u ¼ � @3u

@x3
� 6u

@u
@x

þ 3v
@v
@x

; ð7:2Þ
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Db
t v ¼ � @3v

@x3
� 3u

@v
@x

; ð7:3Þ

where t[ 0, 0\a; b� 1.
II. Consider the following time fractional coupled KdV equations [42]

Da
t uþ 6uux � 6vvx þ uxxx ¼ 0; ð7:4Þ

Db
t vþ 3uvx þ vxxx ¼ 0; ð7:5Þ

where t[ 0, 0\a; b� 1.

7.2.3 Time Fractional Coupled Modified KdV Equations

In this case, for solving time fractional coupled modified KdV equations, again two
model equations have been considered in the present chapter.

I. Consider the following time fractional coupled modified KdV equations [43]

Da
t u ¼ 1

2
@3u
@x3

� 3u2
@u
@x

þ 3
2
@2v
@x2

þ 3
@ðuvÞ
@x

� 3
@u
@x

; ð7:6Þ

Db
t v ¼ � @3v

@x3
� 3v

@v
@x

� 3
@u
@x

@v
@x

þ 3u2
@v
@x

þ 3
@v
@x

; ð7:7Þ

where t[ 0, 0\a; b� 1.
II. Consider the following time fractional coupled modified KdV equations [44]

Da
t u ¼ 1

2
@3u
@x3

� 3u2
@u
@x

þ 3
2
@2v
@x2

þ 3
@ðuvÞ
@x

þ 3
@u
@x

ð7:8Þ

Db
t v ¼ � @3v

@x3
� 3v

@v
@x

� 3
@u
@x

@v
@x

þ 3u2
@v
@x

� 3
@v
@x

ð7:9Þ

where t[ 0, 0\a; b� 1.

7.2.4 Time Fractional Predator–Prey Dynamical System

In the present chapter, a system of two species competitive models with prey
population A and predator population B has been also studied. For prey population
A ! 2A, at the rate a ða[ 0Þ expresses the natural birthrate. Similarly, for predator
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population B ! 2B, at the rate c ðc[ 0Þ represents the natural death rate. The
interactive term between predator and prey population is AþB ! 2B, at rate
b ðb[ 0Þ where b denotes the competitive rate. According to the knowledge of
fractional calculus and biological population, the time fractional dynamics of a
predator–prey system can be described as

@au
@ta

¼ @2u
@x2

þ @2u
@y2

þ au� buv; uðx; y; 0Þ ¼ uðx; yÞ; ð7:10Þ

@bv
@tb

¼ @2v
@x2

þ @2v
@y2

þ buv� cv; vðx; y; 0Þ ¼ /ðx; yÞ; ð7:11Þ

where t[ 0, x; y 2 R; a; b; c[ 0, uðx; y; tÞ denotes the prey population density, and
vðx; y; tÞ represents the predator population density. Here, uðx; yÞ and /ðx; yÞ rep-
resent the initial conditions of the population system. The fractional derivatives are
considered in Caputo sense. Caputo fractional derivative is used because of its
advantage that it permits the initial and boundary conditions included in the for-
mulation of the problem. Here, uðx; y; tÞ and vðx; y; tÞ are analytic functions. The
physical interpretations of Eqs. (7.10) and (7.11) indicate that the prey–predator
population system is analogous to the behavior of fractional-order model of
anomalous biological diffusion.

7.2.5 Fractional Coupled Schrödinger–KdV Equation

Nonlinear phenomena play a crucial role in applied mathematics and physics.
Calculating exact and numerical solutions, in particular, traveling wave solutions,
of nonlinear equations in mathematical physics plays an important role in soliton
theory [9, 45]. The investigation of the traveling wave solutions to nonlinear partial
differential equations (NLPDEs) plays an important role in the study of nonlinear
physical phenomena. Multiple traveling wave solutions of nonlinear evolution
equations such as the coupled Schrödinger–KdV equation [46, 47] have been
obtained by Fan [48]. The coupled Schrödinger–KdV equation is known to describe
various processes in dusty plasma, such as Langmuir, dust-acoustic wave, and
electromagnetic waves [48]. The model equation for the coupled fractional
Schrödinger–KdV equation can be presented in the following form [48]

iDa
t ut ¼ uxx þ uv

Db
t vt ¼ �6vvx � vxxx þð uj j2Þx ð7:12Þ

where a, b ð0\a; b� 1Þ are the orders of the Caputo fractional time derivatives,
respectively, i ¼ ffiffiffiffiffiffiffi�1

p
and t� 0.
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Recently, Fan [48] applied the unified algebraic method and Kaya et al. [49]
applied Adomian’s decomposition method for computing solutions to a (classical)
integer-order Sch–KdV equation.

7.2.6 Fractional Whitham–Broer–Kaup, Modified
Boussinesq, and Approximate Long Wave Equations
in Shallow Water

In the present paper, coupled WBK equations introduced by Whitham, Broer, and
Kaup [50–52] have been considered. The equations describe the propagation of
shallow water waves with different dispersion relations. The fractional-order WBK
equations are as follows

Da
t uþ uux þ vx þ buxx ¼ 0; ð7:13aÞ

Db
t vþðuvÞx þ auxxx � bvxx ¼ 0; ð7:13bÞ

where a, b ð0\a; b� 1Þ are the orders of the Caputo fractional time derivatives,
respectively, and t� 0. In WBK equations (7.13a) and (7.13b), the field of hori-
zontal velocity is represented by u ¼ uðx; tÞ, v ¼ vðx; tÞ which is the height that
deviates from the equilibrium position of liquid, and the constants a, b are repre-
sented in different diffusion powers [53].

If a = 1 and b = 0, the following fractional coupled modified Boussinesq
equations (7.14a) and (7.14b)

Da
t u ¼ �u

@u
@x

� @v
@x

ð7:14aÞ

Db
t v ¼ � @ðuvÞ

@x
� @3u

@x3
ð7:14bÞ

where t[ 0, 0\a; b� 1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

If a = 0 and b = 1/2, the following fractional coupled approximate long wave
equations (ALW) equations (7.15a) and (7.15b)

Da
t u ¼ �u

@u
@x

� @v
@x

� 1
2
@2u
@x2

ð7:15aÞ

Db
t v ¼ � @ðuvÞ

@x
þ 1

2
@2v
@x2

ð7:15bÞ
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where t[ 0, 0\a; b� 1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

7.3 Fractional Reduced Differential Transform Methods

In this section, proposed modified fractional reduced differential transform method
(MFRDTM) and a newly developed technique, coupled fractional reduced differ-
ential transform method (CFRDTM), have been presented.

7.3.1 Modified Fractional Reduced Differential Transform
Method

Consider a function of two variables uðx; tÞ which can be represented as a product
of two single-variable functions, i.e., uðx; tÞ ¼ f ðxÞgðtÞ. Based on the properties of
differential transform, the function uðx; tÞ can be represented as

uðx; tÞ ¼
X1
k¼0

UkðxÞtak ð7:16Þ

where t-dimensional spectrum function UkðxÞ is the transformed function of uðx; tÞ.
The basic definitions and operations of MFRDTM are as follows:

Definition 1 If the function uðx; tÞ is analytic and differentiated continuously with
respect to time t and space x in the domain of interest, then let

UkðxÞ ¼ 1
Cðakþ 1Þ Da

t

� �k
uðx; tÞ

h i
t¼0

; ð7:17Þ

where ðDa
t Þk ¼ Da

t � Da
t � Da

t . . .D
a
t , the k times differentiable Caputo fractional

derivative.

The differential inverse transform of UkðxÞ is defined as follows:

uðx; tÞ ¼
X1
k¼0

UkðxÞtak: ð7:18Þ

Then combining Eqs. (7.17) and (7.18), we can write

uðx; tÞ ¼
X1
k¼0

1
Cðakþ 1Þ Da

t

� �k
uðx; tÞ

h i
t¼0

� �
tak: ð7:19Þ
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Some basic properties of the reduced differential transform method are sum-
marized in Table 7.1.

To illustrate the basic concepts for the application of MFRDTM, consider the
following general nonlinear partial differential equation:

Luðx; tÞþRuðx; tÞþNuðx; tÞ ¼ gðx; tÞ; ð7:20Þ

with initial condition

uðx; 0Þ ¼ f ðxÞ;

where L � Da
t is an easily invertible linear operator, R is the remaining part of the

linear operator, Nuðx; tÞ is a nonlinear term, and gðx; tÞ is an inhomogeneous term.
We can look for the solution uðx; tÞ of Eq. (7.20) in the form of the fractional

power series:

uðx; tÞ ¼
X1
k¼0

UkðxÞtak; ð7:21Þ

where t-dimensional spectrum function UkðxÞ is the transformed function of uðx; tÞ.
Now, let us write the nonlinear term

Nðu; tÞ ¼
X1
n¼0

An U0ðxÞ;U1ðxÞ; . . .;UnðxÞð Þtna; ð7:22Þ

where An is the appropriate Adomian’s polynomials [13, 17]. In this specific
nonlinearity, we use the general form of the formula for An Adomian polynomials
as

An U0ðxÞ;U1ðxÞ; . . .;UnðxÞð Þ ¼ 1
n!

dn

dkn
N
X1
i¼0

kiUiðxÞ
 !" #

k¼0

: ð7:23Þ

Table 7.1 Fundamental operations of MFRDTM

Properties Function Transformed function

1 f ðx; tÞ ¼ auðx; tÞ � bvðx; tÞ FkðxÞ ¼ aUkðxÞ � bVkðxÞ
2 f ðx; tÞ ¼ uðx; tÞvðx; tÞ

FkðxÞ ¼
Pk
l¼0

UlðxÞVk�lðxÞ

3 f ðx; tÞ ¼ @uðx;tÞ
@x FkðxÞ ¼ @UkðxÞ

@x

4 f ðx; tÞ ¼ Dma
t uðx; tÞ, where a 2 Rþ and

m 2 N
FkðxÞ ¼ CðaðkþmÞþ 1Þ

Cðakþ 1Þ UkþmðxÞ
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Now, applying Riemann–Liouville integral Ja on both sides of Eq. (7.20), we
have

uðx; tÞ ¼ Uþ Jagðx; tÞ � JaRuðx; tÞ � JaNuðx; tÞ; ð7:24Þ

where from the initial condition U ¼ uðx; 0Þ ¼ f ðxÞ.
Substituting Eqs. (7.21) and (7.22), for uðx; tÞ and Nðu; tÞ, respectively, in

Eq. (7.24) yields

X1
k¼0

UkðxÞtak ¼ f ðxÞþ Ja
X1
k¼0

GkðxÞtak
 !

� Ja R
X1
k¼0

UkðxÞtak
 ! !

� Ja
X1
k¼0

AkðxÞtak
 !

;

where gðx; tÞ ¼ P1
k¼0 GkðxÞtak

� �
, and GkðxÞ is the transformed function of gðx; tÞ.

After carrying out Riemann–Liouville integral Ja, we obtain

X1
k¼0

UkðxÞtak ¼ f ðxÞþ
X1
k¼0

GkðxÞ t
aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

 !

� R
X1
k¼0

UkðxÞ t
aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

 ! !

�
X1
k¼0

AkðxÞ t
aðkþ 1ÞCðakþ 1Þ
Cðaðkþ 1Þþ 1Þ

 !
:

Finally, equating coefficients of like powers of t, we derive the following
recursive formula

U0ðxÞ ¼ f ðxÞ;

and

Ukþ 1ðxÞ ¼ GkðxÞ Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ � R UkðxÞ Cðakþ 1Þ

Cðaðkþ 1Þþ 1Þ
� �

� AkðxÞ Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ ; k� 0:

ð7:25Þ

Using the known U0ðxÞ, all components U1ðxÞ;U2ðxÞ; . . .;UnðxÞ; . . .;, etc., are
determinable by using Eq. (7.25).

Substituting these U0ðxÞ;U1ðxÞ;U2ðxÞ; � � � ;UnðxÞ; � � � ;, etc., in Eq. (7.21), the
approximate solution can be obtained as
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~upðx; tÞ ¼
Xp
m¼0

UmðxÞtma; ð7:26Þ

where p is the order of approximate solution.
Therefore, the corresponding exact solution is given by

uðx; tÞ ¼ lim
p!1

~upðx; tÞ ð7:27Þ

7.3.2 Coupled Fractional Reduced Differential Transform
Method

In order to introduce coupled fractional reduced differential transform, two cases are
considered.

For functions with two independent variables

In this case, Uðh; k � hÞ is considered as the coupled fractional reduced differential
transform of uðx; tÞ. If the function uðx; tÞ is analytic and differentiated continuously
with respect to time t, then we define the fractional coupled reduced differential
transform of uðx; tÞ as

Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞ

t uðx; tÞ
h i

t¼0
; ð7:28Þ

whereas the inverse transform of Uðh; k � hÞ is

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb; ð7:29Þ

which is one of the solutions of coupled fractional differential equations.

Theorem 7.1 Suppose that Uðh; k � hÞ and Vðh; k � hÞ are coupled fractional
reduced differential transform of functions uðx; tÞ and vðx; tÞ, respectively.

i. If uðx; tÞ ¼ f ðx; tÞ � gðx; tÞ, then Uðh; k � hÞ ¼ Fðh; k � hÞ � Gðh; k � hÞ.
ii. If uðx; tÞ ¼ af ðx; tÞ, where a 2 R, then Uðh; k � hÞ ¼ aFðh; k � hÞ.
iii. If f ðx; tÞ ¼ uðx; tÞvðx; tÞ, then Fðh; k � hÞ ¼Ph

l¼0

Pk�h

s¼0
Uðh� l; sÞVðl; k � h� sÞ.

iv. If f ðx; tÞ ¼ Da
t uðx; tÞ, then

Fðh; k � hÞ ¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ:
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v. If f ðx; tÞ ¼ Db
t vðx; tÞ, then

Fðh; k � hÞ ¼ Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ:

For functions with three independent variables

In this case, Uðh; k � hÞ is considered as the coupled fractional reduced differential
transform of uðx; y; tÞ. If the function uðx; y; tÞ is analytic and differentiated con-
tinuously with respect to time t, then we define the fractional coupled reduced
differential transform of uðx; y; tÞ as

Uðh; k � hÞ ¼ 1
Cðhaþðk � hÞbþ 1Þ Dðhaþðk�hÞbÞ

t uðx; y; tÞ
h i

t¼0
; ð7:30Þ

whereas the inverse transform of Uðh; k � hÞ is

uðx; y; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb; ð7:31Þ

which is one of the solutions of coupled fractional differential equations.

Theorem 7.2 Suppose that Uðh; k � hÞ and Vðh; k � hÞ are coupled fractional
reduced differential transform of functions uðx; y; tÞ and vðx; y; tÞ, respectively.

i. If uðx; y; tÞ ¼ f ðx; y; tÞ � gðx; y; tÞ, then Uðh; k � hÞ ¼ Fðh; k � hÞ � G
ðh; k � hÞ.

ii. If uðx; y; tÞ ¼ af ðx; y; tÞ, where a 2 R, then Uðh; k � hÞ ¼ aFðh; k � hÞ.
iii. If f ðx; y; tÞ ¼ uðx; y; tÞvðx; y; tÞ, then Fðh; k � hÞ ¼Ph

l¼0

Pk�h
s¼0 Uðh� l; sÞ

Vðl; k � h� sÞ.
iv. If f ðx; y; tÞ ¼ Da

t uðx; y; tÞ, then

Fðh; k � hÞ ¼ Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ:

v. If f ðx; y; tÞ ¼ Db
t vðx; y; tÞ, then

Fðh; k � hÞ ¼ Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ:
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7.4 Application of MFRDTM for the Solution
of Fractional KdV Equations

We consider the generalized fractional KdV equation of the form

Da
t uþ umð Þxþ unð Þxxx ¼ 0; m[ 0; 1� n� 3; t[ 0; 0\a� 1 ð7:32Þ

with initial condition

uðx; 0Þ ¼ f ðxÞ: ð7:33Þ

Applying MFRDTM to Eq. (7.32) and using basic properties of Table 7.1, we
can obtain

Cðaðkþ 1Þþ 1Þ
Cðakþ 1Þ Ukþ 1ðxÞþ @AkðxÞ

@x
þ @3�AkðxÞ

@x3
¼ 0; k� 0 ð7:34Þ

where UkðxÞ is the transformed function of uðx; tÞ, and the nonlinear terms um and
un have been considered as Adomian polynomials

P1
k¼0 Ak U0ðxÞ;U1ðxÞ; . . .;ð

UkðxÞÞ and
P1

k¼0
�Ak U0ðxÞ;U1ðxÞ; . . .;UkðxÞð Þ, respectively.

From the initial condition (7.33), we have

U0ðxÞ ¼ f ðxÞ: ð7:35Þ

Substituting (7.35) into (7.34), we obtain the values of UkðxÞ successively.
Then, the approximate solution can be obtained as

~upðx; tÞ ¼
Xp
m¼0

UmðxÞtma; ð7:36Þ

where p is the order of approximate solution.

7.4.1 Numerical Solutions of Variant Types of Time
Fractional KdV Equations

In order to assess the advantages and the accuracy of the modified fractional
reduced differential transform method (MFRDTM) for solving nonlinear fractional
KdV equation, this method has been applied to solve the following four examples.
In the first two examples, we consider quasi-linear time fractional KdV equations,
while in the last two examples, we consider a nonlinear time fractional dispersive
Kð2; 2Þ equation. All the results are calculated by using the symbolic calculus
software Mathematica.

7.4 Application of MFRDTM for the Solution of Fractional KdV Equations 245



Example 7.1

(a) (One-soliton solution)

Consider the following time fractional KdV equation

Da
t uþ 6uux þ uxxx ¼ 0; t[ 0; 0\a� 1 ð7:37Þ

with initial condition

uðx; 0Þ ¼ 1
2
sech2

x
2

� �
: ð7:38Þ

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Ukþ 1ðxÞ ¼ �Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ
� �

6
Xk
r¼0

Uk�rðxÞ @UrðxÞ
@x

þ @3UkðxÞ
@x3

 !
; k� 0

ð7:39Þ

where UkðxÞ is the transformed function of uðx; tÞ.
From the initial condition (7.38), we have

U0ðxÞ ¼ 1
2
sech2

x
2

� �
: ð7:40Þ

Substituting (7.40) into (7.39), we obtain the values of UkðxÞ for k ¼ 1; 2; 3; . . .
successively.

Then, using Mathematica, the third-order approximate solution can be obtained
as

uðx; tÞ ¼ 1
2
sech2

x
2

� �
þ t2að�2þ coshðxÞÞsech4 x

2

� �
4Cð1þ 2aÞ þ 4tacosech3ðxÞ sinh4 x

2

� �
Cð1þ aÞ

þ t3aðð39� 32 coshðxÞþ coshð2xÞÞCð1þ aÞ2 þ 12ð�2þ coshðxÞÞCð1þ 2aÞÞsech6 x
2

� �
tanh x

2

� �
16Cð1þ aÞ2Cð1þ 3aÞ :

ð7:41Þ

If a ¼ 1, the solution in Eq. (7.41), which becomes the single soliton solution, is
given by

uðx; tÞ ¼ 1
2
sech2

x� t
2

� �
: ð7:42Þ

For special case a ¼ 1, i.e., for classical integer order, the obtained results for the
exact solution (7.42) and the approximate solution in Eq. (7.41) obtained by
MFRDTM are shown in Figs. 7.1 and 7.2. It is very much graceful that the
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approximate solution obtained by the present method and the exact solution are
very much identical.

Figures 7.3, 7.4, 7.5, and 7.6 demonstrate the approximate solutions for
a ¼ 0:25, a ¼ 0:35, a ¼ 0:5, and a ¼ 0:75, respectively.

(b) (Two-soliton solution)

Consider the following time fractional KdV equation

Da
t uþ 6uux þ uxxx ¼ 0; t[ 0; 0\a� 1 ð7:43Þ

with initial condition

uðx; 0Þ ¼ 6sech2x: ð7:44Þ

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Ukþ 1ðxÞ ¼ �Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ
� �

3
@AkðxÞ
@x

þ @3UkðxÞ
@x3

� �
; k� 0 ð7:45Þ

where UkðxÞ is the transformed function of uðx; tÞ, and the nonlinear term u2 has
been considered as Adomian polynomials

P1
k¼0 Ak U0ðxÞ;U1ðxÞ; . . .;UkðxÞð Þ.

From the initial condition (7.44), we have

U0ðxÞ ¼ 6sech2x: ð7:46Þ

Substituting Eq. (7.46) into Eq. (7.45), we obtain the values of UkðxÞ for k ¼
1; 2; 3; . . . successively.

Fig. 7.1 Exact solution
uðx; tÞ for Eq. (7.37)
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Then, using Mathematica, the second-order approximate solution can be
obtained as

uðx; tÞ ¼ 6sech2xþ 12t2að�1064þ 183 coshð2xÞþ 240 coshð4xÞþ coshð6xÞÞsech8x
Cð1þ 2aÞ

þ 12tasech5ðxÞð25 sinhðxÞþ sinhð3xÞÞ
Cð1þ aÞ þOðt3aÞ:

ð7:47Þ

Fig. 7.2 Approximate
solution uðx; tÞ obtained by
MFRDTM for Eq. (7.37)

Fig. 7.3 Approximate
solution uðx; tÞ obtained by
MFRDTM for Eq. (7.37)
when a ¼ 0:25
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Fig. 7.4 Approximate
solution uðx; tÞ obtained by
MFRDTM for Eq. (7.37)
when a ¼ 0:35

Fig. 7.5 Approximate
solution uðx; tÞ obtained by
MFRDTM for Eq. (7.37)
when a ¼ 0:5

Fig. 7.6 Approximate
solution uðx; tÞ obtained by
MFRDTM for Eq. (7.37)
when a ¼ 0:75
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If a ¼ 1, the solution in Eq. (7.47), which becomes the two-soliton solution, is
given by

uðx; tÞ ¼ 24ð4 coshðx� 4tÞ2 þ sinhð2x� 32tÞ2Þ
ðcoshð3x� 36tÞþ 3 coshðx� 28tÞÞ2 : ð7:48Þ

Figures 7.7, 7.8, and 7.9 exhibit the two-soliton approximate solutions of the
KdV equation (7.43) for a ¼ 0:5, a ¼ 0:75, and a ¼ 1, respectively.

Example 7.2 Consider the following time fractional KdV equation

Da
t u� 3ðu2Þx þ uxxx ¼ 0; t[ 0; 0\a� 1 ð7:49Þ

with initial condition

uðx; 0Þ ¼ 6x: ð7:50Þ

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Ukþ 1ðxÞ ¼ Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ
� �

3
@AkðxÞ
@x

� @3UkðxÞ
@x3

� �
; k� 0 ð7:51Þ

where UkðxÞ is the transformed function of uðx; tÞ, and the nonlinear term u2 has
been considered as Adomian polynomials

P1
k¼0 Ak U0ðxÞ;U1ðxÞ; . . .;UkðxÞð Þ.

Fig. 7.7 Two-soliton approximate solution uðx; tÞ of the KdV equation obtained by using
Eq. (7.47) for a ¼ 0:5, t = 0.0006, and �6� x� 6
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From the initial condition Eq. (7.50), we have

U0ðxÞ ¼ 6x: ð7:52Þ

Substituting (7.52) into (7.51), we obtain the values of UkðxÞ for k ¼ 1; 2; 3; . . .
successively.

Then, using Mathematica, the fourth-order approximate solution can be obtained
as

Fig. 7.8 Two-soliton approximate solution uðx; tÞ of the KdV equation obtained by using
Eq. (7.47) for a ¼ 0:75, t = 0.008, and �6� x� 6

Fig. 7.9 Two-soliton approximate solution uðx; tÞ of the KdV equation obtained by using
Eq. (7.47) for a ¼ 1, t = 0.03, and �6� x� 6
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uðx; tÞ ¼ 6xþ 216tax
Cð1þ aÞ þ

15552t2ax
Cð1þ 2aÞ þ

279936t3ax 1
Cð1þ aÞ2 þ 4

Cð1þ 2aÞ
� �

Cð1þ 2aÞ
Cð1þ 3aÞ

þ 20155392t4axð4Cð1þ aÞ2Cð1þ 2aÞþCð1þ 2aÞ2 þ 2Cð1þ aÞCð1þ 3aÞÞ
Cð1þ aÞ2Cð1þ 2aÞCð1þ 4aÞ :

ð7:53Þ

For the special case a ¼ 1, the solution in Eq. (7.53), which becomes the exact
solitary wave solution, is given by

uðx; tÞ ¼ 6xþ 216txþ 7776t2xþ 279936t3xþ 10077696t4xþ � � �
¼ 6x

1� 36t
:

ð7:54Þ

Example 7.3 Consider the following time fractional dispersive Kð2; 2Þ equation

Da
t uþðu2Þx þðu2Þxxx ¼ 0; t[ 0; 0\a� 1; ð7:55Þ

with initial condition

uðx; 0Þ ¼ x: ð7:56Þ

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Ukþ 1ðxÞ ¼ �Cðakþ 1Þ
Cðaðkþ 1Þþ 1Þ
� �

@AkðxÞ
@x

þ @3UkðxÞ
@x3

� �
; k� 0; ð7:57Þ

where UkðxÞ is the transformed function of uðx; tÞ, and the nonlinear term u2 has

been considered as Adomian polynomials
P1
k¼0

Ak U0ðxÞ;U1ðxÞ; . . .;UkðxÞð Þ.
From the initial condition (7.56), we have

U0ðxÞ ¼ x: ð7:58Þ

Substituting (7.58) into (7.57), we obtain the values of UkðxÞ for k ¼ 1; 2; 3; . . .
successively.

Then, using Mathematica, the fifth-order approximate solution can be obtained as

uðx; tÞ ¼ x� 2tax
Cð1þ aÞ þ

8t2ax
Cð1þ 2aÞ �

8t3ax 1
Cð1þ aÞ2 þ 4

Cð1þ 2aÞ
� �

Cð1þ 2aÞ
Cð1þ 3aÞ

þ
32t4ax 4Cð1þ aÞ2Cð1þ 2aÞþCð1þ 2aÞ2 þ 2Cð1þ aÞCð1þ 3aÞ

� �
Cð1þ aÞ2Cð1þ 2aÞCð1þ 4aÞ
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�
64t5ax 2þ Cð1þ 2aÞ2ð4Cð1þ aÞ2 þCð1þ 2aÞÞ

Cð1þ aÞ3Cð1þ 3aÞ

� �
Cð1þ 4aÞ

Cð1þ 2aÞ2Cð1þ 5aÞ

þ
64t5ax

2Cð1þ 2aÞ 4Cð1þ aÞ2Cð1þ 2aÞþCð1þ 2aÞ2 þ 2Cð1þ aÞCð1þ 3aÞð Þ
Cð1þ aÞ2Cð1þ 4aÞ

� �
Cð1þ 4aÞ

Cð1þ 2aÞ2Cð1þ 5aÞ :

ð7:59Þ

For the special case a ¼ 1, the solution in Eq. (7.59), which becomes the exact
solitary wave solution, is given by

uðx; tÞ ¼ x� 2txþ 4t2x� 8t3xþ 16t4x� 32t5xþ � � � ¼ x
1þ 2t

: ð7:60Þ

Example 7.4 Consider the following time fractional dispersive Kð2; 2Þ equation

Da
t uþðu2Þx þðu2Þxxx ¼ 0; t[ 0; 0\a� 1 ð7:61Þ

with initial condition

uðx; 0Þ ¼ 4c
3
cos2

x
4

� �
: ð7:62Þ

Taking modified fractional reduced differential transform, we can obtain the
same recursive formula as in Eq. (7.57).

From the initial condition (5.1.20), here in this case, we have

U0ðxÞ ¼ 4c
3
cos2

x
4

� �
: ð7:63Þ

Substituting Eq. (7.63) into Eq. (7.57), we obtain the values of UkðxÞ for k ¼
1; 2; 3; . . . successively.

Then, usingMathematica, the third-order approximate solution can be obtained as

uðx; tÞ ¼ 4
3
c cos2

x
4

� �
þ c2ta sin x

2

� �
3Cð1þ aÞ �

c3t2a cos x
2

� �
6Cð1þ 2aÞ �

c4t3a sin x
2

� �
12Cð1þ 3aÞ : ð7:64Þ

For the special case a ¼ 1, the solution in Eq. (7.64), which becomes the exact
solitary wave solution, is given by

uðx; tÞ ¼ 4
3
c cos2

x
4

� �
þ 1

3
c2t sin

x
2

� �
� 1
12

c3t2 cos
x
2

� �
� 1
72

c4t3 sin
x
2

� �
þ 1

576
c5t4 cos

x
2

� �
þ � � � :

ð7:65Þ
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Using Taylor series into Eq. (7.65), we can find the closed-form solitary wave
solution with compact support, i.e., compacton solution

uðx; tÞ ¼
4c
3 cos

2 x�ct
4

� �
; x� ctj j � 2p;

0; otherwise:

	
:

7.4.2 Convergence Analysis and Error Estimate

Theorem 7.3 Suppose that, Dka
t uðx; tÞ 2 C ½0; L� 	 ½0; T�ð Þ for k ¼ 0; 1; 2; . . .;

Nþ 1, where 0\a\1, then

uðx; tÞ ffi
XN
m¼0

UmðxÞtma:

Moreover, there exists a value n, where 0� n� t so that the error term ENðx; tÞ
has the form

ENðx; tÞj j ¼ Sup
t2½0;T �

DðNþ 1Þauðx; nÞtðNþ 1Þa

CððNþ 1Þaþ 1Þ




 



:

Proof For 0\a\1,

JmaDmauðx; tÞ � Jðmþ 1ÞaDðmþ 1Þauðx; tÞ
¼ Jma Dmauðx; tÞ � JaDa Dmauðx; tÞð Þð Þ

¼ JmaðDmauðx; 0ÞÞ using Eq: 2:3:2ð Þ

¼ Dmauðx; 0Þtma
Cðmaþ 1Þ

¼ UmðxÞtma; using Eq: ð7:17Þ;

Now, the Nth order approximation for uðx; tÞ is

XN
m¼0

UmðxÞtma ¼
XN
m¼0

JmaDmauðx; tÞ � Jðmþ 1ÞaDðmþ 1Þauðx; tÞ
� �

¼ uðx; tÞ � JðNþ 1ÞaDðNþ 1Þauðx; tÞ

¼ uðx; tÞ � 1
CððNþ 1ÞaÞ

Z t

0

DðNþ 1Þauðx; sÞ
ðt � sÞ1�ðN þ 1Þads
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¼ uðx; tÞ � DðN þ 1Þauðx; nÞ
CððN þ 1ÞaÞ

Z t

0

ds

ðt � sÞ1�ðNþ 1Þa;

applying integral mean value theorem

¼ uðx; tÞ � DðN þ 1Þauðx; nÞtðNþ 1Þa

CððNþ 1Þaþ 1Þ

ð7:66Þ

Therefore,

uðx; tÞ ¼
XN
m¼0

UmðxÞtma þ DðN þ 1Þauðx; nÞtðNþ 1Þa

CððN þ 1Þaþ 1Þ : ð7:67Þ

Consequently, the error term

ENðx; tÞj j ¼ uðx; tÞ �
XN
m¼0

UmðxÞtma












 ¼ DðNþ 1Þauðx; nÞtðNþ 1Þa

CððN þ 1Þaþ 1Þ




 



: ð7:68Þ

This implies

ENðx; tÞj j ¼ Sup
t2½0;T �

DðNþ 1Þauðx; nÞtðNþ 1Þa

CððNþ 1Þaþ 1Þ




 



: ð7:69Þ

As N ! 1, ENj j ! 0.
Hence, uðx; tÞ can be approximated as

uðx; tÞ ¼
X1
m¼0

UmðxÞtma ffi
XN
m¼0

UmðxÞtma:

with the error term given in Eq. (7.69).

7.5 Application of CFRDTM for the Solutions of Time
Fractional Coupled KdV Equations

In the present section, CFRDTM has been applied to determine the approximate
solutions for the coupled time fractional KdV equations.
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7.5.1 Numerical Solutions of Time Fractional Coupled KdV
Equations

In order to examine the efficiency and applicability of the proposed coupled frac-
tional reduced differential transform method (CFRDTM) for solving time fractional
coupled KdV equations, this method has been employed to solve the following two
examples.

Example 7.5 Consider the following time fractional coupled KdV equations [41]

Da
t u ¼ � @3u

@x3
� 6u

@u
@x

þ 3v
@v
@x

; ð7:70aÞ

Db
t v ¼ � @3v

@x3
� 3u

@v
@x

; ð7:70bÞ

where t[ 0, 0\a; b� 1,

subject to the initial conditions

uðx; 0Þ ¼ 4c2 expðcxÞ
1þ expðcxÞð Þ2 ; ð7:70cÞ

vðx; 0Þ ¼ 4c2 expðcxÞ
1þ expðcxÞð Þ2 : ð7:70dÞ

The exact solutions of Eqs. (7.70a) and (7.70b), for the special case where
a ¼ b ¼ 1, are given by

uðx; tÞ ¼ vðx; tÞ ¼ 4c2 expðcðx� c2tÞÞ
1þ expðcðx� c2tÞÞð Þ2 : ð7:71Þ

In order to assess the advantages and the accuracy of the CFRDTM, we consider
the (2 + 1)-dimensional time fractional coupled Burgers equations. Firstly, we
derive the recursive formula from Eqs. (7.70a) and (7.70b). Now, Uðh; k � hÞ and
Vðh; k � hÞ are considered as the coupled fractional reduced differential transform
of uðx; tÞ and vðx; tÞ, respectively, where uðx; tÞ and vðx; tÞ are the solutions of
coupled fractional differential equations. Here, Uð0; 0Þ ¼ uðx; 0Þ, Vð0; 0Þ ¼ vðx; 0Þ
are the given initial conditions. Without loss of generality, the following assump-
tions have taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:
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Applying CFRDTM to Eq. (7.70a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ � @3

@x3
Uðh; k � hÞ

� 6
Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞ @

@x
Uðl; k � h� sÞ

 !

þ 3
Xh
l¼0

Xk�h

s¼0

Vðh� l; sÞ @

@x
Vðl; k � h� sÞ

 !
:

ð7:72Þ

From the initial condition of Eq. (7.70c), we have

Uð0; 0Þ ¼ uðx; 0Þ: ð7:73Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.70b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @3

@x3
Vðh; k � hÞ

� 3
Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !
:

ð7:74Þ

From the initial condition of Eq. (7.70d), we have

Vð0; 0Þ ¼ vðx; 0Þ ð7:75Þ

According to CFRDTM, using recursive Eq. (7.72) with initial condition
Eq. (7.73) and also using recursive scheme Eq. (7.74) with initial condition
Eq. (7.75) simultaneously, we obtain

Uð1; 0Þ ¼ 4c5 exp cxð Þð�1þ exp cxð ÞÞ
1þ exp cxð Þð Þ3Cð1þ aÞ ;

Vð0; 1Þ ¼ 4c5 exp cxð Þð�1þ exp cxð ÞÞ
1þ exp cxð Þð Þ3Cð1þ bÞ ;

Uð1; 1Þ ¼ � 96c8 expð2cxÞð1� 3 expðcxÞþ expð2cxÞÞ
1þ exp cxð Þð Þ6Cð1þ aþ bÞ ;

Vð0; 2Þ ¼ 4c8 expðcxÞð1� 14 expðcxÞþ 18 expð2cxÞ � 14 expð3cxÞþ expð4cxÞÞ
1þ exp cxð Þð Þ6Cð1þ 2bÞ ;
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Uð2; 0Þ ¼ 4c8 expðcxÞð1þ 22 expðcxÞ � 78 expð2cxÞþ 22 expð3cxÞþ expð4cxÞÞ
1þ exp cxð Þð Þ6Cð1þ 2aÞ ;

Vð1; 1Þ ¼ 48c8 expð2cxÞð�1þ expðcxÞÞ2
1þ exp cxð Þð Þ6Cð1þ aþ bÞ ;

Uð2; 1Þ ¼ � 96c11e2cxð�8þ 81ecx � 175e2cx þ 175e3cx � 81e4cx þ 8e5cxÞ
1þ ecxð Þ9Cð1þ 2aþ bÞ ;

Vð2; 1Þ ¼ 48c11e2cxð�1þ ecxÞð1þ 22ecx � 78e2cx þ 22e3cx þ e4cxÞ
1þ ecxð Þ9Cð1þ 2aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ 4c2ecx

1þ ecxð Þ2 þ 4c5ecxð�1þ ecxÞta
1þ ecxð Þ3Cð1þ aÞ

þ 4c8ecxð1þ 22ecx � 78e2cx þ 22e3cx þ e4cxÞt2a
1þ ecxð Þ6Cð1þ 2aÞ

� 96c11e2cxð�8þ 81ecx � 175e2cx þ 175e3cx � 81e4cx þ 8e5cxÞt2aþb

1þ ecxð Þ9Cð1þ 2aþ bÞ � � �

ð7:76Þ

vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ 4c2ecx

1þ ecxð Þ2 þ 4c5ecxð�1þ ecxÞtb
1þ ecxð Þ3Cð1þ bÞ

þ 4c8ecxð1� 14ecx þ 18e2cx � 14e3cx þ e4cxÞt2b
1þ exp cxð Þð Þ6Cð1þ 2bÞ

þ 48c11e2cxð�1þ ecxÞð1þ 22ecx � 78e2cx þ 22e3cx þ e4cxÞt2aþb

1þ ecxð Þ9Cð1þ 2aþbÞ � � �

ð7:77Þ
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When a ¼ 1 and b ¼ 1, the solution in Eq. (7.76) becomes

uðx; tÞ ¼ 4c2ecx

1þ ecxð Þ2 þ 4c5ecxð�1þ ecxÞt
1þ ecxð Þ3

þ 2c8ecxð1� 4ecx þ e2cxÞt2
1þ ecxð Þ4 þ . . .:

ð7:78Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.77) becomes

vðx; tÞ ¼ 4c2ecx

1þ ecxð Þ2 þ 4c5ecxð�1þ ecxÞt
1þ ecxð Þ3

þ 2c8ecxð1� 4ecx þ e2cxÞt2
1þ ecxð Þ4 þ . . .:

ð7:79Þ

The solutions in Eqs. (7.78) and (7.79) are exactly the same as the Taylor series
expansion of the exact solution

uðx; tÞ ¼ vðx; tÞ ¼ 4c2ecx

1þ ecxð Þ2 þ 4c5ecxð�1þ ecxÞt
1þ ecxð Þ3

þ 2c8ecxð1� 4ecx þ e2cxÞt2
1þ ecxð Þ4 þ . . .:

ð7:80Þ

In order to verify the efficiency and accuracy of the proposed method for the
time fractional coupled KdV equations, the graphs have been drawn in Figs. 7.10,
7.11, and 7.12. The numerical solutions for Eqs. (7.76) and (7.77) for the special
case where a ¼ 1 and b ¼ 1 are shown in Fig. 7.10. It can be observed from
Fig. 7.10 that the solutions obtained by the proposed method coincide with the
exact solution. Figure 7.11 shows the numerical solutions of Eqs. (7.76) and (7.77)
when a ¼ 1=3 and b ¼ 1=5. Again, Fig. 7.12 cites the numerical solutions when
a ¼ 0:005 and b ¼ 0:002. From Figs. 7.11 and 7.12, it can be observed that the
solutions for uðx; tÞ and vðx; tÞ bifurcate into waves as the time fractional derivatives
a and b decrease.

Example 7.6 Consider the following time fractional coupled KdV equations [42]

Da
t uþ 6uux � 6vvx þ uxxx ¼ 0; ð7:81aÞ

Db
t vþ 3uvx þ vxxx ¼ 0; ð7:81bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions
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uðx; 0Þ ¼ ksech2
ffiffiffi
k

p
x

2

 !
; ð7:82Þ

vðx; 0Þ ¼ kffiffiffi
2

p sech2
ffiffiffi
k

p
x

2

 !
: ð7:83Þ

First, we derive the recursive formula from Eqs. (7.81a) and (7.81b). Now,
Uðh; k � hÞ and Vðh; k � hÞ are considered as the coupled fractional reduced dif-
ferential transform of uðx; tÞ and vðx; tÞ, respectively, where uðx; tÞ and vðx; tÞ are
the solutions of coupled fractional differential equations. Here, Uð0; 0Þ ¼ uðx; 0Þ,

Fig. 7.10 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, and c the
exact solution of uðx; tÞ ¼
vðx; tÞ when a ¼ 1 and b ¼ 1
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Fig. 7.11 Surfaces show
a the numerical approximate
solution of uðx; tÞ and b the
numerical approximate
solution of vðx; tÞ when a ¼
1=3 and b ¼ 1=5

Fig. 7.12 Surfaces show
a the numerical approximate
solution of uðx; tÞ and b the
numerical approximate
solution of vðx; tÞ when a ¼
0:005 and b ¼ 0:002
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Vð0; 0Þ ¼ vðx; 0Þ are the given initial conditions. Without loss of generality, the
following assumptions have taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.81a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ � @3

@x3
Uðh; k � hÞ

� 6
Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞ @

@x
Uðl; k � h� sÞ

 !

þ 6
Xh
l¼0

Xk�h

s¼0

Vðh� l; sÞ @

@x
Vðl; k � h� sÞ

 !
ð7:84Þ

From the initial condition of Eq. (7.82), we have

Uð0; 0Þ ¼ uðx; 0Þ ð7:85Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.81b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @3

@x3
Vðh; k � hÞ

� 3
Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !
ð7:86Þ

From the initial condition of Eq. (7.83), we have

Vð0; 0Þ ¼ vðx; 0Þ ð7:87Þ

According to CFRDTM, using recursive Eq. (7.84) with initial condition
Eq. (7.85) and also using recursive scheme Eq. (7.86) with initial condition
Eq. (7.87) simultaneously, we obtain successively

Uð1; 0Þ ¼
k5=2sech2

ffiffi
k

p
x

2

� �
tanh

ffiffi
k

p
x

2

� �
Cð1þ aÞ ;

Vð0; 1Þ ¼
4
ffiffiffi
2

p
k5=2cosech3 x

ffiffiffi
k

p� �
sinh4

ffiffi
k

p
x

2

� �
Cð1þ bÞ ;
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Uð1; 1Þ ¼ �
3k4 �3þ 2 cosh x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
2Cð1þ aþ bÞ ;

Vð0; 2Þ ¼
k4 9� 14 cosh x

ffiffiffi
k

p� �
þ cosh 2x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
8
ffiffiffi
2

p
Cð1þ 2bÞ ;

Uð2; 0Þ ¼
k4 �39þ 22 cosh x

ffiffiffi
k

p� �
þ cosh 2x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
8Cð1þ 2aÞ ;

Vð1; 1Þ ¼
96

ffiffiffi
2

p
k4cosech6 x

ffiffiffi
k

p� �
sinh8

ffiffi
k

p
x

2

� �
Cð1þ aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ ksech2
ffiffiffi
k

p
x

2

 !
þ

tak5=2sech2
ffiffi
k

p
x

2

� �
tanh

ffiffi
k

p
x

2

� �
Cð1þ aÞ

þ
t2ak4 �39þ 22 cosh x

ffiffiffi
k

p� �
þ cosh 2x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
8Cð1þ 2aÞ

�
3taþbk4 �3þ 2 cosh x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
2Cð1þ aþ bÞ þ � � �

ð7:88Þ

vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ kffiffiffi
2

p sech2
ffiffiffi
k

p
x

2

 !
þ

4
ffiffiffi
2

p
tbk5=2cosech3 x

ffiffiffi
k

p� �
sinh4

ffiffi
k

p
x

2

� �
Cð1þ bÞ
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þ
t2bk4 9� 14 cosh x

ffiffiffi
k

p� �
þ cosh 2x

ffiffiffi
k

p� �� �
sech6

ffiffi
k

p
x

2

� �
8
ffiffiffi
2

p
Cð1þ 2bÞ

þ
96

ffiffiffi
2

p
taþbk4cosech6 x

ffiffiffi
k

p� �
sinh8

ffiffi
k

p
x

2

� �
Cð1þ aþ bÞ þ � � �

ð7:89Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.88) becomes

uðx; tÞ ¼ ksech2
ffiffiffi
k

p
x

2

 !
þ k5=2sech2

ffiffiffi
k

p
x

2

 !
tanh

ffiffiffi
k

p
x

2

 !
t

þ k4

4
�2þ cosh x

ffiffiffi
k

p� �� �
sech4

ffiffiffi
k

p
x

2

 !
t2

þ k11=2

24
�11 sinh

x
ffiffiffi
k

p

2

 !
þ sinh

3x
ffiffiffi
k

p

2

 ! !
sech5

ffiffiffi
k

p
x

2

 !
t3 þ � � �

ð7:90Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.89) becomes

vðx; tÞ ¼ kffiffiffi
2

p sech2
ffiffiffi
k

p
x

2

 !
þ 4

ffiffiffi
2

p
k5=2cosech3 x

ffiffiffi
k

p� �
sinh4

ffiffiffi
k

p
x

2

 !
t

þ
k4 �2þ cosh x

ffiffiffi
k

p� �� �
sech4

ffiffi
k

p
x

2

� �
t2

4
ffiffiffi
2

p

þ
k11=2 �11 sinh

ffiffi
k

p
x

2

� �
þ sinh 3x

ffiffi
k

p
2

� �� �
sech5 x

ffiffi
k

p
2

� �
t3

24
ffiffiffi
2

p þ � � �

ð7:91Þ

The solutions in Eqs. (7.90) and (7.91) are exactly the same as the Taylor series
expansions of the exact solutions

uðx; tÞ ¼ ksech2
ffiffiffi
k

p ðx� ktÞ
2

 !

¼ ksech2
ffiffiffi
k

p
x

2

 !
þ k5=2sech2

ffiffiffi
k

p
x

2

 !
tanh

ffiffiffi
k

p
x

2

 !
t

þ k4

4
�2þ cosh x

ffiffiffi
k

p� �� �
sech4

ffiffiffi
k

p
x

2

 !
t2

þ k11=2

24
�11 sinh

x
ffiffiffi
k

p

2

 !
þ sinh

3x
ffiffiffi
k

p

2

 ! !
sech5

ffiffiffi
k

p
x

2

 !
t3 þ � � �

ð7:92Þ
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vðx; tÞ ¼ kffiffiffi
2

p sech2
ffiffiffi
k

p ðx� ktÞ
2

 !

¼ kffiffiffi
2

p sech2
ffiffiffi
k

p
x

2

 !
þ 4

ffiffiffi
2

p
k5=2cosech3 x

ffiffiffi
k

p� �
sinh4

ffiffiffi
k

p
x

2

 !
t

þ
k4 �2þ cosh x

ffiffiffi
k

p� �� �
sech4

ffiffi
k

p
x

2

� �
t2

4
ffiffiffi
2

p

þ
k11=2 �11 sinh

ffiffi
k

p
x

2

� �
þ sinh 3x

ffiffi
k

p
2

� �� �
sech5 x

ffiffi
k

p
2

� �
t3

24
ffiffiffi
2

p þ � � �

ð7:93Þ

Again, in order to verify the efficiency and accuracy of the proposed method for
the time fractional coupled KdV equations, the graphs have been drawn in
Figs. 7.13, 7.14, and 7.15. The numerical solutions for Eqs. (7.90) and (7.91) for
the special case where a ¼ 1 and b ¼ 1 are shown in Fig. 7.13. It can be observed
from Fig. 7.10 that the solutions obtained by the proposed method are exactly
identical with the exact solutions. Figure 7.14 shows the numerical solutions of
Eqs. (7.88) and (7.89) when a ¼ 0:4 and b ¼ 0:25. Again, Fig. 7.15 cites the
numerical solutions when a ¼ 0:005 and b ¼ 0:002. From Figs. 7.14 and 7.15, it
can be observed that the solutions for uðx; tÞ and vðx; tÞ bifurcate into two waves as
the time fractional derivatives a and b decrease.

7.5.2 Soliton Solutions for Time Fractional Coupled
Modified KdV Equations

In the present section, CFRDTM has been successfully implemented to determine
the approximate solutions for the following coupled time fractional modified KdV
equations.

Example 7.7 Consider the following time fractional coupled modified KdV equa-
tions [43]

Da
t u ¼ 1

2
@3u
@x3

� 3u2
@u
@x

þ 3
2
@2v
@x2

þ 3
@ðuvÞ
@x

� 3
@u
@x

; ð7:94aÞ

Db
t v ¼ � @3v

@x3
� 3v

@v
@x

� 3
@u
@x

@v
@x

þ 3u2
@v
@x

þ 3
@v
@x

; ð7:94bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions
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Fig. 7.13 Surfaces show a the numerical approximate solution of uðx; tÞ, b the exact solution of
uðx; tÞ, c the numerical approximate solution of vðx; tÞ, and d the exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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Fig. 7.14 Surfaces show
a the numerical approximate
solution of uðx; tÞ and b the
numerical approximate
solution of vðx; tÞ when a ¼
0:4 and b ¼ 0:25

Fig. 7.15 Surfaces show
a the numerical approximate
solution of uðx; tÞ and b the
numerical approximate
solution of vðx; tÞ when a ¼
0:005 and b ¼ 0:002

7.5 Application of CFRDTM for the Solutions of Time … 267



uðx; 0Þ ¼ 1
2
þ tanhðxÞ; ð7:94cÞ

vðx; 0Þ ¼ 1þ tanhðxÞ: ð7:94dÞ

The exact solutions of Eqs. (7.94a) and (7.94b), for the special case where
a ¼ b ¼ 1, are given by

uðx; tÞ ¼ 1
2
þ tanhðxþ ctÞ; ð7:95aÞ

vðx; tÞ ¼ 1þ tanhðxþ ctÞ: ð7:95bÞ

In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled modified KdV equations. Firstly, we derive the recursive
formula from Eqs. (7.94a), (7.94b). Now, Uðh; k � hÞ and Vðh; k � hÞ are con-
sidered as the coupled fractional reduced differential transform of uðx; tÞ and vðx; tÞ,
respectively, where uðx; tÞ and vðx; tÞ are the solutions of coupled fractional dif-
ferential equations. Here, Uð0; 0Þ ¼ uðx; 0Þ, Vð0; 0Þ ¼ vðx; 0Þ are the given initial
conditions.

Without loss of generality, the following assumptions have been taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.94a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ 1

2
@3

@x3
Uðh; k � hÞ

þ 3
2
@2

@x2
Vðh; k � hÞ � 3

@

@x
Uðh; k � hÞ

þ 3
@

@x

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ
 !

� 3

 Xh
r¼0

Xh�r

l¼0

Xk�h

s¼0

Xk�h�s

p¼0

Uðr; k � h� s� pÞ

	Uðl; sÞ @

@x
Uðh� r � l; pÞ

!
ð7:96Þ

From the initial condition of Eq. (7.94c), we have

Uð0; 0Þ ¼ uðx; 0Þ ð7:97Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.94b)
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Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @3

@x3
Vðh; k � hÞþ 3

@

@x
Vðh; k � hÞ

� 3
Xh
l¼0

Xk�h

s¼0

@

@x
Uðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !

� 3
Xh
l¼0

Xk�h

s¼0

Vðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !

þ 3

 Xh
r¼0

Xh�r

l¼0

Xk�h

s¼0

Xk�h�s

p¼0

Uðr; k � h� s� pÞ

	Uðl; sÞ @

@x
Uðh� r � l; pÞ

!
ð7:98Þ

From the initial condition of Eq. (7.94d), we have

Vð0; 0Þ ¼ vðx; 0Þ ð7:99Þ

According to CFRDTM, using recursive Eq. (7.96) with initial condition
Eq. (7.97) and also using recursive scheme Eq. (7.98) with initial condition
Eq. (7.99) simultaneously, we obtain

Uð1; 0Þ ¼ � sech2ðxÞ
4Cð1þ aÞ ;

Vð0; 1Þ ¼ � sech2ðxÞ
4Cð1þ bÞ ;

Uð1; 1Þ ¼ 3sech2ðxÞ tanhðxÞ
4Cð1þ aþ bÞ ;

Vð0; 2Þ ¼ sech5ðxÞð9 coshðxÞ � 3 coshð3xÞþ 32 sinhðxÞ � 4 sinhð3xÞÞ
8Cð1þ 2bÞ ;

Uð2; 0Þ ¼ � 7sech2ðxÞ tanhðxÞ
8Cð1þ 2aÞ ;

Vð1; 1Þ ¼ 3sech5ðxÞð�12 coshðxÞþ 4 coshð3xÞ � 43 sinhðxÞþ 5 sinhð3xÞÞ
32Cð1þ aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by
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uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ 1
2
þ tanhðxÞ � tasech2ðxÞ

4Cð1þ aÞ �
7t2asech2ðxÞ tanhðxÞ

8Cð1þ 2aÞ

þ 3taþbsech2ðxÞ tanhðxÞ
4Cð1þ aþ bÞ þ � � �

ð7:100Þ

vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ 1þ tanhðxÞ � tbsech2ðxÞ
4Cð1þ bÞ

þ t2bsech5ðxÞð9 coshðxÞ � 3 coshð3xÞþ 32 sinhðxÞ � 4 sinhð3xÞÞ
8Cð1þ 2bÞ

þ 3taþ bsech5ðxÞð�12 coshðxÞþ 4 coshð3xÞ � 43 sinhðxÞþ 5 sinhð3xÞÞ
32Cð1þ aþ bÞ þ . . .

ð7:101Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.100) becomes

uðx; tÞ ¼ 1
2
þ tanhðxÞ � tsech2ðxÞ

4
� t2sech2ðxÞ tanhðxÞ

16

� t3sech4ðxÞð�2þ coshð2xÞÞ
192

þ � � �
ð7:102Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.101) becomes

vðx; tÞ ¼ 1þ tanhðxÞ � tsech2ðxÞ
4

� t2sech2ðxÞ tanhðxÞ
16

� t3sech4ðxÞð�2þ coshð2xÞÞ
192

þ . . .

ð7:103Þ

The solutions in Eqs. (7.102) and (7.103) are exactly the same as the Taylor
series expansions of the exact solutions
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uðx; tÞ ¼ 1
2
þ tanh x� t

4

� �
¼ 1

2
þ tanhðxÞ � tsech2ðxÞ

4
� t2sech2ðxÞ tanhðxÞ

16

� t3sech4ðxÞð�2þ coshð2xÞÞ
192

þ � � �

ð7:104Þ

vðx; tÞ ¼ 1þ tanh x� t
4

� �
¼ 1þ tanhðxÞ � tsech2ðxÞ

4
� t2sech2ðxÞ tanhðxÞ

16

� t3sech4ðxÞð�2þ coshð2xÞÞ
192

þ � � �

ð7:105Þ

In order to explore the efficiency and accuracy of the proposed method for the
time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.16a–d. The numerical solutions for Eqs. (7.102) and (7.103) for the special
case where a ¼ 1 and b ¼ 1 are shown in Fig. 7.16a, b. It can be observed from
Fig. 7.16a–d that the solutions obtained by the proposed method coincide with the
exact solution. In this case, we see that the soliton solutions are kink types for both
uðx; tÞ and vðx; tÞ.
Example 7.8 Consider the following time fractional coupled modified KdV equa-
tions [44]

Da
t u ¼ 1

2
@3u
@x3

� 3u2
@u
@x

þ 3
2
@2v
@x2

þ 3
@ðuvÞ
@x

þ 3
@u
@x

; ð7:106aÞ

Db
t v ¼ � @3v

@x3
� 3v

@v
@x

� 3
@u
@x

@v
@x

þ 3u2
@v
@x

� 3
@v
@x

; ð7:106bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions

uðx; 0Þ ¼ tanhðxÞ; ð7:106cÞ

vðx; 0Þ ¼ 1� 2 tanh2ðxÞ: ð7:106dÞ

The exact solutions of Eqs. (7.106a) and (7.106b) obtained by Adomian
decomposition method, for the special case where a ¼ b ¼ 1, are given by

uðx; tÞ ¼ tanhðx� tÞ; ð7:107aÞ

vðx; tÞ ¼ 1� 2 tanh2ðx� tÞ: ð7:107bÞ

In order to assess the advantages and the accuracy of theCFRDTMfor solving time
fractional coupled modified KdV equations, firstly we derive the recursive formula
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Fig. 7.16 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, c the exact
solution of uðx; tÞ, and d the
exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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fromEqs. (7.106a), (7.106b). Now,Uðh; k � hÞ andVðh; k � hÞ are considered as the
coupled fractional reduced differential transform of uðx; tÞ and vðx; tÞ, respectively,
where uðx; tÞ and vðx; tÞ are the solutions of coupled fractional differential equations.
Here, Uð0; 0Þ ¼ uðx; 0Þ, Vð0; 0Þ ¼ vðx; 0Þ are the given initial conditions.

Without loss of generality, the following assumptions have been taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.106a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ 1

2
@3

@x3
Uðh; k � hÞ

þ 3
2
@2

@x2
Vðh; k � hÞþ 3

@

@x
Uðh; k � hÞ

þ 3
@

@x

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ
 !

� 3

 Xh
r¼0

Xh�r

l¼0

Xk�h

s¼0

Xk�h�s

p¼0

Uðr; k � h� s� pÞ

	Uðl; sÞ @

@x
Uðh� r � l; pÞ

!
ð7:108Þ

From the initial condition of Eq. (7.106c), we have

Uð0; 0Þ ¼ uðx; 0Þ ð7:109Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.106b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @3

@x3
Vðh; k � hÞ � 3

@

@x
Vðh; k � hÞ

� 3
Xh
l¼0

Xk�h

s¼0

@

@x
Uðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !

� 3
Xh
l¼0

Xk�h

s¼0

Vðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !

þ 3

 Xh
r¼0

Xh�r

l¼0

Xk�h

s¼0

Xk�h�s

p¼0

Uðr; k � h� s� pÞ

	Uðl; sÞ @

@x
Uðh� r � l; pÞ

!
ð7:110Þ
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From the initial condition of Eq. (7.106d), we have

Vð0; 0Þ ¼ vðx; 0Þ ð7:111Þ

According to CFRDTM, using recursive Eq. (7.108) with initial condition
Eq. (7.109) and also using recursive scheme Eq. (7.110) with initial condition
Eq. (7.111) simultaneously, we obtain

Uð1; 0Þ ¼ � sech2ðxÞ
Cð1þ aÞ

Vð0; 1Þ ¼ 4sech2ðxÞ tanhðxÞ
Cð1þ bÞ

Uð1; 1Þ ¼ � 24sech4ðxÞ tanhðxÞ
Cð1þ aþ bÞ

Vð0; 2Þ ¼ sech6ðxÞð21� 26 coshð2xÞþ coshð4xÞÞ
Cð1þ 2bÞ

Uð2; 0Þ ¼ � ð�23þ coshð2xÞÞsech4ðxÞ tanhðxÞ
Cð1þ 2aÞ

Vð1; 1Þ ¼ 48sech4ðxÞ tanh2ðxÞ
Cð1þ aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ tanhðxÞ � tasech2ðxÞ
Cð1þ aÞ � t2að�23þ coshð2xÞÞsech4ðxÞ tanhðxÞ

Cð1þ 2aÞ

� 24taþ bsech4ðxÞ tanhðxÞ
Cð1þ aþ bÞ þ . . .

ð7:112Þ
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vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ 1� 2 tanh2ðxÞþ 4tbsech2ðxÞ tanhðxÞ
Cð1þ bÞ

þ t2bsech6ðxÞð21� 26 coshð2xÞþ coshð4xÞÞ
Cð1þ 2bÞ

þ 48taþbsech4ðxÞ tanh2ðxÞ
Cð1þ aþ bÞ þ � � �

ð7:113Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.112) becomes

uðx; tÞ ¼ tanhðxÞ � tsech2ðxÞ � t2sech2ðxÞ tanhðxÞ

� t3sech4ðxÞð�2þ coshð2xÞÞ
3

þ . . .
ð7:114Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.113) becomes

vðx; tÞ ¼ 1� 2 tanh2ðxÞþ 4tsech2ðxÞ tanhðxÞþ 2t2sech4ðxÞð�2þ coshð2xÞÞ

þ 2t3sech5ðxÞð�11 sinhðxÞþ sinhð3xÞÞ
3

þ . . .

ð7:115Þ

The solutions in Eqs. (7.114) and (7.115) are exactly the same as the Taylor
series expansions of the exact solutions

uðx; tÞ ¼ tanh x� tð Þ
¼ tanhðxÞ � tsech2ðxÞ � t2sech2ðxÞ tanhðxÞ

� t3sech4ðxÞð�2þ coshð2xÞÞ
3

þ . . .

ð7:116Þ

vðx; tÞ ¼ 1� 2 tanh2ðx� tÞ
¼ 1� 2 tanh2ðxÞþ 4tsech2ðxÞ tanhðxÞ
þ 2t2sech4ðxÞð�2þ coshð2xÞ

þ 2t3sech5ðxÞð�11 sinhðxÞþ sinhð3xÞÞ
3

þ . . .

ð7:117Þ

Again, in order to verify the efficiency and reliability of the proposed method for
the time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.17a–d. The numerical solutions for Eqs. (7.114) and (7.115) for the special
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case where a ¼ 1 and b ¼ 1 are shown in Fig. 7.17a–d. It can be observed from
Fig. 7.17a–d that the soliton solutions obtained by the proposed method are exactly
identical with the exact solutions. In this case, we see that the soliton solutions are
kink type for uðx; tÞ and bell type for vðx; tÞ.

Verification of Classical Integer-Order Solutions by ADM

In case of a ¼ 1 and b ¼ 1, to solve Eqs. (7.106a) and (7.106b) by means of
Adomian decomposition method (ADM), we rewrite Eqs. (7.106a) and (7.106b) in
an operator form

Ltu ¼ 1
2
@3u
@x3

� 3AðuÞþ 3
2
@2v
@x2

þ 3Bðu; vÞþ 3
@u
@x

; ð7:118Þ

Ltv ¼ � @3v
@x3

� 3CðvÞ � 3Gðu; vÞþ 3Hðu; vÞ � 3
@v
@x

; ð7:119Þ

where Lt � @
@t is the easily invertible linear differential operator with its inverse

operator L�1
t ð:Þ � R t0 ð:Þds. Here, the functions AðuÞ ¼ u2 @u

@x, Bðu; vÞ ¼ @ðuvÞ
@x ,

CðvÞ ¼ v @v
@x, Gðu; vÞ ¼ @u

@x
@v
@x, and Hðu; vÞ ¼ u2 @v

@x are related to the nonlinear terms
and they can be expressed in terms of the Adomian polynomials as follows:

AðuÞ ¼P1
n¼0 An, Bðu; vÞ ¼

P1
n¼0 Bn, CðvÞ ¼

P1
n¼0 Cn, Gðu; vÞ ¼

P1
n¼0 Gn, and

Hðu; vÞ ¼P1
n¼0 Hn. In particular, for nonlinear operators AðuÞ and Bðu; vÞ, the

Adomian polynomials are defined by

An ¼ 1
n!

dn

dkn
A
X1
k¼0

kkuk

 !" #





k¼0

; n� 0

Bn ¼ 1
n!

dn

dkn
B
X1
k¼0

kkuk;
X1
k¼0

kkvk

 !" #





k¼0

; n� 0

The first few components of AðuÞ, Bðu; vÞ, CðvÞ, Gðu; vÞ, and Hðu; vÞ are,
respectively, given by

A0 ¼ u20u0x;

A1 ¼ u20u1x þ 2u0u1u0x;

A2 ¼ u0xð2u0u2 þ u21Þþ u20u2x þ 2u0u1u1x

. . .;
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Fig. 7.17 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, c the exact
solution of uðx; tÞ, and d the
exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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B0 ¼ u0v0x þ v0u0x;

B1 ¼ u0v1x þ v1u0x þ u1v0x þ v0u1x;

B2 ¼ u0v2x þ v2u0x þ u1v1x þ v1u1x þ u2v0x þ v0u2x;

. . .;

C0 ¼ v0v0x;

C1 ¼ v0v1x þ v1v0x;

C2 ¼ v1v1x þ v0v2x þ v2v0x;

. . .;

G0 ¼ u0xv0x;

G1 ¼ u0xv1x þ v0xu1x;

G2 ¼ u1xv1x þ v0xu2x þ u0xv2x;

. . .;

H0 ¼ u20v0x;

H1 ¼ u20v1x þ 2u0u1v0x;

H2 ¼ v0xð2u0u2 þ u21Þþ u20v2x þ 2u0u1v1x;

. . .;

and so on, and the rest of the polynomials can be constructed in a similar manner.
Now, operating with L�1

t on the both sides of Eqs. (7.118) and (7.119), yields

uðx; tÞ ¼ uðx; 0Þþ L�1
t

1
2
@3u
@x3

� 3AðuÞþ 3
2
@2v
@x2

þ 3Bðu; vÞþ 3
@u
@x

� �
; ð7:120Þ

vðx; tÞ ¼ vðx; 0Þþ L�1
t � @3v

@x3
� 3CðvÞ � 3Gðu; vÞþ 3Hðu; vÞ � 3

@v
@x

� �
: ð7:121Þ

The ADM assumes that the two unknown functions uðx; tÞ and vðx; tÞ can be
expressed by infinite series in the following forms
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uðx; tÞ ¼
X1
n¼0

unðx; tÞ; ð7:122Þ

vðx; tÞ ¼
X1
n¼0

vnðx; tÞ: ð7:123Þ

Substituting Eqs. (7.122) and (7.123) into Eqs. (7.120) and (7.121) yields

u0ðx; tÞ ¼ uðx; 0Þ;

unþ 1ðx; tÞ ¼ L�1
t

1
2
@3unðx; tÞ

@x3
� 3An þ 3

2
@2vnðx; tÞ

@x2
þ 3Bn þ 3

@unðx; tÞ
@x

� �
; n� 0:

ð7:124Þ

v0ðx; tÞ ¼ vðx; 0Þ;

vnþ 1ðx; tÞ ¼ L�1
t � @3vnðx; tÞ

@x3
� 3Cn � 3Gn þ 3Hn � 3

@vnðx; tÞ
@x

� �
; n� 0:

ð7:125Þ

Using known u0ðx; tÞ and v0ðx; tÞ, all the remaining components unðx; tÞ and
vnðx; tÞ, n[ 0 can be completely determined such that each term is determined by
using the previous term. From Eqs. (7.124) and (7.125) with Eqs. (7.106c) and
(7.106d), we determine the individual components of the decomposition series as

u0 ¼ tanhðxÞ;

v0 ¼ 1� 2 tanh2ðxÞ;

u1 ¼ �t sech2ðxÞ;

v1 ¼ 4t sech2ðxÞ tanhðxÞ;

u2 ¼ �t2 sech2ðxÞ tanhðxÞ;

v2 ¼ 2t2ð�2þ coshð2xÞÞsech4ðxÞ;

u3 ¼ � 1
3
t3ð�2þ coshð2xÞÞsech4ðxÞ;

v3 ¼ 2
3
t3 sech5ðxÞð�11 sinhðxÞþ sinhð3xÞÞ;
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and so on, and the other components of the decomposition series (7.122) and
(7.123) can be determined in a similar way.

Substituting these u0; u1; u2; . . . and v0; v1; v2; . . . in Eqs. (7.122) and (7.123),
respectively, gives the ADM solutions for uðx; tÞ and vðx; tÞ in a series form

uðx; tÞ ¼ tanhðxÞ � tsech2ðxÞ � t2sech2ðxÞ tanhðxÞ
� 1
3
t3ð�2þ coshð2xÞÞsech4ðxÞþ � � � ;

ð7:126Þ

vðx; tÞ ¼ 1� 2 tanh2ðxÞþ 4tsech2ðxÞ tanhðxÞ
þ 2t2ð�2þ coshð2xÞÞsech4ðxÞ
þ 2

3
t3sech5ðxÞð�11 sinhðxÞþ sinhð3xÞÞþ � � � :

ð7:127Þ

Using Taylor series, we obtain the closed-form solutions

uðx; tÞ ¼ tanhðx� tÞ; ð7:128Þ

vðx; tÞ ¼ 1� 2 tanh2ðx� tÞ: ð7:129Þ

With initial conditions (7.106c) and (7.106d), the solitary wave solutions of
Eqs. (7.118) and (7.119) are of kink type for uðx; tÞ and bell type for vðx; tÞ which
agree to some extent with the results constructed by Fan [44]. According to the
learned author Fan [44], the solitary wave solutions of Eqs. (7.118) and (7.119) are
kink type for uðx; tÞ ¼ tanh xþ t

2

� �
and bell type for vðx; tÞ ¼ 3

2 � 2 tanh2 xþ t
2

� �
,

where k ¼ 1 and k ¼ �1. There is definitely a mistake to be reckoned with and
should be taken into account for further study. Since using the same parameters
k ¼ 1 and k ¼ �1, the solitary wave solutions of Eqs. (7.118) and (7.119) have
been obtained as in Eqs. (7.128) and (7.129).

In the present analysis, the two methods coupled fractional reduced differential
transform and Adomian decomposition method confirm the justification and cor-
rectness of the solutions obtained in Eqs. (7.128) and (7.129).

7.5.3 Approximate Solution for Fractional Predator–Prey
Equation

In order to assess the advantages and the accuracy of the CFRDTM, we consider
three cases with different initial conditions of the predator–prey system [54]. Firstly,
we derive the recursive formula obtained from predator–prey system of
Eqs. (7.10)–(7.11). Now, Uðh; k � hÞ and Vðh; k � hÞ are considered as the cou-
pled fractional reduced differential transform of uðx; y; tÞ and vðx; y; tÞ, respectively,
where uðx; y; tÞ and vðx; y; tÞ are the solutions of coupled fractional differential
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equations. Here, Uð0; 0Þ ¼ uðx; y; 0Þ, Vð0; 0Þ ¼ vðx; y; 0Þ are the given initial
conditions. Without loss of generality, the following assumptions have taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.10), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ @2

@x2
Uðh; k � hÞþ @2

@y2
Uðh; k � hÞ

þ aUðh; k � hÞ � b
Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ
 !

:

ð7:130Þ

From the initial condition of Eq. (7.10), we have

Uð0; 0Þ ¼ uðx; y; 0Þ: ð7:131Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.11)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ @2

@x2
Vðh; k � hÞþ @2

@y2
Vðh; k � hÞ

þ b
Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞVðh� l; sÞ
 !

� cVðh; k � hÞ:
ð7:132Þ

From the initial condition of Eq. (7.11), we have

Vð0; 0Þ ¼ vðx; y; 0Þ: ð7:133Þ

Applications and Results

Now, let us consider the three cases of the predator–prey system.

Case 1: Here, we consider the fractional predator–prey equation with constant
initial condition

uðx; y; 0Þ ¼ u0; vðx; y; 0Þ ¼ v0 ð7:134Þ

According to CFRDTM, using recursive scheme Eq. (7.130) with initial con-
dition Eq. (7.131) and also using recursive scheme Eq. (7.132) with initial condi-
tion Eq. (7.133) simultaneously, we obtain
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U½0; 0� ¼ uðx; y; 0Þ ¼ u0; V ½0; 0� ¼ vðx; y; 0Þ ¼ v0;

U½1; 0� ¼ u0ða� bv0Þ
Cð1þ aÞ ; V ½0; 1� ¼ ðbu0v0 � cv0Þ

Cð1þ bÞ ;

U½2; 0� ¼ u0ða� bv0Þ2
Cð1þ 2aÞ ;

V ½0; 2� ¼ v0ðc� bu0Þ2
Cð1þ 2bÞ ;

U½1; 1� ¼ � bu0ð�cv0 þ bu0v0Þ
Cð1þ aþ bÞ ;

V ½1; 1� ¼ bu0v0ða� bv0Þ
Cð1þ aþ bÞ ;

U½1; 2� ¼ � bðc� bu0Þ2u0v0
Cð1þ aþ 2bÞ ;

V ½1; 2� ¼ bu0ðc� bu0Þv0ð�ða� 2bv0ÞCð1þ aÞCð1þ bÞþ ð�aþ bv0ÞCð1þ aþ bÞÞ
Cð1þ aþ 2bÞCð1þ aÞCð1þ bÞ ;

U½2; 1� ¼ bu0v0ða� bv0Þððc� 2bu0ÞCð1þ aÞCð1þ bÞþ ðc� bu0ÞCð1þ aþ bÞÞ
Cð1þ 2aþ bÞCð1þ aÞCð1þ bÞ ;

V ½2; 1� ¼ bu0v0ða� bv0Þ2
Cð1þ 2aþ bÞ ;

U½3; 0� ¼ u0ða� bv0Þ3
Cð1þ 3aÞ ;

V ½0; 3� ¼ � v0ðc� bu0Þ3
Cð1þ 3bÞ ;

and so on.
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The approximate solutions, obtained in the series form, are given by

uðx; y; tÞ ¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ u0 þ u0ða� bv0Þta
Cð1þ aÞ þ u0ða� bv0Þ2t2a

Cð1þ 2aÞ

þ u0ða� bv0Þ3t3a
Cð1þ 3aÞ � bu0ð�cv0 þ bu0v0Þtaþ b

Cð1þ aþ bÞ þ � � �

ð7:135Þ

vðx; y; tÞ ¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ v0 þ ðbu0v0 � cv0Þtb
Cð1þ bÞ þ bu0v0ða� bv0Þtaþb

Cð1þ aþ bÞ

þ bu0v0ða� bv0Þ2t2aþb

Cð1þ 2aþ bÞ � � � :

ð7:136Þ

Figure 7.18 cites the numerical solutions for Eqs. (7.10)–(7.11) obtained by the
proposed CFRDTM method for the constant initial conditions u0 ¼ 100, v0 ¼ 10,
a = 0.05, b = 0.03, and c = 0.01. Figure 7.19 shows the time evolution of popu-
lation of uðx; y; tÞ and vðx; y; tÞ obtained from Eqs. (5.2) to (5.3) for different values
of a and b. In the present numerical analysis, Table 7.2 shows the comparison of
the numerical solutions with the proposed method with homotopy perturbation
method and variational iteration method, when a = 0.05, b = 0.03, and c = 0.01.
From Table 7.2, it is evidently clear that CFRDTM used in this paper has high
accuracy. The numerical results obtained in this proposed method coincide pre-
cisely with values obtained in the homotopy perturbation method.

Case 2: In this case, the initial conditions of Eqs. (7.10)–(7.11) are given by

uðx; y; 0Þ ¼ exþ y; vðx; y; 0Þ ¼ exþ y: ð7:137Þ

By using Eqs. (7.130) to (7.133), we can successively obtain

U½0; 0� ¼ uðx; y; 0Þ ¼ exþ y;V ½0; 0� ¼ vðx; y; 0Þ ¼ exþ y;

U½1; 0� ¼ 2exþ y þ aexþ y � be2xþ 2y

Cð1þ aÞ ;

V ½0; 1� ¼ 2exþ y � cexþ y þ be2xþ 2y

Cð1þ bÞ ;
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U½1; 1� ¼ be2ðxþ yÞð2� cþ bexþ yÞ
Cð1þ aþ bÞ ;

V ½1; 1� ¼ � be2ðxþ yÞð�2� aþ bexþ yÞ
Cð1þ aþ bÞ ;

U½2; 0� ¼ exþ yð4þ a2 � 10bexþ y þ b2e2ðxþ yÞ þ að4� 2bexþ yÞÞ
Cð1þ 2aÞ ;

V ½0; 2� ¼ exþ yð4þ c2 þ 10bexþ y þ b2e2ðxþ yÞ � 2cð2þ bexþ yÞÞ
Cð1þ 2bÞ ;

U½1; 2� ¼ � be2ðxþ yÞð4þ c2 þ 10bexþ y þ b2e2ðxþ yÞ � 2cð2þ bexþ yÞÞ
Cð1þ aþ bÞ ;

V ½1; 2� ¼ ðbe2ðxþ yÞð�ðað�8þ c� bexþ yÞþ 2ð�8þ cþ 9bexþ y

� bcexþ y þ b2e2ðxþ yÞÞÞCð1þ aÞCð1þ bÞ
þ ð2þ a� bexþ yÞð2� cþ bexþ yÞ
	 Cð1þ aþ bÞÞ=ðCð1þ aÞCð1þ bÞCð1þ aþ 2bÞÞ;

U½3; 0� ¼ exþ yð8þ a3 � 84bexþ y þ 28b2e2ðxþ yÞ � b3e3ðxþ yÞ þ a2ð6� 3bexþ yÞþ 3að4� 10bexþ y þ b2e2ðxþ yÞÞÞ
Cð1þ 3aÞ ;

V ½0; 3� ¼ exþ yð8� c3 þ 84bexþ y þ 28b2e2ðxþ yÞ þ b3e3ðxþ yÞ þ 3c2ð2þ bexþ yÞ � 3cð4þ 10bexþ y þ b2e2ðxþ yÞÞÞ
Cð1þ 3bÞ ;

and so on.
The explicit approximate solution is

uðx; y; tÞ ¼ exþ y þ ð2exþ y þ aexþ y � be2xþ 2yÞta
Cð1þ aÞ

þ exþ yð4þ a2 � 10bexþ y þ b2e2ðxþ yÞ þ að4� 2bexþ yÞÞt2a
Cð1þ 2aÞ þ � � � ;

ð7:138Þ

and

vðx; y; tÞ ¼ exþ y þ ð2exþ y � cexþ y þ be2xþ 2yÞtb
Cð1þ bÞ

� be2ðxþ yÞð�2� aþ bexþ yÞtaþb

Cð1þ aþ bÞ þ � � � ;
ð7:139Þ
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Fig. 7.18 Time evolution of the population for uðx; y; tÞ and vðx; y; tÞ obtained from Eqs. (7.135)
and (7.136), when a ¼ 1; b ¼ 1

Fig. 7.19 Time evolution of the population for uðx; y; tÞ and vðx; y; tÞ obtained from Eqs. (7.135)
and (7.136) for different values of a and b

Table 7.2 Comparison of the numerical solutions of the proposed method with homotopy
perturbation method and variational iteration method

T a ¼ b Numerical value
(u, v) by HPM

Numerical value
(u, v) by VIM

Numerical value
(u, v) by CFRDTM

0.02 1
0.9

(99.4831, 10.6146)
(99.1865, 10.9633)

(99. 4834, 10.6323)
(99.3065, 10. 8375)

(99.4831, 10.6146)
(99.1865, 10.9633)

0.2 1
0.9

(93.0910, 17.8514)
(90.5735, 20.5567)

(93. 3908, 17.7382)
(92.4584, 18.8198)

(93.0910, 17.8514)
(90.5735, 20.5567)

0.3 1
0.9

(87.9348, 23.4430)
(83.7993, 27.7785)

(88. 9466, 22. 7237)
(87. 8005, 24.0532)

(87.9348, 23.4430)
(83.7993, 27.7785)
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Figures 7.20 and 7.21 cite the numerical approximate solutions for the predator–
prey system with the appropriate parameter. The obtained results of predator–prey
population system indicate that this model exhibits the same behavior observed in
the anomalous biological diffusion fractional model.

Figures 7.22 and 7.23 show the numerical solutions for prey population density
for different values of parameters a, b, i.e., the natural birthrate of prey population
and competitive rate between predator and prey populations. The results depicted in
graphs agree with the realistic data.

Case 3: In this case, we consider the initial condition of fractional predator–prey
Eqs. (7.10)–(7.11)

U½0; 0� ¼ uðx; y; 0Þ ¼ ffiffiffiffiffi
xy

p
; V ½0; 0� ¼ vðx; y; 0Þ ¼ exþ y; ð7:140Þ

U½1; 0� ¼
� x2

4ðxyÞ3=2 �
y2

4ðxyÞ3=2 þ a
ffiffiffiffiffi
xy

p � bexþ y ffiffiffiffiffi
xy

p

Cð1þ aÞ ;

V ½0; 1� ¼ 2exþ y � cexþ y þ bexþ y ffiffiffiffiffi
xy

p
Cð1þ bÞ ;

U½1; 1� ¼ bexþ y ffiffiffiffiffi
xy

p ð2� cþ b
ffiffiffiffiffi
xy

p Þ
Cð1þ aþ bÞ ;

V ½1; 1� ¼ �bexþ yðy2 þ x2ð1� 4ay2 þ 4bexþ yy2ÞÞ
4ðxyÞ3=2Cð1þ aþ bÞ

;

U½2; 0� ¼ 1
16x4y4Cð1þ 2aÞ

ffiffiffiffiffi
xy

p �15y4 � 16bexþ yx3y4 þ x2ð2y2 � 8ða� bexþ yÞy4� �
þ x4ð�15þ 16a2y4 þ 16b2e2ðxþ yÞy4

� 8bexþ yy2ð�1þ 2yþ 4y2Þ � 8ay2ð1þ 4bexþ yy2ÞÞÞ;

V ½0; 2� ¼ exþ yð4ð�2þ cÞ2ðxyÞ3=2 þ 4b2ðxyÞ5=2 � bðy2 � 4xy2 þ x2ð1� 4yþ 8ð�2þ cÞy2ÞÞÞ
4ðxyÞ3=2Cð1þ 2bÞ

;

and so on.
The solution becomes

uðx; y; tÞ ¼ ffiffiffiffiffi
xy

p þ
� x2

4ðxyÞ3=2 �
y2

4ðxyÞ3=2 þ a
ffiffiffiffiffi
xy

p � bexþ y ffiffiffiffiffi
xy

p� �
ta

Cð1þ aÞ þ � � � ; ð7:141Þ
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Fig. 7.20 Surface shows the numerical approximate solution of uðx; y; tÞ when a ¼ 0:88,
b ¼ 0:54, a = 0.7, b = 0.03, c = 0.3, and t = 0.53

Fig. 7.21 Surface shows the numerical approximate solution of vðx; y; tÞ when a ¼ 0:88,
b ¼ 0:54, a = 0.7, b = 0.03, c = 0.9, and t = 0.6
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Fig. 7.22 Surface shows the numerical approximate solution of uðx; y; tÞ when a ¼ 0:88,
b ¼ 0:54, a = 0.5, b = 0.03, c = 0.3, and t = 0.53

Fig. 7.23 Surface shows the numerical approximate solution of uðx; y; tÞ when a ¼ 0:88,
b ¼ 0:54, a = 0.7, b = 0.04, c = 0.3, and t = 0.53

288 7 New Techniques on Fractional Reduced Differential …



and

vðx; y; tÞ ¼ exþ y þ ð2exþ y � cexþ y þ bexþ y ffiffiffiffiffi
xy

p Þtb
Cð1þ bÞ

þ ð�bexþ yðy2 þ x2ð1� 4ay2 þ 4bexþ yy2ÞÞtaþ b

4ðxyÞ3=2Cð1þ aþ bÞ
þ . . .;

ð7:142Þ

7.5.4 Solutions for Time Fractional Coupled
Schrödinger–KdV Equation

In the present analysis, fractional coupled Schrödinger–KdV equations with
appropriate initial conditions have been solved by using the novel method, viz.
CFRDTM.

Example 7.9 Consider the following time fractional coupled Schrödinger–KdV
equation

iDa
t ut ¼ uxx þ uv; ð7:143aÞ

Db
t vt ¼ �6vvx � vxxx þð uj j2Þx; ð7:143bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions

uðx; 0Þ ¼ 6
ffiffiffi
2

p
eipxk2sech2ðkxÞ; ð7:143cÞ

vðx; 0Þ ¼ pþ 16k2

3
� 6k2 tanh2ðkxÞ: ð7:143dÞ

The exact solutions of Eqs. (7.143a) and (7.143b), for the special case where
a ¼ b ¼ 1, are given by [55]

uðx; tÞ ¼ 6
ffiffiffi
2

p
eihxk2sech2ðknÞ; ð7:144aÞ

vðx; tÞ ¼ pþ 16k2

3
� 6k2 tanh2ðknÞ; ð7:144bÞ

where

h ¼ pt
3
þ p2t � 10k2t

3
þ px

� �
; n ¼ xþ 2pt;

and p; k are arbitrary constants.
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In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled Schrödinger–KdV equation, firstly we derive the recursive
formula from Eqs. (7.143a), (7.143b). Now, Uðh; k � hÞ and Vðh; k � hÞ are con-
sidered as the coupled fractional reduced differential transform of uðx; tÞ and vðx; tÞ,
respectively, where uðx; tÞ and vðx; tÞ are the solutions of coupled fractional dif-
ferential equations. Here, Uð0; 0Þ ¼ uðx; 0Þ, Vð0; 0Þ ¼ vðx; 0Þ are the given initial
conditions. Without loss of generality, the following assumptions have taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.143a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ �i

@2

@x2
Uðh; k � hÞ

� i
Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞVðl; k � h� sÞ:

ð7:145Þ

From the initial condition of Eq. (7.143c), we have

Uð0; 0Þ ¼ uðx; 0Þ: ð7:146Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.143b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ @

@x

Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞUðh� l; sÞ
 !

� 6
Xh
l¼0

Xk�h

s¼0

Vðl; k � h� sÞ @

@x
Vðh� l; sÞ

 !

� @3

@x3
Vðh; k � hÞ

ð7:147Þ

From the initial condition of Eq. (7.143d), we have

Vð0; 0Þ ¼ vðx; 0Þ: ð7:148Þ

According to CFRDTM, using recursive equation (7.149) with initial condition
Eq. (7.146) and also using recursive scheme Eq. (7.147) with initial condition
Eq. (7.148) simultaneously, we obtain
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U½1; 0� ¼ 2
ffiffiffi
2

p
k2sech2ðkxÞð�i cosðpxÞþ sinðpxÞÞðp� 3p2 þ 10k2 � 12ipk tanhðkxÞÞ

Cð1þ aÞ ;

V ½0; 1� ¼ 24pk3sech2ðkxÞ tanhðkxÞ
Cð1þ bÞ ;

U½1; 1� ¼ 72
ffiffiffi
2

p
pk5sech6ðkxÞð�i cosðpxÞþ sinðpxÞÞ sinhð2kxÞ

Cð1þ aþ bÞ ;

V ½0; 2� ¼ 12pk4ð�3ðpþ 48k2Þ � 2ðp� 48k2Þ coshð2kxÞþ p coshð4kxÞÞsech6ðkxÞ
Cð1þ 2bÞ ;

V ½1; 1� ¼ 576pk6ð�3þ 2 coshð2kxÞÞsech6ðkxÞ
Cð1þ aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by

uðx; tÞ ¼
X1
k0¼0

Xk0
h¼0

Uðh; k0 � hÞtðhaþðk0�hÞbÞ

¼ Uð0; 0Þþ
X1
k0¼1

Xk0
h¼1

Uðh; k0 � hÞtðhaþðk0�hÞbÞ þ � � �

¼ 6
ffiffiffi
2

p
k2sech2ðkxÞeipx

þ 72
ffiffiffi
2

p
pk5taþbsech6ðkxÞð�i cosðpxÞþ sinðpxÞÞ sinhð2kxÞ

Cð1þ aþ bÞ þ � � �

ð7:149Þ

vðx; tÞ ¼
X1
k0¼0

Xk0
h¼0

Vðh; k0 � hÞtðhaþðk0�hÞbÞ

¼ Vð0; 0Þþ
X1
k0¼1

Xk0
h¼0

Vðh; k0 � hÞtðhaþðk0�hÞbÞ þ . . .

¼ pþ 16k2

3
� 6k2 tanh2ðkxÞþ 24pk3tbsech2ðkxÞ tanhðkxÞ

Cð1þ bÞ

þ 576pk6taþbð�3þ 2 coshð2kxÞÞsech6ðkxÞ
Cð1þ aþ bÞ þ . . .

ð7:150Þ

When a ¼ 1 and b ¼ 1, the solutions in Eqs. (7.149) and (7.150) are exactly
same as the Taylor series expansions of the exact solutions
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uðx; tÞ ¼ 6
ffiffiffi
2

p
eihxk2sech2ðknÞ; ð7:151Þ

vðx; tÞ ¼ pþ 16k2

3
� 6k2 tanh2ðknÞ: ð7:152Þ

In the present numerical experiment, Eqs. (7.149) and (7.150) have been used to
draw the graphs as shown in Figs. 7.24, 7.25, 7.26, and 7.27, respectively. The
numerical solutions of the coupled Sch–KdV equation (7.143) have been shown in
Figs. 7.24, 7.25, 7.26, and 7.27 with the help of third-order approximations for the
series solutions of uðx; tÞ and vðx; tÞ, respectively. In the present numerical com-
putation, we have assumed p ¼ 0:05 and k ¼ 0:05. Figure 7.28 confirms that exact
solution and approximate solutions coincide reasonably well with each other and
consequently there is a good agreement of results between these two solutions when
a ¼ 1 and b ¼ 1. Figures 7.24, 7.25, 7.26, 7.27, and 7.28 show one-soliton solu-
tions for coupled Sch–KdV equation (7.143). Table 7.3 explores the comparison
between CFRDTM and Adomian decomposition method (ADM) results for
Reðuðx; tÞÞ and vðx; tÞ when a ¼ 1 and b ¼ 1. It manifests that CFRDTM solutions
are in good agreement with ADM solutions cited in [49].

Figures 7.29, 7.30, and 7.31 exhibit the numerical solutions of the coupled Sch–
KdV equations (7.143) when a ¼ 0:25 and b ¼ 0:75.

Example 7.10 Consider the time fractional coupled Schrödinger–KdV equations
(7.143a)–(7.143b) with the following initial conditions

uðx; 0Þ ¼ tanhðxÞeix; ð7:153aÞ

vðx; 0Þ ¼ 11
12

� 2 tanh2ðxÞ: ð7:153bÞ

The exact solutions of Eqs. (7.143a) and (7.143b), for the special case where
a ¼ b ¼ 1, are given by

uðx; tÞ ¼ tanhðxþ 2tÞei xþ 25
12tð Þ; ð7:154aÞ

vðx; tÞ ¼ 11
12

� 2 tanh2ðxþ 2tÞ ð7:154bÞ

Proceeding in a similar manner, using Eqs. (7.149) and (7.147), we can obtain

U½1; 0� ¼ ðcosðxÞþ i sinðxÞÞð24sech2ðxÞþ 25i tanhðxÞÞ
12Cð1þ aÞ ;

V ½0; 1� ¼ � 8sech2ðxÞ tanhðxÞ
Cð1þ bÞ ;

292 7 New Techniques on Fractional Reduced Differential …



Fig. 7.24 a Approximate solution for Reðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Reðuðx; tÞÞ when t ¼ 1, and c the exact solution for Reðuðx; tÞÞ when a ¼ 1 and b ¼ 1

Fig. 7.25 a Approximate solution for Imðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Imðuðx; tÞÞ when t ¼ 1, and c the exact solution for Imðuðx; tÞÞ when a ¼ 1 and b ¼ 1
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Fig. 7.26 a Approximate solution for Absðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Absðuðx; tÞÞ when t ¼ 1, and c the exact solution for Absðuðx; tÞÞ when a ¼ 1 and
b ¼ 1

Fig. 7.27 a Approximate solution for vðx; tÞ when a ¼ 1 and b ¼ 1, b corresponding solution for
vðx; tÞ when t ¼ 1, and c the exact solution for vðx; tÞ when a ¼ 1 and b ¼ 1
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Fig. 7.28 a Exact and approximate solutions for Reðuðx; tÞÞ, b the exact and approximate
solutions for Imðuðx; tÞÞ, and c the exact and approximate solutions for vðx; tÞ when t ¼ 1
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Fig. 7.29 a Approximate solution for Reðuðx; tÞÞ when a ¼ 0:25 and b ¼ 0:75, and b corre-
sponding solution for Reðuðx; tÞÞ when t ¼ 1

Fig. 7.30 a Approximate solution for Imðuðx; tÞÞ when a ¼ 0:25 and b ¼ 0:75, and b corre-
sponding solution for Imðuðx; tÞÞ when t ¼ 1

Fig. 7.31 a Approximate solution for vðx; tÞ when a ¼ 0:25 and b ¼ 0:75, and b corresponding
solution for vðx; tÞ when t ¼ 1
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Fig. 7.32 a Approximate solution for Absðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Absðuðx; tÞÞ when t ¼ 0:2, and c the exact solution for Absðuðx; tÞÞ when a ¼ 1 and
b ¼ 1
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Fig. 7.33 a Approximate solution for Reðuðx; tÞÞwhen a ¼ 1 and b ¼ 1, b corresponding solution
for Reðuðx; tÞÞ when t ¼ 0:4, and c the exact solution for Reðuðx; tÞÞ when a ¼ 1 and b ¼ 1

U½1; 1� ¼ 8isech2ðxÞðcosðxÞþ i sinðxÞÞ tanh2ðxÞ
Cð1þ aþ bÞ ;

V ½0; 2� ¼ 20ð�2þ coshð2xÞÞsech4ðxÞ
Cð1þ 2bÞ ;

U½2; 0� ¼ isech4ðxÞeixð9408þ 192 coshð2xÞþ 5858i sinhð2xÞþ 625i sinhð4xÞÞ
1152Cð1þ 2aÞ ;

V ½1; 1� ¼ � 4ð�2þ coshð2xÞÞsech4ðxÞ
Cð1þ aþ bÞ ;

and so on.
The approximate solutions can be obtained by Eq. (7.29).
Figure 7.35 confirms that exact solution and approximate solutions coincide

reasonably well with each other and consequently there is a good agreement of
results between these two solutions when a ¼ 1 and b ¼ 1.

Figures 7.32, 7.33, 7.34, 7.35, 7.37, 7.38, 7.39, and 7.40 exhibit the numerical
solutions of the coupled Sch–KdV equations (7.143a)–(7.143b) with initial con-
ditions (7.153a)–(7.153b) when a ¼ 1, b ¼ 1 and a ¼ 0:5, b ¼ 0:5, respectively
(Fig. 7.36).
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Example 7.11 Consider the time fractional coupled Schrödinger–KdV equations
(7.143a)–(7.143b) with the following initial conditions

uðx; 0Þ ¼ cosðxÞþ i sinðxÞ; ð7:155aÞ

vðx; 0Þ ¼ 3
4
: ð7:155bÞ

The exact solutions of Eqs. (7.143a) and (7.143b) with initial conditions (7.155),
for the special case when a ¼ b ¼ 1, are given by

uðx; tÞ ¼ cos xþ t
4

� �
þ i sin xþ t

4

� �
; ð7:156aÞ

vðx; tÞ ¼ 3
4
: ð7:156bÞ

The Jacobi periodic solutions [56] to coupled Sch–KdV equations (7.143a) and
(7.143b) are given by

Fig. 7.34 a Approximate solution for Imðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Imðuðx; tÞÞ when t ¼ 0:4, and c the exact solution for Imðuðx; tÞÞ when a ¼ 1 and
b ¼ 1
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uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2� m2

r
eihdn

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� m2

p n

� �
; ð7:157aÞ

vðx; tÞ ¼ 7
4
� 2
2� m2 dn

2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� m2

p n

� �
: ð7:157bÞ

where h ¼ xþ t
4

� �
and n ¼ xþ 2t.

For m ¼ 0, Eq. (7.157a–b) reduces to Eq. (7.156a–b).
Proceeding in a similar manner, using Eqs. (7.149) and (7.147), we can obtain

U½1; 0� ¼ iðcosðxÞþ i sinðxÞÞ
4Cð1þ aÞ ;

V ½0; 1� ¼ 0;

U½1; 1� ¼ 0;

V ½0; 2� ¼ 0;

Fig. 7.35 a Approximate solution for vðx; tÞ when a ¼ 1 and b ¼ 1, b corresponding solution for
vðx; tÞ when t ¼ 0:3, and c the exact solution for Reðuðx; tÞÞ when a ¼ 1 and b ¼ 1
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Fig. 7.36 a Exact and approximate solutions for Reðuðx; tÞÞ when t ¼ 0:4, b the exact and
approximate solutions for Imðuðx; tÞÞ when t ¼ 0:4, and c the exact and approximate solutions for
vðx; tÞ when t ¼ 0:3
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Fig. 7.37 a Approximate solution for Reðuðx; tÞÞ when a ¼ 0:5 and b ¼ 0:5, and b corresponding
solution for Reðuðx; tÞÞ when t ¼ 0:4

Fig. 7.38 a Approximate solution for Imðuðx; tÞÞ when a ¼ 0:5 and b ¼ 0:5, and b corresponding
solution for Imðuðx; tÞÞ when t ¼ 0:4

Fig. 7.39 a Approximate solution for Absðuðx; tÞÞ when a ¼ 0:5 and b ¼ 0:5, and b correspond-
ing solution for Absðuðx; tÞÞ when t ¼ 0:3
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U½2; 0� ¼ � eix

16Cð1þ 2aÞ ;

V ½1; 1� ¼ 0;

Fig. 7.40 a Approximate solution for vðx; tÞ when a ¼ 0:5 and b ¼ 0:5, and b corresponding
solution for vðx; tÞ when t ¼ 0:3

Fig. 7.41 a Approximate solution for Reðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Reðuðx; tÞÞ when t ¼ 0:4, and c the exact solution for Reðuðx; tÞÞ when a ¼ 1 and
b ¼ 1
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U½3; 0� ¼ �i cosðxÞþ sinðxÞ
64Cð1þ 3aÞ ;

and so on.
The approximate solutions can be obtained by Eq. (7.29).
Figures 7.41 and 7.42 show the exact and approximate solutions for Reðuðx; tÞÞ

and Imðuðx; tÞÞ when a ¼ 1 and b ¼ 1, respectively. Since the obtained approxi-
mate solution vðx; tÞ is exact, it is not drawn.

Figure 7.43 confirms that exact solution and approximate solutions coincide
reasonably well with each other and consequently there is a good agreement of
results between these two solutions when a ¼ 1 and b ¼ 1.

Figures 7.44 and 7.45 exhibit the numerical solutions of the coupled Sch–KdV
equations (7.143a)–(7.143b) with initial conditions (7.155) when a ¼ 0:5 and
b ¼ 0:5.

Fig. 7.42 a Approximate solution for Imðuðx; tÞÞ when a ¼ 1 and b ¼ 1, b corresponding
solution for Imðuðx; tÞÞ when t ¼ 0:4, and c the exact solution for Imðuðx; tÞÞ when a ¼ 1 and
b ¼ 1
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Fig. 7.43 a Exact and approximate solutions for Reðuðx; tÞÞ when t ¼ 0:4 and b the exact and
approximate solutions for Imðuðx; tÞÞ when t ¼ 0:4

Fig. 7.44 a Approximate solution for Reðuðx; tÞÞ when a ¼ 0:5 and b ¼ 0:5, and b corresponding
solution for Reðuðx; tÞÞ when t ¼ 0:4
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7.5.5 Traveling Wave Solutions for the Variant of Time
Fractional Coupled WBK Equations

In this section, the new proposed CFRDTM [34, 35] is very successfully employed
for obtaining approximate traveling wave solutions of fractional coupled Whitham–

Broer–Kaup (WBK) equations, fractional coupled modified Boussinesq equations,
and fractional approximate long wave equations. By using this proposed method,
the solutions were calculated in the form of a generalized Taylor’s series with easily
computable components. The obtained results justify that the proposed method is
also very efficient, effective, and simple for obtaining approximate solutions of
fractional coupled evolution equations.

Example 7.12 Consider the following time fractional coupled WBK equations
[57–59]

Da
t u ¼ �u

@u
@x

� @v
@x

� b
@2u
@x2

; ð7:158aÞ

Db
t v ¼ � @ðuvÞ

@x
� a

@3u
@x3

þ b
@2v
@x2

; ð7:158bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions

uðx; 0Þ ¼ k� 2Bk cothðknÞ; ð7:158cÞ

vðx; 0Þ ¼ �2BðBþ bÞk2csch2ðknÞ; ð7:158dÞ

where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b2

p
, n ¼ xþ c, and c, k, k are arbitrary constants.

Fig. 7.45 a Approximate solution for Imðuðx; tÞÞ when a ¼ 0:5 and b ¼ 0:5, and b corresponding
solution for Imðuðx; tÞÞ when t ¼ 0:4
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The exact solutions [57, 60] of Eqs. (7.158a) and (7.158b), for the special case
where a ¼ b ¼ 1, are given by

uðx; tÞ ¼ k� 2Bk cothðkðn� ktÞÞ; ð7:159aÞ

vðx; tÞ ¼ �2BðBþ bÞk2csch2ðkðn� ktÞÞ; ð7:159bÞ

In order to assess the advantages and the accuracy of the proposed method,
CFRDTM has been applied for solving time fractional coupled WBK equations.
First, we derive the recursive formula from Eqs. (7.158a) and (7.158b), respec-
tively. Now, Uðh; k � hÞ and Vðh; k � hÞ are considered as the coupled fractional
reduced differential transform of uðx; tÞ and vðx; tÞ, respectively, where uðx; tÞ and
vðx; tÞ are the solutions of coupled fractional differential equations. Here,
Uð0; 0Þ ¼ uðx; 0Þ, Vð0; 0Þ ¼ vðx; 0Þ are the given initial conditions.

Without loss of generality, the following assumptions have been taken

Uð0; jÞ ¼ 0; j ¼ 1; 2; 3; . . . and Vði; 0Þ ¼ 0; i ¼ 1; 2; 3; . . .:

Applying CFRDTM to Eq. (7.158a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ �

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞ @

@x
Uðl; k � h� sÞ

 !

� @

@x
Vðh; k � hÞ � b

@2

@x2
Uðh; k � hÞ:

ð7:160Þ

From the initial condition of Eq. (7.158c), we have

Uð0; 0Þ ¼ uðx; 0Þ: ð7:161Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.158b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @

@x

Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞVðh� l; sÞ
 !

� a
@3

@x3
Uðh; k � hÞþ b

@2

@x2
Vðh; k � hÞ:

ð7:162Þ

From the initial condition of Eq. (7.158d), we have

Vð0; 0Þ ¼ vðx; 0Þ: ð7:163Þ
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According to CFRDTM, using recursive Eq. (7.160) with initial condition
Eq. (7.161) and also using recursive scheme Eq. (7.162) with initial condition
Eq. (7.163) simultaneously, we obtain

Uð1; 0Þ ¼ � 2Bk2kcsch2ðknÞ
Cð1þ aÞ ;

Vð0; 1Þ ¼ � 4ðaþ bðbþBÞÞk3k cothðknÞcsch2ðknÞ
Cð1þ bÞ ;

Uð1; 1Þ ¼ � 4ðaþ bðbþBÞÞk4kð2þ coshð2knÞÞcsch4ðknÞ
Cð1þ aþ bÞ ;

Vð1; 1Þ ¼ � 8k5kð�2b2ðbþBÞþ að�2bþ 3BÞþ aB coshð2knÞÞ cothðknÞcsch4ðknÞ
Cð1þ aþ bÞ ;

and so on.
The approximate solutions, obtained in the series form, are given by

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ k� 2Bk cothðknÞ � 2Bk2kcsch2ðknÞta
Cð1þ aÞ

� 4ðaþ bðbþBÞÞk4kð2þ coshð2knÞÞcsch4ðknÞtaþb

Cð1þ aþ bÞ þ � � �

ð7:164Þ

vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ �2BðbþBÞk2csch2ðknÞ

� 4ðaþ bðbþBÞÞk3k cothðknÞcsch2ðknÞtb
Cð1þ bÞ � � � � :

ð7:165Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.164) becomes
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uðx; tÞ ¼ k� 2Bk cothðknÞ � 2Bk2kcsch2ðknÞt
� 2Bk3k2 cothðknÞcsch2ðknÞt2 þ � � � : ð7:166Þ

When a ¼ 1 and b ¼ 1, the solution in Eq. (7.165) becomes

vðx; tÞ ¼ �2BðBþ bÞk2csch2ðkðn� ktÞÞ
¼ �2ðBðbþBÞk2csch2ðknÞÞ � 4ðBðbþBÞk3k cothðknÞcsch2ðknÞÞt
� 2ðBðbþBÞk4k2ð2þ coshð2knÞÞcsch4ðknÞÞt2 � � � � :

ð7:167Þ

The solutions in Eqs. (7.166) and (7.167) are exactly the same as the Taylor
series expansions of the exact solutions

uðx; tÞ ¼ k� 2Bk cothðkðn� ktÞÞ
¼ k� 2Bk cothðknÞ � 2Bk2kcsch2ðknÞt
� 2Bk3k2 cothðknÞcsch2ðknÞt2 þ � � �

ð7:168Þ

vðx; tÞ ¼ �2BðBþ bÞk2csch2ðkðn� ktÞÞ
¼ �2ðBðbþBÞk2csch2ðknÞÞ � 4ðBðbþBÞk3k cothðknÞcsch2ðknÞÞt
� 2ðBðbþBÞk4k2ð2þ coshð2knÞÞcsch4ðknÞÞt2 � � � �

ð7:169Þ
Example 7.13 Consider the following time fractional coupled modified Boussinesq
(MB) equations [57, 58, 60]

Da
t u ¼ �u

@u
@x

� @v
@x

; ð7:170aÞ

Db
t v ¼ � @ðuvÞ

@x
� @3u

@x3
; ð7:170bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions

uðx; 0Þ ¼ k� 2k cothðknÞ; ð7:170cÞ

vðx; 0Þ ¼ �2k2csch2ðknÞ: ð7:170dÞ

As already mentioned earlier, if a = 1 and b = 0, the above fractional coupled
modified Boussinesq equations (7.170a) and (7.170b) can be obtained as a special
case of WBK equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Eqs. (7.170a) and (7.170b), for the special case
where a ¼ b ¼ 1, are given by
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uðx; tÞ ¼ k� 2k cothðkðn� ktÞÞ; ð7:171aÞ

vðx; tÞ ¼ �2k2csch2ðkðn� ktÞÞ: ð7:171bÞ

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.170a), we obtain the following recursive formula

Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ �

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞ @

@x
Uðl; k � h� sÞ

 !

� @

@x
Vðh; k � hÞ:

ð7:172Þ

From the initial condition of Eq. (7.170c), we have

Uð0; 0Þ ¼ uðx; 0Þ: ð7:173Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.170b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @

@x

Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞVðh� l; sÞ
 !

� @3

@x3
Uðh; k � hÞ:

ð7:174Þ

From the initial condition of Eq. (7.170d), we have

Vð0; 0Þ ¼ vðx; 0Þ: ð7:175Þ

According to CFRDTM, using recursive formulae (7.172) and (7.174) along
with initial conditions in Eqs. (7.173) and (7.175) simultaneously, we obtain the
approximate solutions in the series forms as

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ k� 2k cothðknÞ � 2k2kcsch2ðknÞta
Cð1þ aÞ

� 4k4kð2þ coshð2knÞÞcsch4ðknÞtaþ b

Cð1þ aþ bÞ þ � � � :

ð7:176Þ
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vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ �2k2csch2ðknÞ � 4k3k cothðknÞcsch2ðknÞtb
Cð1þ bÞ � � � � :

ð7:177Þ

When a ¼ 1 and b ¼ 1, the solutions in Eqs. (7.176) and (7.177) are exactly the
same as the Taylor series expansions of the exact solutions

uðx; tÞ ¼ k� 2k cothðkðn� ktÞÞ; ð7:178Þ

vðx; tÞ ¼ �2k2csch2ðkðn� ktÞÞ: ð7:179Þ
Example 7.14 Consider the following time fractional coupled approximate long
wave (ALW) equations [57, 58, 60]

Da
t u ¼ �u

@u
@x

� @v
@x

� 1
2
@2u
@x2

; ð7:180aÞ

Db
t v ¼ � @ðuvÞ

@x
þ 1

2
@2v
@x2

; ð7:180bÞ

where t[ 0, 0\a; b� 1, subject to the initial conditions

uðx; 0Þ ¼ k� k cothðknÞ; ð7:180cÞ

vðx; 0Þ ¼ �k2csch2ðknÞ ð7:180dÞ

As already mentioned earlier, if a = 0 and b = 1/2, the above fractional coupled
ALW equations (7.180a) and (7.180b) can be obtained as a special case of WBK
equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Eqs. (7.180a) and (7.180b), for the special case
where a ¼ b ¼ 1, are given by

uðx; tÞ ¼ k� k cothðkðn� ktÞÞ; ð7:181aÞ

vðx; tÞ ¼ �k2csch2ðkðn� ktÞÞ: ð7:181bÞ

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.180a), we obtain the following recursive formula
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Cððhþ 1Þaþðk � hÞbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Uðhþ 1; k � hÞ ¼ �

Xh
l¼0

Xk�h

s¼0

Uðh� l; sÞ @

@x
Uðl; k � h� sÞ

 !

� @

@x
Vðh; k � hÞ � 1

2
@2

@x2
Uðh; k � hÞ:

ð7:182Þ

From the initial condition of Eq. (7.180c), we have

Uð0; 0Þ ¼ uðx; 0Þ: ð7:183Þ

In the same manner, we can obtain the following recursive formula from
Eq. (7.180b)

Cðhaþðk � hþ 1Þbþ 1Þ
Cðhaþðk � hÞbþ 1Þ Vðh; k � hþ 1Þ ¼ � @

@x

Xh
l¼0

Xk�h

s¼0

Uðl; k � h� sÞVðh� l; sÞ
 !

þ 1
2
@2

@x2
Vðh; k � hÞ:

ð7:184Þ

From the initial condition of Eq. (7.180d), we have

Vð0; 0Þ ¼ vðx; 0Þ: ð7:185Þ

According to CFRDTM, using recursive formulae (7.182) and (7.184) along
with initial condition Eqs. (7.183) and (7.185) simultaneously, we obtain the
approximate solutions in the series forms as

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ Uð0; 0Þþ
X1
k¼1

Xk
h¼1

Uðh; k � hÞtðhaþðk�hÞbÞ

¼ k� k cothðknÞ � k2kcsch2ðknÞta
Cð1þ aÞ

� 2k4kð2þ coshð2knÞÞcsch4ðknÞtaþ b

Cð1þ aþ bÞ þ � � � :

ð7:186Þ
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vðx; tÞ ¼
X1
k¼0

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ Vð0; 0Þþ
X1
k¼1

Xk
h¼0

Vðh; k � hÞtðhaþðk�hÞbÞ

¼ �k2csch2ðknÞ � 2k3k cothðknÞcsch2ðknÞtb
Cð1þ bÞ � � � � :

ð7:187Þ

When a ¼ 1 and b ¼ 1, the solutions in Eqs. (7.186) and (7.187) are exactly the
same as the Taylor series expansions of the exact solutions

uðx; tÞ ¼ k� k cothðkðn� ktÞÞ; ð7:188Þ

vðx; tÞ ¼ �k2csch2ðkðn� ktÞÞ: ð7:189Þ

Tables 7.4, 7.5, and 7.6 cite the comparison between CFRDTM, Adomian
decomposition method (ADM) and variational iteration method (VIM) results for
uðx; tÞ and vðx; tÞ of WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) when a ¼ 1 and b ¼ 1. It reveals that very good approximations
have been obtained.

The comparison results between the proposed method CFRDTM with the other
methods ADM and VIM presented in Tables 7.4, 7.5, and 7.6 demonstrate that the
proposed method is more accurate and better than ADM and VIM. Therefore, the
pertinent feature of the proposed method is that it provides more accurate solution
than the existing methods ADM and VIM. Hence, the proposed methodology leads
to high accuracy. Moreover, the present approximations show excellent accuracy
and sufficiently justify the superiority over other methods.

Figures 7.46, 7.47, and 7.48 explore the numerical approximate solutions
obtained by the present method and exact solutions of uðx; tÞ and vðx; tÞ for WBK
equation (7.158), MB equation (7.170), and ALW equation (7.180) when a ¼ 1 and
b ¼ 1.

Figures 7.49, 7.50, and 7.51 exhibit the numerical approximate solutions of
uðx; tÞ and vðx; tÞ for WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) with regard to different values of a and b.

The comparison of approximate solutions uðx; tÞ and vðx; tÞ with regard to exact
solutions for WBK equation (7.158), MB equation (7.170), and ALW equation
(7.180) has been shown in Figs. 7.52, 7.53, and 7.54 at time instance t = 5 for
a ¼ 1 and b ¼ 1.

7.5.6 Convergence and Error Analysis of CFRDTM

In the present section, the error analysis of CFRDTM has been carried out through
the following theorem.
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Fig. 7.46 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, c the exact
solution of uðx; tÞ, and d the
exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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Fig. 7.47 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, c the exact
solution of uðx; tÞ, and d the
exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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Fig. 7.48 Surfaces show
a the numerical approximate
solution of uðx; tÞ, b the
numerical approximate
solution of vðx; tÞ, c the exact
solution of uðx; tÞ, and d the
exact solution of vðx; tÞ when
a ¼ 1 and b ¼ 1
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Theorem 7.4 Let Da
t u ¼ Fðu; v; ux; vx; uxx; vxx; uxxx; vxxx; . . .Þ and Db

t v ¼
Hðu; v; ux; vx; uxx; vxx; uxxx; vxxx; . . .Þ be the general coupled fractional differential

equations, and let the Caputo derivatives Dka
t uðx; tÞ and Dkb

t vðx; tÞ be continuous
functions on ½0; L� 	 ½0; T �, i.e.,

Dka
t uðx; tÞ 2 C ½0; L� 	 ½0; T �ð Þ and Dkb

t vðx; tÞ 2 C ½0; L� 	 ½0; T�ð Þ;

for k ¼ 0; 1; 2; . . .; nþ 1, where 0\a; b\1, then the approximate solutions ~uðx; tÞ
and ~vðx; tÞ of the preceding general coupled fractional differential equations are

Fig. 7.49 Surfaces show a the numerical approximate solution of uðx; tÞ and b the numerical
approximate solution of vðx; tÞ for WBK equations (7.158a) and (7.158b) when a ¼ 1=8 and
b ¼ 1=4
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~uðx; tÞ ffi
Xn
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb;

and

~vðx; tÞ ffi
Xn
k¼0

Xk
h¼0

Vðh; k � hÞthaþðk�hÞb;

where Uðh; k � hÞ and Vðh; k � hÞ are coupled fractional reduced differential
transforms of uðx; tÞ and vðx; tÞ, respectively.

Moreover, there exist values n1; n2 where 0� n1; n2 � t so that the error Enðx; tÞ
for the approximate solution ~uðx; tÞ has the form

Fig. 7.50 Surfaces show a the numerical approximate solution of uðx; tÞ and b the numerical
approximate solution of vðx; tÞ for MB equations (7.170a) and (7.170b) when a ¼ 1=4 and
b ¼ 0:88
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Enðx; tÞk k ¼ Sup
0� x� L
0� t� T

Dðnþ 1Þbuðx; 0þÞ
Cððnþ 1Þbþ 1Þ tðnþ 1Þb




 



;

if n1; n2 ! 0þ .

Proof From Lemma 1 of Chap. 1, we have

JaDaf ðtÞ ¼ f ðtÞ �
Xm�1

k¼0

tk

Cðkþ 1Þf
ðkÞð0þÞ; m� 1\a\m

Fig. 7.51 Surfaces show a the numerical approximate solution of uðx; tÞ and b the numerical
approximate solution of vðx; tÞ for ALW equations (7.180a) and (7.180b) when a ¼ 1=2 and
b ¼ 1=2
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The error term

Enðx; tÞ ¼ uðx; tÞ � ~uðx; tÞ;

where

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Dhaþ bðk�hÞuðx; 0Þ
Cðhaþ bðk � hÞþ 1Þt

haþ bðk�hÞ;

Fig. 7.52 Comparison of approximate solutions a uðx; tÞ and b vðx; tÞ with regard to exact
solutions of WBK equation (7.158) at time instance t = 5
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and

~uðx; tÞ ¼
Xn
k¼0

Xk
h¼0

Dhaþbðk�hÞuðx; 0Þ
Cðhaþ bðk � hÞþ 1Þ t

haþbðk�hÞ:

Now, for 0\a\1,

Jhaþ bðk�hÞDhaþbðk�hÞuðx; tÞ � Jðhþ 1Þaþ bðk�hÞDðhþ 1Þaþbðk�hÞuðx; tÞ
¼ Jhaþ bðk�hÞ Dhaþbðk�hÞuðx; tÞ � JaDa Dhaþbðk�hÞuðx; tÞ

� �� �
¼ Jhaþ bðk�hÞDhaþbðk�hÞuðx; 0Þ;

since 0\a\1, using Eq. (1.14)

Fig. 7.53 Comparison of approximate solutions a uðx; tÞ and b vðx; tÞ with regard to exact
solutions of MB equation (7.170) at time instance t = 5
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¼ Dhaþbðk�hÞuðx; 0Þ
Cðhaþ bðk � hÞþ 1Þ t

haþ bðk�hÞ ð7:190Þ

The nth order approximation for uðx; tÞ is

~uðx; tÞ ¼
Xn
k¼0

Xk
h¼0

Dhaþ bðk�hÞuðx; 0Þ
Cðhaþbðk � hÞþ 1Þ t

haþ bðk�hÞ

¼
Xn
k¼0

Xk
h¼0

Jhaþ bðk�hÞDhaþ bðk�hÞuðx; tÞ � Jðhþ 1Þaþ bðk�hÞDðhþ 1Þaþbðk�hÞuðx; tÞ
� �

;

Fig. 7.54 Comparison of approximate solutions a uðx; tÞ and b vðx; tÞ with regard to exact
solutions of ALW equation (7.180) at time instance t = 5
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using Eq. (7.190)

¼
Xn
k¼0

JkbDkbuðx; tÞ �
Xn
h¼0

Jðhþ 1Þaþ bðn�hÞDðhþ 1Þaþbðn�hÞuðx; tÞ

¼ uðx; tÞþ
Xn�1

k¼0

Jðkþ 1ÞbDðkþ 1Þbuðx; tÞ �
Xn
h¼0

Jðhþ 1Þaþ bðn�hÞDðhþ 1Þaþbðn�hÞuðx; tÞ

ð7:191Þ

Therefore, from Eq. (7.191), the error term becomes

Enðx; tÞ ¼ uðx; tÞ � ~uðx; tÞ

¼
Xn
h¼0

Jðhþ 1Þaþ bðn�hÞDðhþ 1Þaþbðn�hÞuðx; tÞ �
Xn�1

k¼0

Jðkþ 1ÞbDðkþ 1Þbuðx; tÞ

¼
Xn
i¼0

Jðiþ 1Þaþbðn�iÞDðiþ 1Þaþ bðn�iÞuðx; tÞ �
Xn�1

i¼0

Jðiþ 1ÞbDðiþ 1Þbuðx; tÞ

¼
Xn
i¼0

1
Cððiþ 1Þaþ bðn� iÞÞ

Z t

0

ðt � sÞðiþ 1Þaþ bðn�iÞ�1Dðiþ 1Þaþ bðn�iÞuðx; sÞds

�
Xn�1

i¼0

1
Cððiþ 1ÞbÞ

Z t

0

ðt � sÞðiþ 1Þb�1Dðiþ 1Þbuðx; sÞds

Whence applying integral mean value theorem yielding

Enðx; tÞ ¼
Xn
i¼0

Dðiþ 1Þaþbðn�iÞuðx; n1Þ
Cððiþ 1Þaþ bðn� iÞþ 1Þt

ðiþ 1Þaþ bðn�iÞ

�
Xn�1

i¼0

Dðiþ 1Þbuðx; n2Þ
Cððiþ 1Þbþ 1Þt

ðiþ 1Þb;

where 0� n1; n2 � t.
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This implies

Enðx; tÞ ¼ uðx; tÞ � ~uðx; tÞ

¼
Xn�1

i¼0

Dðiþ 1Þaþbðn�iÞuðx; n1Þ
Cððiþ 1Þaþ bðn� iÞþ 1Þt

ðiþ 1Þaþ bðn�iÞ

þ Dðnþ 1Þauðx; n1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þa �
Xn�1

i¼0

Dðiþ 1Þbuðx; n2Þ
Cððiþ 1Þbþ 1Þt

ðiþ 1Þb

¼
Xn�1

i¼0

Dðiþ 1Þaþ bðn�iÞuðx; n1Þ
Cððiþ 1Þaþ bðn� iÞþ 1Þ t

ðiþ 1Þaþ bðn�iÞ � Dðiþ 1Þbuðx; n2Þ
Cððiþ 1Þbþ 1Þ t

ðiþ 1Þb
� �

þ Dðnþ 1Þauðx; n1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þa

ð7:192Þ

Using generalized Taylor’s series formula, Eq. (7.192) becomes

Enðx; tÞ ¼ uðx; tÞ � Dðnþ 1Þauðx; f1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þa � uðx; tÞ

þ Dðnþ 1Þbuðx; f2Þ
Cððnþ 1Þbþ 1Þ t

ðnþ 1Þb þ Dðnþ 1Þauðx; n1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þa;

where 0� f1; f2 � max n1; n2f g and n1; n2 ! 0þ .
This implies

Enk k ¼ uðx; tÞ � ~uðx; tÞk k

¼ Sup
0� x� L
0� t� T

Dðnþ 1Þbuðx; f2Þ
Cððnþ 1Þbþ 1Þ t

ðnþ 1Þb � Dðnþ 1Þauðx; f1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þaþ Dðnþ 1Þauðx; n1Þ
Cððnþ 1Þaþ 1Þ t

ðnþ 1Þa




 



\1

¼ Sup
0� x� L
0� t� T

Dðnþ 1Þbuðx;0þÞ
Cððnþ 1Þbþ 1Þ t

ðnþ 1Þb



 


; since n1; n2 ! 0þ :

ð7:193Þ

As n ! 1; from Eq. (7.193)

Enk k ! 0:

Hence, uðx; tÞ can be approximated as

uðx; tÞ ¼
X1
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb ffi
Xn
k¼0

Xk
h¼0

Uðh; k � hÞthaþðk�hÞb ¼ ~uðx; tÞ;

with the error term given in Eq. (7.193).
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Following a similar argument, we may also find the error Ên



 

 ¼
vðx; tÞ � ~vðx; tÞk k for the approximate solution ~vðx; tÞ. ■

7.6 Conclusion

In this chapter, the MFRDTM has been proposed and it is directly applied to obtain
explicit and numerical solitary wave solutions of the fractional KdV like Kðm; nÞ
equations with initial conditions. In this regard, the reduced differential transform
method is modified to be easily employed to solve wide kinds of nonlinear frac-
tional differential equations. In this new approach, the nonlinear term is replaced by
its Adomian polynomials. As a result, we obtain the approximate solutions of
fractional KdV equation with high accuracy. The obtained results demonstrate the
reliability of the proposed algorithm and its wider applicability to fractional non-
linear evolution equations. It also exhibits that the proposed method is a very
efficient and powerful technique in finding the solutions of the nonlinear fractional
differential equations. The main advantage of the method is the fact that it provides
an analytical approximate solution, in many cases an exact solution, in a rapidly
convergent series with elegantly computed terms. It requires less amount of com-
putational overhead in comparison with other numerical methods and consequently
introduces a significant improvement in solving fractional nonlinear equations over
existing methods available in the open literature.

A new approximate numerical technique, coupled fractional reduced differential
transform, has been proposed in this chapter for solving nonlinear fractional partial
differential equations. The proposed method is only well suited for coupled frac-
tional linear and nonlinear differential equations. In comparison with other ana-
lytical methods, the present method is an efficient and simple tool to determine the
approximate solution of nonlinear coupled fractional partial differential equations.
The obtained results demonstrate the reliability of the proposed algorithm and its
applicability to nonlinear coupled fractional evolution equations. It also exhibits
that the proposed method is a very efficient and powerful technique in finding the
solutions of the nonlinear coupled time fractional differential equations. The main
advantage of the proposed method is that it requires less amount of computational
overhead in comparison with other numerical and analytical approximate methods
and consequently introduces a significant improvement in solving coupled frac-
tional nonlinear equations over existing methods available in the open literature.
The application of the proposed method for the solutions of time fractional coupled
KdV equations satisfactorily justifies its simplicity and efficiency.

In this chapter, new CFRDTM has been successfully implemented to obtain the
soliton solutions of coupled time fractional modified KdV equations. This new
method has been revealed by the author. The application of the proposed method
for the solutions of time fractional coupled modified KdV equations satisfactorily
justifies its simplicity and efficiency. Moreover, in case of integer-order coupled
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modified KdV equations, the obtained results have been verified by the Adomian
decomposition method. This investigation leads to the conclusion that soliton
solutions for integer-order coupled modified KdV equations have been wrongly
reported by the reverend author Fan [44].

Also in this chapter, the new approximate numerical technique CFRDTM [34,
35] has been proposed for solving nonlinear fractional partial differential equations
arising in predator–prey biological population dynamical system. The results thus
obtained validate the reliability of the proposed algorithm. It additionally displays
that the proposed process is an extraordinarily efficient and strong technique. The
main advantage of the proposed method is that it necessitates less amount of
computational effort. In a later study, it has been planned to use the proposed
process for the solution of the fractional epidemic model, coupled fractional neutron
diffusion equations with delayed neutrons, and other physical models with the
intention to show the efficiency and wide applicability of the newly proposed
method.

In view of the author [61], there is no difference between differential transform
method (DTM) and Taylor series method (TSM) both of which (normally) are
provided with an analytical continuation via a stepwise procedure, since it is
essential to transform the formal series into an approximate solution of the problem
(via analytical continuation). The author also wrote in [61] that one may then rightly
remember the approach as being “an extended Taylor series method.” Thus, the
DTM could, eventually, be named as the generalized Taylor series method
(GTSM). In the belief of the learned author, “DTM could deserve its name (as a
technique) when it extends the Taylor series method to new kinds of expansion
(different from a Taylor series expansion).” He, additionally, acknowledges that the
DTM has allowed an easy generalization of the Taylor series method to various
derivation procedures. “For example, fractional differential equations have been
considered using the DTM extended to the fractional derivative procedure via a
modified version of the Taylor series.” Despite the fact that there is a controversy in
the name of DTM, the author of [61] admits that major contribution of the DTM is
in the easy generalization of the Taylor series method to problems involving
fractional derivatives.

Furthermore, it may be stated that the Taylor series method is used invariably in
many mathematical analyses and derivations for the problems of applied science
and engineering. Taylor series method of order one is commonly known as the
Euler method. However, the Euler method has its independent existence. Like that,
DTM is also self-contained for at least in the application of fractional-order calculus
and has its own right for its existence.

Also, in this chapter, fractional coupled Schrödinger–Korteweg–de Vries
equations with appropriate initial values have been solved by using the novel
method, viz. CFRDTM. The applications of the proposed method for the solutions
of time fractional coupled Sch–KdV equations reasonably well justify its simplicity,
plausibility, and efficiency.

In this chapter, solutions of nonlinear coupled fractional partial differential
equations have been proposed by CFRDTM which is only well suited for coupled
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fractional linear and nonlinear differential equations. The present method is an
efficient and simple tool in comparison with other analytical methods. The obtained
results quite justify that the proposed method is very well suited and is an efficient
and powerful technique in finding the solutions of the nonlinear coupled time
fractional differential equations. One of the main advantages of the proposed
method is that it requires less amount of computational overhead and consequently
introduces a significant achievement in solving coupled fractional nonlinear
equations over existing methods available in the open literature. Furthermore, the
applications of the proposed method for the solutions of variant types of time
fractional coupled WBK equations satisfactorily justify its simplicity and efficiency.
The proposed method determines the analytical approximate solutions as well as
numerical solutions. This proposed method can be efficiently applied to coupled
fractional differential equations more accurately and easily than its comparable
methods ADM and VIM. So, this proposed method can be a better substitute than
its competitive methods ADM and VIM.
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Chapter 8
A Novel Approach with Time-Splitting
Fourier Spectral Method for Riesz
Fractional Differential Equations

8.1 Introduction

Nonlinear partial differential equations are useful in describing various physical
phenomena. The solutions of the nonlinear evolution equations play a crucial role in
the field of nonlinear wave phenomena. It is to be noticed that the nonlinear
Schrödinger (NLS) equation is one of the most generic soliton equations. It appears in
a wide variety of fields, such as nonlinear optics, quantum field theory, weakly
nonlinear dispersive water waves, and hydrodynamics [1–4]. Nonlinear phenomena
act as a significant role in a variety of scientific fields, especially in solid-state physics,
fluid mechanics, plasma waves, plasma physics, and chemical physics [5, 6].
Determination of exact solutions, in particular, traveling wave solutions, of nonlinear
equations in mathematical physics plays an important role in soliton theory [7, 8].

As a field of applied mathematics, fractional calculus is a generalization of the
differentiation and integration of integer order to arbitrary order (real or complex
order). The usefulness of fractional calculus has been found in various areas of
science and engineering. Its application has been seen in many research areas such as
transport processes, fluid dynamics, electrochemical processes, bioengineering,
signal processing, control theory, fractal theory, porous media, viscoelastic mate-
rials, electrical circuits, plasma physics, and nuclear reactor kinetics [9–15]. Many
physical and engineering phenomena which are analyzed by fractional calculus are
considered to be best modeled by fractional differential equations (FDEs). During
the past few decades, the intensive research pursuits in the development of the theory
of FDEs have been experienced due to its capability to the accurate elucidation of
many real-life problems as nature manifests in a fractional-order dynamical manner.
Up to now, a great deal of effort has been devoted to solving the FDEs by various
analytical and numerical methods. These methods include finite difference method
[16], operational matrix method [17], ðG0=GÞ-expansion method [18–21], Adomian
decomposition method [22, 23], differential transform method [24, 25], first integral
method [26, 27], and fractional subequation method [28, 29], etc.
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Derivative nonlinear Schrödinger (DNLS)-type equations are significant non-
linear models that have many implementations in nonlinear optics fibers and plasma
physics [30–33]. In nonlinear optics, nonlinear effects are studied comprehensively.
To describe the nonlinear effects in optical fibers without the inclusion of loss and
gain, the nonlinear Schrödinger (NLS) equation is utilized [30]. The employed NLS
equation is a lowest order approximate model describing the nonlinear effects in
optical fibers. Nowadays, higher-order nonlinear effects are inevitable in many
optical systems due to the recent advancement of technologies in ultra-high-bit-rate
optical fiber communication and laser. Thus, it is essential to be familiar with
higher-order nonlinearity in order to have a highly satisfactory apprehension of the
higher-order nonlinear effects.

8.2 Overview of the Present Study

In this chapter, Riesz fractional coupled Schrödinger–KdV equations have been
solved by implementing a new approach, viz. time-splitting spectral method. In
order to verify the results, it has been also solved by an implicit finite difference
method by using fractional centered difference approximation for Riesz fractional
derivative. The obtained results manifest that the proposed time-splitting spectral
method is very effective and simple for obtaining approximate solutions of Riesz
fractional coupled Schrödinger–KdV equations. In order to show the reliability and
efficiency of the proposed methods, numerical solutions obtained by these methods
have been presented graphically.

Also, time-splitting spectral approximation technique has been proposed for
Chen–Lee–Liu (CLL) equation involving Riesz fractional derivative. The proposed
numerical technique is efficient, unconditionally stable, and second-order accuracy
in time and spectral accuracy in space. Moreover, it conserves the total density in
the discretized level. In order to examine the results, with the aid of weighted
shifted Grünwald–Letnikov formula for approximating Riesz fractional derivative,
Crank–Nicolson weighted and shifted Grünwald difference (CN-WSGD) method
has been applied for Riesz fractional CLL equation. The comparison of results
reveals that the proposed time-splitting spectral method is very effective and simple
for obtaining single-soliton numerical solution of Riesz fractional CLL equation.

8.2.1 Riesz Fractional Coupled Schrödinger–KdV
Equations

In a nonlinear interaction between long and short waves, under the assumption of
weak nonlinearity, two typical types of interaction equations can be unified as the
following normalized form, namely coupled Schrödinger–KdV(S-K) equations.
The coupled Schrödinger–KdV equations [6, 34, 35]
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iut � uxx � uv ¼ 0; ð8:1Þ

vt þ 6vvx þ vxxx � ð uj j2Þx ¼ 0; ð8:2Þ

have been used extensively to model nonlinear dynamics of one-dimensional
Langmuir and ion-acoustic waves in a system of coordinates moving at the
ion-acoustic speed. Here, u is a complex function describing the electric field of
Langmuir oscillations and v is real function describing low-frequency density per-
turbation. The coupled Schrödinger–KdV equations are known to describe various
processes in dusty plasma, such as Langmuir, dust-acoustic wave, and electro-
magnetic waves [36]. Recently, Fan [36] devised unified algebraic method, Kaya
et al. [34] used Adomian’s decomposition method, Saha Ray [37] proposed a new
technique coupled fractional reduced differential transform, and Küçükarslan [38]
utilized homotopy perturbation method for computing solutions to coupled S-K
equations. (8.1)–(8.2). Many important equations of mathematical physics are
rewritten in the Hirota bilinear form through dependent variable transformations
[39]. By using a transformation method, the Schrödinger–KdV equation is written as
bilinear ordinary differential equations and two solutions to describing nonlinear
interaction of traveling waves are generated. As a result of that, multiple traveling
wave solutions of the coupled Schrödinger–KdV equations are obtained in Ref. [40].

The objective of the present work is to determine the numerical solutions of the
coupled S-K equations with the Riesz space fractional derivative ð1\a� 2Þ: The
model equations for the fractional coupled Schrödinger–KdV equations can be
presented in the following form

iut � @au
@ xj ja � uv ¼ 0; a\x\b; 0� t� T ð8:3Þ

vt þ 6vvx þ vxxx � ð uj j2Þx ¼ 0; a\x\b; 0� t� T ð8:4Þ

with initial conditions

uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ ð8:5Þ

and the Dirichlet boundary conditions

uða; tÞ ¼ uðb; tÞ ¼ 0; vða; tÞ ¼ vðb; tÞ ¼ 0: ð8:6Þ

The Riesz space fractional derivative of order að1\a� 2Þ is defined as

@a

@ xj ja f ðx; tÞ ¼ �ð�DÞa=2f ðx; tÞ ¼ � 1
2 cos pa2

�1Da
x f ðx; tÞþ xD

a
1 f ðx; tÞ� �

; ð8:7Þ
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where the left and right Riemann–Liouville fractional derivatives of order
aðn� 1\a\nÞ on an infinite domain are defined as

�1Da
x f ðx; tÞ ¼

1
Cðn� aÞ

@n

@xn

Zx
�1

ðx� nÞn�1�af ðn; tÞdn; ð8:8Þ

xDa
þ1f ðx; tÞ ¼ ð�1Þn

Cðn� aÞ
@n

@xn

Zþ1

x

ðn� xÞn�1�af ðn; tÞdn: ð8:9Þ

The Riesz fractional derivative can also be characterized as

�ð�DÞa=2f ðx; tÞ ¼ �F�1ð lkj ja f̂ ðlk; tÞÞ; ð8:10Þ

where F is the Fourier transform.
If f ðx; tÞ is defined on the finite interval ½a; b� and satisfies the boundary con-

ditions f ða; tÞ ¼ f ðb; tÞ ¼ 0; we can extend the function by taking f ðx; tÞ � 0 for
x� a and x� b: Furthermore, if f ðx; tÞ satisfies that u0ða; tÞ ¼ u0ðb; tÞ ¼ 0; by the
Fourier transform (8.10), it is shown in [41, 42] that the Riesz fractional derivative
on the finite interval ½a; b� can be defined as

@a

@ xj ja f ðx; tÞ ¼ �ð�DÞa=2f ðx; tÞ ¼ � 1
2 cos pa2

aD
a
x f ðx; tÞþ xD

a
bf ðx; tÞ

� �
; 1\a� 2

ð8:11Þ

where

aD
a
x f ðx; tÞ ¼

1
Cðn� aÞ

@n

@xn

Zx
a

ðx� nÞn�1�af ðn; tÞdn; ð8:12aÞ

xD
a
bf ðx; tÞ ¼

ð�1Þn
Cðn� aÞ

@n

@xn

Zb
x

ðn� xÞn�1�af ðn; tÞdn: ð8:12bÞ

8.2.2 Riesz Fractional Chen–Lee–Liu Equation

In the theories of plasma physics, fluid dynamics, and nonlinear optics, there persist
several analogs of the NLS equation in which the appearance of second-order
dispersion and cubic nonlinearity persist. The second-type derivative nonlinear
Schrödinger (DNLSII) equation is one of these analogs of the NLS equation
introduced in 1979 [43], given by
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iqt þ qxx þ i qj j2qx ¼ 0; ð8:13Þ

which is also known as the Chen–Lee–Liu (CLL) equation. Without self-phase
modulation, Moses et al. proved optical pulse propagation involving self-steepening
in 2007 [44]. This experiment well establishes the first experimental manifestation
of the DNLSII equation [30]. Alike the NLS equation, DNLSII equation is also a
real physical model in optics.

In the present chapter, numerical solutions of the CLL equation with Riesz
derivative of order a ð1\a� 2Þ have been also determined by a new approach. The
proposed time-splitting spectral method (TSSM) is intended to discretize the CLL
equation with Riesz fractional derivative.

The model problem for pulse propagation in a single-mode optical fiber can be
described by the CLL equation involving Riesz derivative of the form:

iqt þ @aq
@ xj ja þ i qj j2qx ¼ 0; a\x\b; 0� t� T ð8:14Þ

with initial condition

qðx; 0Þ ¼ c0ðxÞ; a� x� b; ð8:15Þ

and the boundary conditions

qða; tÞ ¼ qðb; tÞ; qxða; tÞ ¼ qxðb; tÞ; t[ 0: ð8:16Þ

Here, q ¼ qðx; tÞ is the complex wave function. In the optical fiber setting, the
cubic nonlinear term is associated with the self-steepening phenomena, while the
fractional-order term is related to dispersion.

The Riesz space fractional derivative [41] of order að1\a� 2Þ is defined as

@a

@ xj ja uðx; tÞ ¼ �ð�DÞa=2uðx; tÞ ¼ � 1
2 cos pa2

�1Da
xuðx; tÞþ xD

a
1uðx; tÞ� �

; ð8:17Þ

where the left and right Riemann–Liouville fractional derivatives of order
aðn� 1\a\nÞ on an infinite domain are defined as

�1Da
xuðx; tÞ ¼

1
Cðn� aÞ

@n

@xn

Zx
�1

ðx� fÞn�1�auðf; tÞdf; ð8:18Þ

xD
a
þ1uðx; tÞ ¼ ð�1Þn

Cðn� aÞ
@n

@xn

Zþ1

x

ðf� xÞn�1�auðf; tÞdf: ð8:19Þ
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The Riesz fractional derivative can also be characterized as [16]

�ð�DÞa=2uðx; tÞ ¼ �F�1ð lkj jaûðlk; tÞÞ; ð8:20Þ

where F is the Fourier transform.
If uðx; tÞ is defined on the finite interval ½a; b� and satisfies the boundary con-

ditions uða; tÞ ¼ uðb; tÞ ¼ 0; the function can be extended by taking uðx; tÞ � 0 for
x� a and x� b: Additionally, if uðx; tÞ satisfies that uxða; tÞ ¼ uxðb; tÞ ¼ 0; by the
Fourier transform (8.20), it is proven in [41, 42] that the Riesz fractional derivative
on the finite interval ½a; b� can be defined as

@a

@ xj ja uðx; tÞ ¼ �ð�DÞa=2uðx; tÞ ¼ � 1
2 cos pa2

aD
a
xuðx; tÞþ xD

a
buðx; tÞ

� �
; 1\a� 2

ð8:21Þ

where

aD
a
xuðx; tÞ ¼

1
Cðn� aÞ

@n

@xn

Zx
a

ðx� fÞn�1�auðf; tÞdf; ð8:22Þ

xD
a
buðx; tÞ ¼

ð�1Þn
Cðn� aÞ

@n

@xn

Zb
x

ðf� xÞn�1�auðf; tÞdf: ð8:23Þ

8.3 The Proposed Numerical Technique for Riesz
Fractional Coupled Schrödinger–KdV Equations

In the present study, Riesz fractional coupled S-K equations (8.3)–(8.6) have been
taken into consideration.

We choose the spatial mesh size h ¼ Dx[ 0 with h ¼ ðb� aÞ=m for m being an
even positive integer and the time step s ¼ Dt[ 0: We take the grid points and
time steps as

xj ¼ aþ jh; j ¼ 0; 1; . . .;m; tn ¼ ns; n ¼ 0; 1; 2; . . .:

Let unj and vnj be the approximation of uðxj; tnÞ and vðxj; tnÞ; respectively.
Furthermore, let un and vn be the solution vector at time t ¼ tn ¼ ns with the
components of uðxj; tnÞ and vðxj; tnÞ; respectively.

In the proposed time-splitting technique, Eq. (8.3) is split into two equations.
First the following equation
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iut � @au
@ xj ja ¼ 0; ð8:24Þ

is solved from time t ¼ tn to time t ¼ tnþ 1, and then for the same time-step length
s, we solve

iut � uv ¼ 0: ð8:25Þ

Using Fourier transform, Eq. (8.24) reduces to

iût þ lkj jaû ¼ 0: ð8:26Þ

Now, Eq. (8.26) will be discretized in space by Fourier spectral method and
integrated in time exactly. Next, integrating (8.25) from time t ¼ tn to time
t ¼ tnþ 1, and then approximating the integral on ½tn; tnþ 1� via the rectangular rule,
we obtain

uðx; tnþ 1Þ ¼ exp �i
Ztnþ 1

tn

vðx; sÞds
24 35uðx; tnÞ

¼ exp � is
2
ðvðx; tnþ 1 þ vðx; tnÞÞ

� �
uðx; tnÞ ð8:27Þ

Now, some of the mathematical definitions should be known regarding the
discrete Fourier transform applied here.

For simplicity, let us introduce a generalized function f ðx; tÞ and assume that
f ðx; tÞ satisfies the periodic boundary condition f ða; tÞ ¼ f ðb; tÞ for ðx; tÞ 2 R�
½0; T�: From tn to tnþ 1, the discrete Fourier transform of the sequence ffjg is defined
as

f̂kðtÞ ¼ Fk½fjðtÞ� ¼
Xm�1

j¼0

fjðtÞ expð�ilkðxj � aÞÞ; k ¼ �m
2
; . . .;

m
2
� 1 ð8:28Þ

and the formula for the inverse discrete Fourier transform is

fjðtÞ ¼ F�1
j ½f̂kðtÞ� ¼ 1

m

Xm2�1

k¼�m
2

f̂kðtÞ expðilkðxj � aÞÞ; j ¼ 0; 1; 2; . . .;m� 1; ð8:29Þ

where lk is the transform parameter defined as lk ¼ 2pk
b�a :
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8.3.1 The Strang Splitting Spectral Method

From tn to tnþ 1, we split the Schrödinger-like Eq. (8.3) via Strang splitting. The
technique of Strang splitting is presented by the following three equations

u�j ¼ exp �i
s
4
ðvnþ 1 þ vnÞ

h i
x¼xj

unj ; j ¼ 0; 1; 2; . . .;m� 1; ð8:30Þ

u��j ¼ 1
m

Xm2�1

k¼�m
2

expði lkj jasÞðû�Þk expðilkðxj � aÞÞ; j ¼ 0; 1; 2; . . .;m� 1; ð8:31Þ

unþ 1
j ¼ exp �i

s
4
ðvnþ 1 þ vnÞ

h i
x¼xj

u��j ; j ¼ 0; 1; 2; . . .;m� 1; ð8:32Þ

where ðû�Þk is the discrete Fourier transform of u�j , defined as

ðû�Þk ¼
1
m

Xm2�1

k¼�m
2

ðilkÞu�j expð�ilkðxj � aÞÞ: ð8:33Þ

8.3.2 Crank–Nicolson Spectral Method for the KdV-like
Equation

For the KdV-like Eq. (8.4), spatial derivatives are approximated using the pseu-
dospectral method. Followed by application of the Crank–Nicolson spectral method
(CNSP), we obtain

vnþ 1
j �vnj

s ¼ �3ðhvnþ 1Dxvnþ 1 þð1� hÞvnDxvnÞx¼xj � 1
2 ðhDxxvnþ 1 þð1� hÞDxxvnÞx¼xj

þ 1
2 ðhDxðunþ 1�unþ 1Þþ ð1� hÞDxðun�unÞÞx¼xj ; 0\h� 1

2

ð8:34Þ

where Dx and Dxx spectral differential operators approximating @x and @xx are
defined as, respectively,

Dxvjx¼xj¼
1
m

Xm2�1

k¼�m
2

ðilkÞðv̂Þk expðilkðxj � aÞÞ; ð8:35Þ

Dxxvjx¼xj¼
1
m

Xm2�1

k¼�m
2

ðilkÞ2ðv̂Þk expðilkðxj � aÞÞ: ð8:36Þ
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The initial conditions (8.5) are discretized as

u0j ¼ u0ðxjÞ; v0j ¼ v0ðxjÞ: ð8:37Þ

8.4 Properties of the Numerical Scheme and Stability
Analysis for the Coupled Schrödinger–KdV Equations

Let u ¼ (u0,u1,. . .,um�1)T . Let the discrete l2-norm be defined on the interval ða; bÞ
as

uk kl2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a
m

Xm�1

j¼0

uj
�� ��2vuut : ð8:38Þ

For the stability of the Strang time-splitting spectral schemes (8.30), (8.31), and
(8.32), the following theorem is proved, which shows that the total charge is
conserved.

Theorem 8.1 The time-splitting schemes (8.30), (8.31), and (8.32) for the coupled
Schrödinger–KdV equations are unconditionally stable and possess the following
conservative properties:

unþ 1
�� ��2

l2
¼ u0
�� ��2

l2
; n ¼ 0; 1; 2; . . . ð8:39Þ

Proof For the schemes (8.30)–(8.32), using (8.28), (8.29), and (8.38), we have

1
b� a

unþ 1
�� ��2

l2
¼ 1

m

Xm�1

j¼0

unþ 1
j

��� ���2 ¼ 1
m

Xm�1

j¼0

exp � is
4e

ðvnþ 1
j þ vnj Þ

	 

u��j

���� ����2 ¼ 1
m

Xm�1

j¼0

u��j
��� ���2

¼ 1
m

Xm�1

j¼0

1
m

Xm2�1

k¼�m
2

exp i lkj jasð Þðû�Þk expðilkðxj � aÞÞ
������

������
2

¼ 1
m2

Xm2�1

k¼�m
2

exp i lkj jasð Þðû�Þk
�� ��2

¼ 1
m2

Xm2�1

k¼�m
2

ðû�Þk
�� ��2 ¼ 1

m2

Xm2�1

k¼�m
2

Xm�1

j¼0

exp � is
4
ðvnþ 1

j þ vnj Þ
	 


unj

�����
�����
2

expð�ilkðxj � aÞÞ

¼ 1
m

Xm�1

j¼0

unj

��� ���2 ¼ 1
b� a

unk k2l2 :

ð8:40Þ
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Here, the following identities have been used

Xm�1

j¼0

ei2pðl�kÞj=m ¼ 0; l� k 6¼ rm;
m; l� k ¼ rm;

�
r is an integer ð8:41Þ

and

Xm2�1

k¼�m
2

ei2pðl�jÞk=m ¼ 0; l� j 6¼ rm;
m; l� j ¼ rm;

�
r is an integer: ð8:42Þ

The equality (8.39) can be obtained from Eq. (8.40) for the schemes (8.30)–
(8.32), by induction. �

The stability of the time-splitting spectral approximation for the Riesz fractional
coupled Schrödinger–KdV equations manifests that the total density is conserved in
the discretized level.

Now, the stability of the scheme (8.34) has been analyzed by using the von
Neumann analysis for stability.

Theorem 8.2 When h ¼ 1
2 ; the numerical scheme (8.34) is unconditionally stable.

When 0\h\ 1
2 ; it is conditionally stable. The stability condition is

s\ min
�m

2 � k� m
2�1;k 6¼0

2

ð3Aþ 1
2 ðilkÞ2 � 1

2 ilkBÞð1� 2hÞ

" #
:

Proof Plugging

vnj ¼
1
m

Xm2�1

k¼�m
2

ðv̂Þk expðilkðxj � aÞÞ; j ¼ 0; 1; 2. . .;m� 1

into Eq. (8.34) and using the orthogonality of the Fourier function, we obtain

v̂nþ 1ð Þk� v̂nð Þk
s

¼ �3Fk hvnþ 1F�1
k ilk v̂nþ 1� 


k

� �
þð1� hÞvnF�1

k ilk v̂nð Þk
� 
h i

� 1
2

hðilkÞ2 v̂nþ 1� 

k þð1� hÞðilkÞ2 v̂nð Þk

h i
þ 1

2
ðhilkFkðunþ 1�unþ 1Þþ ð1� hÞilkFkðun�unÞÞ:

ð8:43Þ

In the above discretization scheme (8.43), plugging v̂nþ 1ð Þk¼ n v̂nð Þk with n[ 0
being the amplification factor, we obtain the following equation
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n ¼ ð1� hÞð�3As� 1
2 ðilkÞ2sþ 1

2 ilkBsÞþ 1

1þ 3hAsþ 1
2 hðilkÞ2s� 1

2 ihlkBs
: ð8:44Þ

Let us take a ¼ sz;
where z ¼ 3Asþ 1

2 ðilkÞ2s� 1
2 ilkBs. Without loss of generality, let us assume

that z[ 0:
Then from Eq. (8.44), we have

n ¼ ð1� hÞð�zsÞþ 1
1þ hzs

¼ ð1� hÞð�aÞþ 1
1þ ha

: ð8:45Þ

From Eq. (8.45), we see that nj j\1 if h ¼ 1
2 : Therefore, in case of h ¼ 1

2 ; the
numerical scheme is unconditionally stable.

When 0\h\ 1
2 ; we have

1� a
1þ ha

���� ����\1: ð8:46Þ

This implies that

a
1þ ha

\2: ð8:47Þ

From the above Eq. (8.47), we get

s\
2

zð1� 2hÞ : ð8:48Þ

Hence, the stability condition for the case 0\h\ 1
2 is

s\ min
�m

2 � k� m
2�1;k 6¼0

2

ð3Aþ 1
2 ðilkÞ2 � 1

2 ilkBÞð1� 2hÞ

" #
: ð8:49Þ

�

8.5 Implicit Finite Difference Method for the Riesz
Fractional Coupled Schrödinger–KdV Equations

The fractional centered difference has been used to discretize the Riesz fractional
derivative. In this connection, the following property and lemma have been
presented.
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8.5.1 Approximation of Riesz Fractional Derivative
by the Fractional Centered Difference

In [45], the fractional centered difference is defined by

Da
h/ðxÞ ¼

X1
j¼�1

�1ð Þ jCðaþ 1Þ
C a

2 � jþ 1
� 


C a
2 þ jþ 1
� 
/ðx� jhÞ; for a[ � 1

and it is shown that

lim
h!0

Da
h/ðxÞ
ha

¼ lim
h!0

1
ha
X1
j¼�1

�1ð Þ jCðaþ 1Þ
C a

2 � jþ 1
� 


C a
2 þ jþ 1
� 
/ðx� jhÞ

represents the Riesz fractional derivative (8.21) for 1\a� 2:
Recently, Çelik and Duman [45] derived the interesting result that if f �ðxÞ be

defined as follows

f �ðxÞ ¼ f ðxÞ; x 2 ½a; b�
0; x 62 ½a; b�

�
such that f �ðxÞ 2 C5ðRÞ and all derivatives up to order five belong to L1ðRÞ; then
for the Riesz fractional derivative of order að1\a� 2Þ

@af ðxÞ
@ xj ja ¼ �h�a

Xx�a
h

j¼�b�x
h

gjf ðx� jhÞþOðh2Þ; ð8:50Þ

where h ¼ b�a
m ; and m is the number of partitions of the interval ½a; b� and

gj ¼ ð�1Þ jCðaþ 1Þ
Cða=2� jþ 1ÞCða=2þ jþ 1Þ : ð8:51Þ

Property 8.1 The coefficients gj of the fractional centered difference approxima-
tion have the following properties for j ¼ 0;	1;	2; . . .; and a[ � 1 :

(i) g0 � 0;
(ii) g�j ¼ gj � 0 for all jj j � 1;

(iii) gjþ 1 ¼ j�a=2
a=2þ jþ 1 gj;

(iv) gj ¼ Oðj�a�1Þ:

Proof For the proof of the above properties, it may be referred to Ref. [45].
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Lemma 8.1 Let f 2 C5 Rð Þ and all the derivatives up to order five belong to space
L1ðRÞ and the fractional centered difference be

Da
hf ðxÞ ¼

X1
j¼�1

�1ð Þ jCðaþ 1Þ
C a

2 � jþ 1
� 


C a
2 þ jþ 1
� 
 f ðx� jhÞ: ð8:52Þ

Then,

�h�aDa
hf ðxÞ ¼

daf ðxÞ
d xj ja þO h2

� 

; ð8:53Þ

When h ! 0;d
af ðxÞ
d xj ja represents the Riesz derivative of fractional order a for

1\a� 2:

Proof For proof of Lemma 8.1, it may be referred to Ref. [45]. �

8.5.2 Numerical Scheme for Riesz Fractional Coupled
Schrödinger–KdV Equations

The second-order implicit finite difference discretization for the coupled
Schrödinger–KdV Eqs. (8.3) and (8.4) is given as

i
unþ 1
j �unj

s þ h�a

2

Pj
k¼j�m

gk unþ 1
j�k þ Pj

k¼j�m
gj unj�k

 !
� 1

2 unþ 1
j vnþ 1

j þ unj v
n
j

� �
¼ 0;

vnþ 1
j �vnj

s þ 3 vnþ 1
j

vnþ 1
jþ 1 �vnþ 1

j�1

2h

	 

þ vnj

vnjþ 1�vnj�1

2h

� �� �
þ 1

2
vnþ 1
jþ 2 �2vnþ 1

jþ 1 þ 2vnþ 1
j�1 �vnþ 1

j�2

2h3

	
þ vnjþ 2�2vnjþ 1 þ 2vnj�1�vnj�2

2h3

�
¼ 1

2
unþ 1
jþ 1 �u

nþ 1
jþ 1 �unþ 1

j�1 �unþ 1
j�1

2h þ unjþ 1�u
n
jþ 1�unj�1�u

n
j�1

2h

	 

ð8:54Þ

where the local truncation error R
nþ 1

2
j ¼ Oðs2 þ h2Þ and i ¼ ffiffiffiffiffiffiffi�1

p
.

8.5.3 Numerical Experiments and Discussion

In the present analysis, the following initial conditions [34, 35] have been taken into
consideration for the fractional coupled S-K equations (8.3)–(8.4)
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uðx; 0Þ ¼ 6
ffiffiffi
2

p
eiaxk2sech2ðkxÞ; vðx; 0Þ ¼ aþ 16k2

3
� 6k2 tanh2ðkxÞ: ð8:55Þ

In this case, the problem has been solved on the interval ½�40; 40� with van-
ishing boundary conditions. Moreover, this problem has been solved by both
time-splitting spectral method (TSSM) and an implicit finite difference method, viz.
Crank–Nicolson finite difference (CNFD) method in order to justify the efficiency
and applicability of the proposed methods.

Figures 8.1, 8.2, and 8.3 show the comparison between the evolution of the
TSSM solution and the CNFD solution at t ¼ 1 for various fractional orders a. The
results show that the curves of qðx; 1Þj j and rðx; 1Þ obtained by TSSM coincide well
with the CNFD solutions, respectively. Thus, there is a good agreement of results
obtained by the proposed two methods.

Additionally, in Fig. 8.4, one-soliton 3-D solutions of qðx; tÞj j and the corre-
sponding 2-D solution graph at t ¼ 1 for fractional order a ¼ 1:9 have been pre-
sented. Also, one-soliton 3-D solutions of rðx; tÞ and the corresponding 2-D
solution graph at t ¼ 1 for fractional order a ¼ 1:9 have been depicted in Fig. 8.5.
The solution graphs in Figs. 8.4 and 8.5 have been drawn by the results obtained
from TSSM.

In order to examine the accuracy of time-splitting method for the Riesz fractional
coupled S-K equations (8.3)–(8.4), the L2 and L1 error norms [46] have been
calculated with regard to Crank–Nicolson finite difference method in Table 8.1. The
obtained results quite establish the plausibility of the proposed methods for solving
Riesz fractional coupled S-K equations (8.3)–(8.4).

8.6 New Proposed Technique for Riesz Fractional
Chen–Lee–Liu Equation

In the present analysis, Riesz fractional CLL Eq. (8.14) has been solved by the
following proposed numerical approach.

First, it has been chosen the spatial mesh size h ¼ Dx[ 0 with h ¼ ðb� aÞ=m
for m being an even positive integer and the time step s ¼ Dt[ 0: Then, the mesh
points and time steps are taken as

xj ¼ aþ jh; j ¼ 0; 1; . . .;m; tn ¼ ns; n ¼ 0; 1; 2; . . .:

Let qnj be the approximate value of qðxj; tnÞ: Furthermore, let qn be the solution
vector at time t ¼ tn ¼ ns with the components of qðxj; tnÞ:

In the new proposed approach, acquiring the concept of time-splitting technique
Eq. (8.14) is split into two equations. First, the following equation
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iqt þ @aq
@ xj ja ¼ 0; ð8:56Þ

is solved from time t ¼ tn to t ¼ tnþ 1, and then for the same time-step length s, it
solves

iqt þ i qj j2qx ¼ 0: ð8:57Þ

With the help of Fourier transform, Eq. (8.56) reduces to

q̂t þ i lkj jaq̂ ¼ 0: ð8:58Þ

Next, Eq. (8.58) will be discretized in space by Fourier spectral method and then
integrated in time exactly. Now, from time t ¼ tn to time t ¼ tnþ 1 Eq. (8.57) has

Fig. 8.1 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)–(8.4) with fractional order a ¼ 1:75 for a the solutions of qðx; 1Þj j
and b the solutions of rðx; 1Þ; respectively
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been integrated and has then approximated the integral on ½tn; tnþ 1� via the rect-
angular rule, yielding

qðx; tnþ 1Þ ¼ exp �
Ztnþ 1

tn

�qðx; sÞqxðx; sÞds
24 35qðx; tnÞ

¼ exp � s
2
ð�qðx; tnþ 1Þqxðx; tnþ 1Þþ �qðx; tnÞqxðx; tnÞÞ

h i
qðx; tnÞ

ð8:59Þ

Fig. 8.2 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)–(8.4) with fractional order a ¼ 1:8 for a the solutions of qðx; 1Þj j and
b the solutions of rðx; 1Þ; respectively
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Now, regarding the implementation of a discrete Fourier transform, some
mathematical definitions are essential for the subsequent study.

For the sake of convenience, let us consider a generalized function /ðx; tÞ and
assume that /ðx; tÞ satisfies the periodic boundary condition /ða; tÞ ¼ /ðb; tÞ for
ðx; tÞ 2 R� ½0; T �: From tn to tnþ 1, the discrete Fourier transform of the sequence
f/jg is defined as

/̂kðtÞ ¼ Fk½/jðtÞ� ¼
Xm�1

j¼0

/jðtÞ expð�ilkðxj � aÞÞ; k ¼ �m
2
; . . .;

m
2
� 1 ð8:60Þ

and the corresponding inverse discrete Fourier transform is defined by

Fig. 8.3 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)–(8.4) with fractional order a ¼ 1:9 for a the solutions of qðx; 1Þj j and
b the solutions of rðx; 1Þ; respectively
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/jðtÞ ¼ F�1
j ½/̂kðtÞ� ¼

1
m

Xm2�1

k¼�m
2

/̂kðtÞ expðilkðxj � aÞÞ; j ¼ 0; 1; 2; . . .;m� 1;

ð8:61Þ

where lk is the transform parameter defined as lk ¼ 2pk
b�a :

Fig. 8.4 a One-soliton wave 3-D solution of qðx; tÞj j and b the corresponding 2-D solution graph
at t ¼ 1:0 obtained by TSSM for the Riesz fractional coupled S-K equations (8.3)–(8.4) with
fractional order a ¼ 1:9
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Fig. 8.5 a One-soliton wave 3-D solution of rðx; tÞ and b the corresponding 2-D solution graph at
t ¼ 1:0 obtained by TSSM for the Riesz fractional coupled S-K equations (8.3)–(8.4) with
fractional order a ¼ 1:9
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8.7 The Strang Splitting Spectral Method

From time tn to tnþ 1, the Schrödinger-like Eq. (8.14) is split via Strang splitting. The
proposed technique of Strang splitting is presented by the following three equations

q�j ¼ exp � s
4

�qnþ 1
j Dx qnþ 1� 
��

x¼xj
þ �qnj Dx qnð Þjx¼xj

h ih i
qnj ; j ¼ 0; 1; 2; . . .;m� 1;

ð8:62Þ

q��j ¼ 1
m

Xm2�1

k¼�m
2

expð�i lkj jasÞðq̂�Þk expðilkðxj � aÞÞ; j ¼ 0; 1; 2; . . .;m� 1;

ð8:63Þ

qnþ 1
j ¼ exp � s

4
�qnþ 1
j Dx qnþ 1� 
��

x¼xj
þ �qnj Dx qnð Þjx¼xj

h ih i
q��j ;

j ¼ 0; 1; 2; . . .;m� 1;
ð8:64Þ

where ðq̂�Þk is the discrete Fourier transform of q�j as defined earlier and Dx, a
spectral differential operator approximating @x, is defined as

Dxqjx¼xj¼
1
m

Xm2�1

k¼�m
2

ðilkÞðq̂Þk expðilkðxj � aÞÞ: ð8:65Þ

8.8 Stability Analysis of Proposed Time-Splitting Spectral
Scheme for Riesz Fractional Chen–Lee–Liu Equation

Let us define q ¼ (q0,q1,. . .,qm�1)T . Also, let the discrete L2-norm be defined on the
interval ða; bÞ as

qk kl2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a
m

Xm�1

j¼0

qj
�� ��2vuut : ð8:66Þ

The following lemma is proved for the stability of the proposed Strang
time-splitting spectral schemes (8.62), (8.63), and (8.64). This lemma also shows
that the total charge is conserved.
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Lemma 8.2 The time-splitting schemes (8.62), (8.63), and (8.64) for the Riesz
fractional CLL Eq. (8.14) are unconditionally stable and possess the following
conservative properties:

qnþ 1
�� ��2

l2¼ q0
�� ��2

l2 ; n ¼ 0; 1; 2; . . . ð8:67Þ

Proof Using Eqs. (8.60), (8.61), and (8.66) for the schemes (8.62)–(8.64), yielding

1
b� a

qnþ 1
�� ��2

l2
¼ 1

m

Xm�1

j¼0

qnþ 1
j

��� ���2
¼ 1

m

Xm�1

j¼0

exp
is
4

iqnþ 1
j qnþ 1

x

� 

j þ iqnj qnx

� 

j

h i� �
q��j

���� ����2
¼ 1

m

Xm�1

j¼0

q��j
��� ���2

¼ 1
m

Xm�1

j¼0

1
m

Xm2�1

k¼�m
2

exp �i lkj jasð Þðq̂�Þk expðilkðxj � aÞÞ
������

������
2

¼ 1
m2

Xm2�1

k¼�m
2

exp �i lkj jasð Þðq̂�Þk
�� ��2

¼ 1
m2

Xm2�1

k¼�m
2

ðq̂�Þk
�� ��2 ¼ 1

m2

Xm2�1

k¼�m
2

Xm�1

j¼0

q�j expð�ilkðxj � aÞÞ
�����

�����
2

¼ 1
m

Xm�1

j¼0

q�j
��� ���2 ¼ 1

m

Xm�1

j¼0

exp
is
4

iqnþ 1
j qnþ 1

x

� 

j þ iqnj qnx

� 

j

h i� �
qnj

���� ����2
¼ 1

m

Xm�1

j¼0

qnj

��� ���2 ¼ 1
b� a

qnk k2l2 :

ð8:68Þ

In the above analysis, the following identities have been used

Xm�1

j¼0

ei2pðl�kÞj=m ¼ 0; l� k 6¼ rm;
m; l� k ¼ rm;

�
r is an integer ð8:69Þ

and

Xm2�1

k¼�m
2

ei2pðl�jÞk=m ¼ 0; l� j 6¼ rm;
m; l� j ¼ rm;

�
r is an integer: ð8:70Þ
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The equality (8.67) can be obtained from Eq. (8.68) for the schemes (8.62)–
(8.64), by the method of induction. �

Lemma 8.2 for the stability of time-splitting spectral approximation for the Riesz
fractional CLL equation establishes that the total density is conserved in the dis-
cretized level.

8.9 High-Order Approximations for Riemann–Liouville
Fractional Derivatives

In this section, high-order approximations for Riemann–Liouville fractional
derivatives have been presented. Let us first start with the introduction of the shifted
Grünwald difference operator.

8.9.1 Shifted Grünwald–Letnikov Formula for Riesz Space
Fractional Derivative

In [47], Meerschaert and Tadjeran reveal that standard Grünwald–Letnikov formula
is often unstable for time-dependent problems. In this regard, they had first pro-
posed the following shifted Grünwald–Letnikov formulae for the left and right
Riemann–Liouville derivatives in order to overcome the stability.

The shifted Grünwald difference operators to approximate the left and right
Riemann–Liouville fractional derivatives are given by

Aa
l1uðxÞ ¼

1
ha
X1
k¼0

-ðaÞ
k uðx� ðk � l1ÞhÞ; ð8:71Þ

Ba
l2uðxÞ ¼

1
ha
X1
k¼0

-ðaÞ
k uðx� ðk � l2ÞhÞ; ð8:72Þ

that have the first-order accuracy, i.e.,

Aa
l1uðxÞ ¼ �1Da

xuðxÞþOðhÞ; ð8:73Þ

Ba
l2uðxÞ ¼ xD

a
þ1uðxÞþOðhÞ; ð8:74Þ

where l1 and l2 are positive integers and
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-ðaÞ
k ¼ ð�1Þk a

k

	 

: ð8:75Þ

We know the binomial expansion of ð1� zÞa as follows

ð1� zÞa ¼
X1
k¼0

ð�1Þk a
k

	 

zk ¼

X1
k¼0

-ðaÞ
k zk; for all zj j � 1:

So, the coefficients -ðaÞ
k are the binomial coefficients of ð1� zÞa and they can be

evaluated by the following recurrence relation

-ðaÞ
0 ¼ 1;-ðaÞ

k ¼ 1� aþ 1
k

	 

-ðaÞ

k�1; k ¼ 1; 2; . . .: ð8:76Þ

8.9.2 Weighted Shifted Grünwald–Letnikov Formula
for Riesz Space Fractional Derivative

In view of the shifted Grünwald difference operators (8.71)–(8.72) and multistep
method, the following second-order approximation for the Riemann–Liouville
fractional derivatives has been derived by Tian et al. in [48].

LDa
l1;l2uðxÞ ¼

a� 2l2
2ðl1 � l2ÞA

a
l1uðxÞþ

2l1 � a
2ðl1 � l2ÞA

a
l2uðxÞ; ð8:77Þ

RDa
l1;l2uðxÞ ¼

a� 2l2
2ðl1 � l2ÞB

a
l1uðxÞþ

2l1 � a
2ðl1 � l2ÞB

a
l2uðxÞ: ð8:78Þ

Lemma 8.3 ([19]). Suppose that 1\a\2; let uðxÞ 2 L1ðRÞ; �1DauðxÞ;
Da

þ1uðxÞ; and their Fourier transforms belong to L1ðRÞ; then the weighted and
shifted Grünwald difference operators satisfy

LDa
l1;l2uðxÞ ¼ �1Da

xuðxÞþOðh2Þ; ð8:79Þ
RDa

l1;l2uðxÞ ¼ xD
a
þ1uðxÞþOðh2Þ; ð8:80Þ

uniformly for x 2 R; where l1 and l2 are positive integers and l1 6¼ l2.

Let uðxÞ be a function satisfying the assumptions in Lemma 8.3 on the bounded
interval ½a; b�: If uðaÞ ¼ 0 or uðbÞ ¼ 0; the function uðxÞ can be zero extended for
x\a or x[ b: Then, the a-order left and right Riemann–Liouville fractional
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derivatives of uðxÞ at each point x can be approximated with the second-order
accuracy as follows

aD
a
xuðxÞ ¼

l1
ha

Xx�a
h½ �þ l1

k¼0

-ðaÞ
k uðx� ðk � l1ÞhÞþ l2

ha
Xx�a
h½ �þ l2

k¼0

-ðaÞ
k uðx� ðk � l2ÞhÞ

þOðh2Þ;
ð8:81Þ

xD
a
buðxÞ ¼

l1
ha

Xb�x
h½ � þ l1

k¼0

-ðaÞ
k uðx� ðk � l1ÞhÞþ l2

ha
Xb�x
h½ �þ l2

k¼0

-ðaÞ
k uðx� ðk � l2ÞhÞ

þOðh2Þ;
ð8:82Þ

where

l1 ¼
a� 2l2
2ðl1 � l2Þ and l2 ¼

2l1 � a
2ðl1 � l2Þ :

Thus, weighted shifted Grünwald–Letnikov formula for Riesz space fractional
derivative is given by

dauðxÞ
d xj ja ¼ � 1

2 cos pa
2

� 
 l1
ha

Xx�a
h½ � þ l1

k¼0

-ðaÞ
k uðx� ðk � l1ÞhÞþ l2

ha
Xx�a
h½ � þ l2

k¼0

-ðaÞ
k uðx� ðk � l2ÞhÞ

24
þ l1

ha
Xb�x
h½ �þ l1

k¼0

-ðaÞ
k uðx� ðk � l1ÞhÞþ l2

ha
Xb�x
h½ �þ l2

k¼0

-ðaÞ
k uðx� ðk � l2ÞhÞ

35þOðh2Þ;

ð8:83Þ

where

l1 ¼
a� 2l2
2ðl1 � l2Þ and l2 ¼

2l1 � a
2ðl1 � l2Þ :

8.9.3 CN-WSGD Numerical Scheme

In this present analysis, consider the interval ½a; b� is partitioned into a uniform
mesh with the space step h ¼ ðb� aÞ=M and the time step s ¼ T=N; where M;N
are two positive integers. And the set of grid points are denoted by xj ¼ jh and
tn ¼ ns for j ¼ 1; . . .;M and n ¼ 0; . . .;N: Let tnþ 1=2 ¼ ðtn þ tnþ 1Þ=2 for
n ¼ 0; 1; . . .;N � 1; the following notations have been used
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qnj ¼ qðxj; tnÞ; and dtq
n
j ¼ ðqnþ 1

j � qnj Þ=s: ð8:84Þ

In space discretization, weighted shifted Grünwald–Letnikov formula (8.83) has
been used to approximate Riesz fractional derivative and for the time discretization
using the Crank–Nicolson technique in Eq. (8.14) leads to

idtqnj þ
1
2

� 1
2 cos pa

2

� 

ha

Xjþ 1

k¼0

xðaÞ
k qnþ 1

j�kþ 1 þ
XM�jþ 1

k¼0

xðaÞ
k qnþ 1

jþ k�1

""

þ
Xjþ 1

k¼0

xðaÞ
k qnj�kþ 1 þ

XM�jþ 1

k¼0

xðaÞ
k qnjþ k�1

##

þ i
2

qnþ 1
j

��� ���2 qnþ 1
jþ 1 � qnþ 1

j�1

2h

 !
þ qnj

��� ���2 qnjþ 1 � qnj�1

2h

	 
" #
¼ enj ;

ð8:85Þ

where

ðl1; l2Þ ¼ ð1; 0Þ;xðaÞ
0 ¼ a

2-
ðaÞ
0 ;xðaÞ

k ¼ a
2-

ðaÞ
k þ 2�a

2 -ðaÞ
k�1; k� 1;

ðl1; l2Þ ¼ ð1;�1Þ;xðaÞ
0 ¼ 2þ a

4 -ðaÞ
0 ;xðaÞ

1 ¼ 2þ a
4 -ðaÞ

1 ;xðaÞ
k ¼ 2þ a

4 -ðaÞ
k þ 2�a

4 -ðaÞ
k�2; k� 2;

enj

��� ����~cðh2 þ s2Þ and i ¼ ffiffiffiffiffiffiffi�1
p

.

Multiplying Eq. (8.85) by s and separating the time layers, we have

qnþ 1
j � 1

2
ms
ha
Xjþ 1

k¼0

xðaÞ
k qnþ 1

j�kþ 1 �
1
2
ms
ha

XM�jþ 1

k¼0

xðaÞ
k qnþ 1

jþ k�1 þ
s
2
qnþ 1
j

��� ���2 qnþ 1
jþ 1 � qnþ 1

j�1

2h

 !

¼ qnj þ
1
2
ms
ha
Xjþ 1

k¼0

xðaÞ
k qnj�kþ 1 þ

1
2
ms
ha

XM�jþ 1

k¼0

xðaÞ
k qnjþ k�1 �

s
2
qnj

��� ���2 qnjþ 1 � qnj�1

2h

	 

þOðsh2 þ s3Þ;

ð8:86Þ

where m ¼ � i
2 cos pa

2ð Þ.
Denoting ~qnj as the numerical approximate value of qnj , the CN-WSGD scheme

for Eq. (8.14) has been derived as
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~qnþ 1
j � 1

2
ms
ha
Xjþ 1

k¼0

xðaÞ
k ~qnþ 1

j�kþ 1 �
1
2
ms
ha

XM�jþ 1

k¼0

xðaÞ
k ~qnþ 1

j�kþ 1 þ
s
2
~qnþ 1
j

��� ���2 ~qnþ 1
jþ 1 � ~qnþ 1

j�1

2h

 !

¼ ~qnj þ
1
2
ms
ha
Xjþ 1

k¼0

xðaÞ
k ~qnj�kþ 1 þ

1
2
ms
ha

XM�jþ 1

k¼0

xðaÞ
k ~qnj�kþ 1 �

s
2
~qnj

��� ���2 ~qnjþ 1 � ~qnj�1

2h

	 

;

ð8:87Þ

j ¼ 1; 2; . . .;M � 1 and n ¼ 1; 2; . . .;N � 1;
~q0j ¼ c0ðxjÞ; j ¼ 1; 2; . . .;M � 1; ð8:88Þ

~qn0 ¼ ~qnM ; ~q
n
�1 ¼ ~qnM�1; n ¼ 1; 2; . . .;N � 1: ð8:89Þ

The system in Eq. (8.87) can be conveniently written into the following matrix
form

I � ms
2ha

ðAþATÞ
� �

~qnþ 1 ¼ Iþ ms
2ha

ðAþATÞ
� �

~qn þGn � sFnþ 1=2: ð8:90Þ

where
I is an identity matrix, ~qn ¼ ð~qn1; ~qn2; . . .; ~qnM�1ÞT ,

A ¼

xðaÞ
1 xðaÞ

0

xðaÞ
2 xðaÞ

1 xðaÞ
0

..

.
xðaÞ

2 xðaÞ
1

. .
.

xðaÞ
M 
 
 
 . .

. . .
.

xðaÞ
0

xðaÞ
M�1 xðaÞ

M�2 
 
 
 xðaÞ
2 xðaÞ

1

0BBBBBBB@

1CCCCCCCA is a ðM � 1Þ � ðM � 1Þ matrix;

Gn ¼ ms
2ha

xðaÞ
2 þxðaÞ

0

xðaÞ
3

..

.

xðaÞ
M�1

xðaÞ
M

0BBBBBB@

1CCCCCCAð~qn0 þ ~qnþ 1
0 Þþ ms

2ha

xðaÞ
M

xðaÞ
M�1

..

.

xðaÞ
3

xðaÞ
2 þxðaÞ

0

0BBBBBB@

1CCCCCCAð~qnM þ ~qnþ 1
M Þ;

and
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Fnþ 1=2 ¼

qnþ 1=2
1

��� ���2 ~qnþ 1=2
2 �~qnþ 1=2

0
2h

	 

qnþ 1=2
2

��� ���2 ~qnþ 1=2
3 �~qnþ 1=2

1
2h

	 

..
.

qnþ 1=2
M�1

��� ���2 ~qnþ 1=2
M �~qnþ 1=2

M�2
2h

	 


0BBBBBBBBB@

1CCCCCCCCCA
:

8.10 Stability and Convergence of CN-WSGD
Scheme for Riesz Fractional Chen–Lee–Liu Equation

On the given domain ½a; b� � ½0; T �; let us define Xh ¼ fxj ¼ jh : j ¼ 0;
1; 2; . . .;Mg, Xs ¼ ftn ¼ ns : n ¼ 0; 1; 2; . . .;Ng, Xhs ¼ Xh � Xs. Suppose that,
Vh;s ¼ fvnj : j ¼ 0; 1; 2; . . .;M; n ¼ 0; 1; 2; . . .;Ng is a discrete function on Xhs. Let
us introduce the following notations:

\vn;wn [ ¼ h
XM�1

j¼1

vnj w
n
j ; vnk k2¼ \vn; vn [ :

For any v 2 Vh;s, we define the pointwise maximum norm

vnk k1¼ max
1� j�M�1

vnj

��� ���; ð8:91Þ

and the following discrete l2-norm

vnk kl2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
XM�1

j¼1

vnj

��� ���2
vuut : ð8:92Þ

8.10.1 Stability Analysis

In Theorem 8.3, the stability of CN-WSGD scheme (8.87) has been analyzed in
detail.

Theorem 8.3 The CN-WSGD scheme (8.87) is unconditionally stable.

Proof Let us denote B ¼ ms
2ha ðAþATÞ: From Eq. (8.90), we have
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I � ms
2ha

ðAþATÞ
� �

~qnþ 1 ¼ Iþ ms
2ha

ðAþATÞ
� �

~qn þGn � sFnþ 1=2: ð8:93Þ

If k is a eigenvalue of matrix B; then 1þ k
1�k

�� �� is the eigenvalue of matrix

ðI � BÞ�1ðIþBÞ:
Now, when 1\a� 2; for ðl1; l2Þ ¼ ð1;�1Þ; matrix A is negative definite, and

the real parts of the eigenvalues k of matrix B ¼ ms
2ha ðAþATÞ are less than 0. Thus,

ReðkÞ\0; which implies that 1þ k
1�k

�� ��\1: Therefore, the spectral radius of matrix

ðI � BÞ�1ðIþBÞ is less than one.
Hence, the CN-WSGD scheme (8.87) is unconditionally stable. �

8.10.2 Convergence Analysis

To prove the convergence, the following lemmas are needed.

Lemma 8.4 [49, 50] The formula

Im
XM�1

l¼1

XM�1

r¼1

cl�rwrwl

 !
¼ 0;

holds, where “Im” stands for the imaginary part.

Lemma 8.5 (Grönwall’s inequality) Let fGnjn� 0g be a nonnegative sequence.
If Gnþ 1 �ð1þ csÞGn þ sr, n ¼ 0; 1; 2; . . ., where c and r are nonnegative

constants. Then, Gn satisfies

Gnþ 1 � ecnsðG0 þ r=cÞ:
Theorem 8.4 The numerical solution ~qnj of the finite difference scheme (8.87) is

convergent to the true solution qnj with the error Oðs2 þ h2Þ in the discrete L2-norm.

Proof Let qnj ¼ qðxj; tnÞ; ~qnj ¼ ~qðxj; tnÞ; enj ¼ qnj � ~qnj ,

enj ¼ idtq
n
j þ

c
ha
Xjþ 1

k¼0

xðaÞ
k qnþ 1=2

j�kþ 1 þ
c
ha

XM�jþ 1

k¼0

xðaÞ
k qnþ 1=2

jþ k�1 þ i qnþ 1=2
j

��� ���2 q
nþ 1

2
jþ 1 � q

nþ 1
2

j�1

2h

0@ 1A;

ð8:94Þ

c ¼ � 1
2 cos pa

2ð Þ ; e
n ¼ ðen1; en2; . . .; enM�1ÞT , and en ¼ ðen1 ; en1 ; . . .; enM�1ÞT .

From Eq. (8.94), we can write
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enj ¼ idte
n
j þ

c
ha
Xjþ 1

k¼0

xðaÞ
k enþ 1=2

j�kþ 1 þ
c
ha

XM�jþ 1

k¼0

xðaÞ
k enþ 1=2

jþ k�1 þ iH
nþ 1

2
j ; ð8:95Þ

where

H
nþ 1

2
j ¼ qnþ 1=2

j

��� ���2 q
nþ 1

2
jþ 1 � q

nþ 1
2

j�1

2h

0@ 1A� ~qnþ 1=2
j

��� ���2 ~q
nþ 1

2
jþ 1 � ~q

nþ 1
2

j�1

2h

0@ 1A: ð8:96Þ

Now,

Hnþ 1=2
j

��� ����ðmaxf qnþ 1=2
j

��� ���; ~qnþ 1=2
j

��� ���gÞ2 enþ 1=2
jþ 1 � enþ 1=2

j�1

2h

�����
�����: ð8:97Þ

It follows from Eq. (8.97) that there exists a constant C2 [ 0 such that

Hnþ 1=2
j

��� ����C2 enþ 1=2
jþ 1

��� ���þ enþ 1=2
j�1

��� ���� �
; ð8:98Þ

which implies that there exists a constant C3 [ 0 such that

Hnþ 1=2
�� ��2 �C3 2 enþ 1=2

�� ��2 þ h enþ 1=2
0

��� ���2�h enþ 1=2
1

��� ���2 þ enþ 1=2
M

��� ���2� enþ 1=2
M�1

��� ���2	 
	 

:

ð8:99Þ

From Eq. (8.99), it further follows that there exists a constant M[ 0 such that

Hnþ 1=2
�� ��2 �C3M enþ 1=2

�� ��2 ð8:100Þ

Now, computing the inner product \en; enþ 1 þ en [ , taking the imaginary
part, and using Lemma 8.4, we have

Im\en; 2enþ 1=2 [ ¼ ð enþ 1
�� ��2� enk k2Þ

s
þ Im\iHnþ 1=2; 2enþ 1=2 [ : ð8:101Þ

Therefore,

enþ 1
�� ��2� enk k2
� �

s
¼ Im\en; 2enþ 1=2 [ þ Im\� iHnþ 1=2; 2enþ 1=2 [

� enk k2 þ 2 enþ 1=2
�� ��2� �

þ Hnþ 1=2
�� ��2 þ 2 enþ 1=2

�� ��2� �
ð8:102Þ
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Using Eqs. (8.100), (8.102) leads to

enþ 1
�� ��2� enk k2 � s enk k2 þ 2 enþ 1=2

�� ��2� �
þ s C3M enþ 1=2

�� ��2 þ 2 enþ 1=2
�� ��2� �

� s enk k2 þ 2s 1þ C3M
4

	 

enþ 1
�� ��2 þ enk k2
� �

� sðb� aÞ~C2ðh2 þ s2Þ2 þ 2s 1þ C3M
4

	 

enþ 1
�� ��2 þ enk k2
� �

:

ð8:103Þ

Therefore, there exists a constant s0: 0\s0\1= 2þ C3M
2

� 

such that when

0\s� s0, we have

enþ 1
�� ��2 � 1þ sð4þC3MÞ

1� 2s0 � C3Ms0
2

 !
enk k2 þ sðb� aÞ~C2ðh2 þ s2Þ2

1� 2s0 � C3Ms0
2

� 
 :

Let

r1 ¼ ð4þC3MÞ
1�2s0�C3M s0

2

and r2 ¼ ðb�aÞ~C2

1�2s0�C3M s0
2ð Þ ; we then obtain

enþ 1
�� ��2 � 1þ r1sð Þ enk k2 þ r2sðh2 þ s2Þ2: ð8:104Þ

Now, using Grönwall’s inequality, we obtain

enþ 1
�� ��2 � r2

r1
er1Tðh2 þ s2Þ2; n ¼ 0; 1; 2; . . . ð8:105Þ

Hence, it is proved. �

8.10.3 Numerical Experiments and Discussion

In this section, some numerical results concerning the solitary wave solutions for
the Riesz fractional CLL Eq. (8.14) have been presented. The initial condition is
chosen such that qðx; 0Þ ¼ c0ðxÞ decays to zero sufficiently fast as xj j tending to the
two boundary points. An appropriately long interval ½a; b� has been chosen for the
computations such that the periodic boundary conditions do not introduce a sig-
nificant error relative to the whole space problem.

In the present numerical experiment, the following initial condition [51] has
been taken into consideration for the Riesz fractional CLL Eq. (8.14)
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qðx; 0Þ ¼ c0ðxÞ ¼ 2iD2
1B0; ð8:106Þ

where

D1 ¼ expf2ð2b� 1Þ½if ðxÞþ ðn21 þ g21Þðn21 � g21Þ�1gðxÞ�g; b ¼ 1=4

f ðxÞ ¼ �gðxÞþ n1g1ðn21 þ g21Þ sinhð2X1Þ
ðn21 � g21Þ2 þðn41 � g41Þ coshð2X1Þ

gðxÞ ¼ arctan½n�1
1 g1 tanhðX1Þ�

B0 ¼ 2in1g1 expðiY1Þ
n1 coshðX1Þþ ig1 sinhðX1Þ

X1 ¼ 4n1g1xþ d1

Y1 ¼ �2ðn21 � g21Þxþ l1

In this case, the problem has been solved on the interval ½�20; 20� with van-
ishing boundary conditions. The Riesz fractional CLL Eq. (8.14) along with the
above initial condition (8.106) has been solved by both time-splitting spectral
method (TSSM) and an implicit finite difference method, viz. CN-WSGD scheme,
in order to justify the efficiency and applicability of the proposed methods.

Figures 8.6, 8.7, and 8.8 show the comparison between the evolutions of the
TSSM solution and the CN-WSGD solution at t ¼ 1 for various fractional orders a.
The results show that the solution curves of qðx; 1Þj j obtained by TSSM coincide
well with the CN-WSGD solution curves, respectively. Thus, there is a good
agreement of results obtained by the proposed two methods.

Fig. 8.6 Comparison of results for the solution of qðx; 1Þj j obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order a ¼ 1:75
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In addition, in Fig. 8.9, the dynamic evolution of single-soliton 3-D solution of
qðx; tÞj j and the corresponding 2-D solution graph at t ¼ 1 for fractional order
a ¼ 1:9 have been presented. Also, single-soliton 3-D surface solution of qðx; tÞj j
and the corresponding 2-D solution graph at t ¼ 1 for fractional order a ¼ 1:75
have been depicted in Fig. 8.10. The solution graphs in Figs. 8.9 and 8.10 have
been drawn by the results obtained from TSSM.

Fig. 8.7 Comparison of results for the solution of qðx; 1Þj j obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order a ¼ 1:8

Fig. 8.8 Comparison of results for the solution of qðx; 1Þj j obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order a ¼ 1:9
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To examine the accuracy of the time-splitting method for the Riesz fractional
CLL Eq. (8.14), the L2 and L1 error norms [46] for the results of TSSM have been
calculated with regard to CN-WSGD results in Table 8.2. The comparison of
results quite establishes the plausibility of the proposed methods for solving Riesz
fractional CLL Eq. (8.14).

Fig. 8.9 a Dynamic evolution of single-soliton 3-D wave solution of qðx; tÞj j and b the
corresponding 2-D solution graph at t ¼ 1:0 obtained by TSSM for the Riesz fractional CLL
Eq. (8.14) with fractional order a ¼ 1:9
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Fig. 8.10 a Dynamic evolution of single-soliton 3-D wave solution of qðx; tÞj j and b the
corresponding 2-D solution graph at t ¼ 1:0 obtained by TSSM for the Riesz fractional CLL
Eq. (8.14) with fractional order a ¼ 1:75
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8.11 Conclusion

In this chapter, a new approach, viz. time-splitting spectral method, has been
proposed for solving Riesz fractional coupled S-K equations. The proposed
time-splitting spectral method is highly well suited for solving Riesz fractional
coupled S-K equations. In addition, with the aid of fractional centered difference
approximation for Riesz fractional derivative, an implicit finite difference tech-
nique, viz. Crank–Nicolson finite difference method, has been applied for Riesz
fractional coupled S-K equations in order to assess the results of these proposed
methods. It is found that there is a fine agreement between the results of both the
techniques. In comparison with the implicit finite difference method, the proposed
TSSM is also an efficient and simple tool to determine the approximate solution of
Riesz fractional coupled S-K equations. The obtained results ascertain the reliability
of the proposed methods and its applicability in solving Riesz fractional coupled
S-K equations. The implementations of the proposed methods for the solutions of
Riesz fractional coupled S-K equations quite well justify their applicability and
efficiency.

A new approach, viz. time-splitting spectral method, has been proposed for
solving Riesz fractional CLL equation. The TSSM is based on Strang splitting
method in time coupled with trigonometric spectral approximation in space. In
addition, with the aid of weighted shifted Grünwald–Letnikov formula for
approximating Riesz fractional derivative, Crank–Nicolson implicit finite difference
method has been applied for Riesz fractional CLL equation in order to examine the
comparison results for these proposed methods. The numerical results obtained by
the proposed TSSM highly agree with those obtained by CN-WSGD method. The
obtained results ascertain the reliability of the proposed methods and its applica-
bility in solving the Riesz fractional CLL equation. The successful implementations
of the proposed methods for the solutions of Riesz fractional CLL equation quite
well justify their applicability and efficiency. The numerical solutions obtained by
TSSM for the Riesz fractional equations will be useful to analyze wave pattern in
quantum mechanics, nonlinear optics, fluid mechanics, plasma physics, and mag-
netohydrodynamic wave equations [52, 53].
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Chapter 9
Numerical Simulation of Stochastic
Point Kinetics Equation in the Dynamical
System of Nuclear Reactor

9.1 Introduction

In nuclear reactor dynamics, the point kinetics equations are the coupled differential
equations for the neutron density and for the delayed neutron precursor concen-
trations. The point kinetics equations are the most vital model in nuclear engi-
neering, and these equations model the time-dependent behavior of a nuclear
reactor [1–4]. The time-dependent parameters in this system are the reactivity
function and neutron source term. The dynamical process described by the point
kinetics equations is stochastic in nature, and the neutron density and delayed
neutron precursor concentrations vary randomly with time. At high power levels,
random behavior is negligible. But at low power levels, such as at the beginning,
random fluctuation in the neutron density and neutron precursor concentrations can
be significant.

The point kinetics equations model a system of interacting populations,
specifically the populations of neutrons and delayed neutron precursors. In this
chapter, the physical dynamical system identified as a population process and the
point kinetics equations have been analyzed to transform into a stochastic differ-
ential equation system that accurately models the random behavior of the process.

In the present chapter, the Euler–Maruyama method and Taylor 1.5 strong order
approximation method have been applied efficiently and conveniently for the
solution of stochastic point kinetics equation. The resulting systems of stochastic
differential equations are solved over each time-step size in the partition. In the
present investigation, the main attractive advantage, of these computational
numerical methods, is their elegant applicability for solving stochastic point kinetics
equations in a simple and efficient way.
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9.2 Outline of the Present Study

In the present chapter, the numerical approximation methods, applied to efficiently
calculate the solution for stochastic point kinetics equations [1, 3] in nuclear reactor
dynamics, are investigated. A system of Itô stochastic differential equations has
been analyzed to model the neutron density and the delayed neutron precursors in a
point nuclear reactor. The resulting system of Itô stochastic differential equations is
solved over each time-step size. The methods are verified by considering different
initial conditions, experimental data, and over-constant reactivities. The computa-
tional results indicate that the methods are simple and worthy for solving stochastic
point kinetics equations. In this work, a numerical investigation is made in order to
observe the random oscillations in neutron and precursor population dynamics in
subcritical and critical reactors.

9.3 Strong and Weak Convergence

In this section, a brief discussion on strong convergence and week convergence has
been presented.

9.3.1 Strong Convergence

A discrete-time approximation method is said to converge strongly to the solution X
(t) at time t if

lim
Dt�[ 0

E XðtÞ � bXðtÞ��� ��� ¼ 0 ð9:1Þ

where bXðtÞ is the approximate solution computed with constant step size Dt and
E denotes expected value.

A SDE method converges strongly with order a if the expected value of the error
is of ath order in the step size, i.e., if for any time t

E XðtÞ � bXðtÞ��� ��� ¼ OððDtÞaÞ ð9:2Þ

for sufficiently small step size Dt [5].
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9.3.2 Weak Convergence

A discrete-time approximation bXðtÞ with constant step size Dt is said to converge
weakly to the solution X(t) at time t if

lim
Dt�[ 0

E f ðXðtÞÞð Þ � E f ðbXðtÞÞ� ���� ��� ¼ 0 ð9:3Þ

for all smooth functions f in some class.
A SDE method converges weakly with order a if the error in the moments is of

ath order in the step size

E f ðXðtÞÞð Þ � E f ðbXðtÞÞ� ���� ��� ¼ OððDtÞaÞ ð9:4Þ

for sufficiently small step size Dt [5].
In other words, for a given time discretization t0\t1\. . .\tn ¼ T ,

• A method is said to have strong order of convergence a if there is a constant
K > 0 such that

sup
tk

E Xtk � bXtk

��� ���\K Dtkð Þa

• A method is said to have weak order of convergence a if there is a constant
K > 0 such that

sup
tk

E½Xtk � � E½bXtk �
��� ���\K Dtkð Þa;

where Dtk ¼ tk � tk�1; Xtk and bXtk represents the exact solution and approximate
solution at time tk:

The Euler–Maruyama method has strong convergence of order a = 1/2, which is
poorer of the convergence for the Euler method in the deterministic case, which is
order a = 1. However, the Euler–Maruyama method has week convergence of order
a = 1.

9.4 Evolution of Stochastic Neutron Point Kinetics Model

It is the most vital part of nuclear reactor dynamics, to derive the point kinetics
equations in order to separate the birth and death process of neutron population. It
will help us to form a stochastic model. The deterministic time-dependent equations
satisfied by the neutron density and the delayed neutron precursors are as follows [1]
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@N
@t

¼ Dmr2N � ðRa � RfÞmNþ ½ð1� bÞk1Ra � Rf �mNþ
X
i

kiCi þ S0; ð9:5Þ

@Ci

@t
¼ bik1RamN � kiCi; i ¼ 1; 2; . . .;m; ð9:6Þ

where N(r,t) is the neutron density at a point r at time t. The coefficients
D; m; Ra and Rf are, respectively, diffusion constants, the neutron speed, the
macroscopic neutron absorption, and fission cross sections. The capture cross
section is Ra � Rf . If b ¼Pm

i¼1 bi is the delayed neutron fraction, the prompt
neutron contribution to the source is ½ð1� bÞk1Ra � Rf �mN and the prompt neutron
fraction is ð1� bÞ. The number of neutrons produced per neutrons absorbed is k1
(also called infinite-medium reproduction factor). The rate of transformations from
neutron precursors to the neutron population is

Pm
i¼1 kiCi where the delayed con-

stant is ki and Ciðr; tÞ is the density of the ith type of precursor for i ¼ 1; 2; . . .;m.
Sources of neutrons extraneous to the fission process are represented by S0ðr; tÞ.

In the present analysis, captures (or leakages) of neutrons are considered as
deaths. The fission process is considered a pure birth process where mð1� bÞ � 1
neutrons are born in each fission along with precursor fraction mb.

Let us assume that N ¼ f ðrÞnðtÞ and Ci ¼ giðrÞciðtÞ are separable in time and
space where nðtÞ and ciðtÞ are the total number of neutrons and precursors of the ith
type at time t, respectively.

Using these, Hetrick [1] and Hayes et al. [4] derived the deterministic point
kinetics equation as

dn
dt

¼ � �qþ 1� a
l

� �
nþ 1� a� b

l

� �
nþ

Xm
i¼1

kici þ q; ð9:7aÞ

dci
dt

¼ bi
l
n� kici; i ¼ 1; 2; . . .;m; ð9:7bÞ

where qðtÞ ¼ S0ðr;tÞ
f ðrÞ , q is reactivity, neutron generation time l ¼ 1

k1mRa
, a is defined as

a ¼ Rf

Rak1
� 1

m, and v is the average number of neutrons per fission. Here, n(t) is the
population size of neutrons and ciðtÞ is the population size of the ith neutron
precursor. The neutron reactions can be separated into three terms as follows:

dn
dt

¼ � �qþ 1� a
l

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

deaths

nþ 1� a� b
l

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

births

nþ
Xm
i¼1

kici|fflfflffl{zfflfflffl}
transformations

þ q;

dci
dt

¼ bi
l
n� kici; i ¼ 1; 2; . . .;m:
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The neutron birth rate due to fission is b ¼ 1�a�b
lð�1þð1�bÞmÞ, where the denominator

has the term ð�1þð1� bÞmÞ which represents the number of neutrons (newborn)
produced in each fission process. The neutron death rate due to captures or leakage
is d ¼ �qþ 1�a

l . The transformation rate kici represents the rate that the ith precursor
is transformed into neutrons and q represents the rate that source neutrons are
produced.

To derive the stochastic dynamical system, we consider for simplicity only one
precursor, i.e., b ¼ b1, where b is the total delayed neutron fraction for one
precursor.

The point kinetics equations for one precursor are as follows

dn
dt

¼ �qþ 1� a
l

� �
nþ 1� a� b

l

� �
nþ k1c1 þ q;

dc1
dt

¼ b1
l
n� k1c1:

Now, we consider in the small duration of time interval Dt where probability of
more than one occurred event is small. There are four different possibilities for an
event at this small time Dt. Let Dn;Dc1½ �T be the change of n and c1 in time Dt
where the changes are assumed approximately normally distributed. The four
possibilities for Dn;Dc1½ �T are

E1 ¼
Dn

Dc1

" #
1

� �1

0

" #
;

E2 ¼ Dn
Dc1

� �
2
� �1þð1� bÞm

b1m

� �
;

E3 ¼
Dn

Dc1

" #
3

� 1

�1

" #
;

E4 ¼
Dn

Dc1

" #
4

� 1

0

" #
;

where the first event E1 denotes a death, the second event E2 represents birth of
ð�1þð1� bÞmÞ neutrons and b1m delayed neutron precursors produced in the
fission process, the third event E3 represents a transformation of a delayed neutron
precursor to a neutron, and the last one E4 event represents a neutron source. The
respective probabilities of these events are

PðE1Þ ¼ nDtd;
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PðE2Þ ¼ nDtb ¼ 1
ml
nDt ; since b ¼ 1� a� b

lð�1þð1� bÞmÞ and a ¼ Rf

Rak1
� 1

m

PðE3Þ ¼ c1Dtk1;

PðE4Þ ¼ qDt:

In this present analysis, it is assumed that the extraneous source randomly
produces neutrons following Poisson process with intensity q.

According to our earlier assumption, the changes in neutron population and
precursor concentration are approximately normally distributed with mean

E
Dn

Dc1

" # !
and variance Var

Dn

Dc1

" # !
.

Here, the mean change in the small interval of time Dt

E
Dn
Dc1

� �� 	
¼
X4
k¼1

Pk
Dn
Dc1

� �
k
¼

q�b
l nþ k1c1 þ q

b1
l n� k1c1

" #
Dt;

and the variance of change in small time Dt

Var
Dn

Dc1

" # !
¼ E

Dn

Dc1

" #
Dn Dc1½ �

 !
� E

Dn
Dc1

� �� 	� 	2

¼
X4
k¼1

Pk
Dn

Dc1

" #
k

Dn Dc1½ �k¼ bBDt;
where

bB ¼ cnþ k1c1 þ q b1
l �1þð1� bÞmð Þn� k1c1

b1
l �1þð1� bÞmð Þn� k1c1

b21m
l nþ k1c1

" #
;

where

c ¼ �1� qþ 2bþð1� bÞ2m
l

:
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Now, by central limit theorem, the random variate

Dn
Dc1

� �
� E

Dn

Dc1

" # !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Dn
Dc1

� �� 	s

follows standard normal distribution. The above result implies

Dn
Dc1

� �
¼ E

Dn

Dc1

" # !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

Dn
Dc1

� �� 	s
g1
g2

" #
; where g1; g2 �Nð0; 1Þ ð9:8Þ

Thus, we have

nðtþDtÞ
c1ðtþDtÞ

" #
¼ nðtÞ

c1ðtÞ

" #
þ

q� b
l

nþ k1c1

b1
l
nþ k1c1

2664
3775Dtþ q

0

" #
Dtþ bB1=2

ffiffiffiffiffi
Dt

p g1
g2

" #
;

ð9:9Þ

where bB1=2 is the square root of the matrix bB. Dividing both sides of Eq. (9.9) by Dt
and then taking limit Dt ! 0, we achieve the following Itô stochastic differential
equation system

d
dt

n

c1

" #
¼ bA n

c1

" #
þ q

0

" #
þ bB1=2 dW

!
dt

; ð9:10Þ

where

bA ¼
q�b
l k1
b1
l �k1

" #
;

bB ¼ cnþ k1c1 þ q b1
l �1þð1� bÞmð Þn� k1c1

b1
l �1þð1� bÞmð Þn� k1c1

b21
l nþ k1c1

" #
;

and

W
!ðtÞ ¼ W1ðtÞ

W2ðtÞ

" #
;
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where W1ðtÞ and W2ðtÞ are Wiener processes. Equation (9.10) represents the
stochastic point kinetics equations for one precursor. Now generalizing the above
argument to m precursors, we can obtain the following Itô stochastic differential
equation system for m precursors

d
dt

n

c1
c2

..

.

cm

266666664

377777775 ¼ bA
n

c1
c2

..

.

cm

266666664

377777775þ

q

0

0

..

.

0

266666664

377777775þ bB1=2 dW
!
dt

: ð9:11Þ

In Eq. (9.11), bA and bB are as follows

bA ¼

q�b
l k1 k2 � � � km
b1
l �k1 0 � � � 0

b2
l 0 �k2 . .

. ..
.

..

. ..
. . .

. . .
.

0
bm
l 0 � � � 0 �km

266666664

377777775; ð9:12Þ

bB ¼

f a1 a2 � � � am
a1 r1 b2;3 � � � b2;mþ 1

a2 b3;2 r2 . .
. ..

.

..

. ..
. . .

. . .
.

bm;mþ 1

am bmþ 1;2 � � � bmþ 1;m rm

26666664

37777775; ð9:13Þ

where

f ¼ cnþ
Xm
j¼1

kjcj þ q;

c ¼ �1� qþ 2bþð1� bÞ2m
l

;

aj ¼
bj
l
ð�1þð1� bÞmÞn� kjcj;

bi;j ¼
bi�1bj�1m

l
n;
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and

ri ¼ b2i m
l

nþ kici:

Equation (9.11) represents the generalization of the standard point kinetics model
since for bB ¼ 0, it reduces to the standard deterministic point kinetics model [3].

9.5 Application of Euler–Maruyama Method and Strong
Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

The stochastic point kinetics equations for m delayed groups are as follows

d x!
dt

¼ A x!þBðtÞ x!þ F
!ðtÞþ bB1=2 dW

!
dt

; ð9:14Þ

where B̂ is given in Eq. (9.13),

x!¼

n

c1
c2

..

.

cm

266666664

377777775; ð9:15Þ

A ¼

�b
l k1 k2 � � � km
b1
l �k1 0 � � � 0

b2
l 0 �k2 . .

. ..
.

..

. ..
. . .

. . .
.

0
bm
l 0 � � � 0 �km

266666664

377777775; ð9:16Þ

BðtÞ ¼

qðtÞ
l 0 0 � � � 0
0 0 0 � � � 0

0 0 0 . .
. ..

.

..

. ..
. . .

. . .
.

0
0 0 � � � 0 0

2666664

3777775; ð9:17Þ
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and

F
!ðtÞ ¼

qðtÞ
0

0

..

.

0

266666664

377777775: ð9:18Þ

It can be noticed that bA ¼ AþBðtÞ.

9.5.1 Euler–Maruyama Method for the Solution
of Stochastic Point Kinetics Model

This method is also known as order 0.5 strong Itô–Taylor approximation. By
applying Euler–Maruyama method in Eq. (1.142) of Chap. 1 into Eq. (9.14), we
obtain

x!iþ 1 ¼ x!i þðAþBiÞ x!ihþ F
!ðtiÞhþB1=2

ffiffiffi
h

p
g!i; ð9:19Þ

where dW
!

i ¼ W
!

i �W
!

i�1 ¼
ffiffiffi
h

p
g!i and h ¼ tiþ 1 � ti. Here, g!i is a vector

whose components are random numbers chosen from N(0,1).

9.5.2 Strong Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

We apply strong order 1.5 Taylor approximation method in Eq. (1.143) of Chap. 1
into Eq. (9.14) yielding

x!iþ 1 ¼ x!iþ ðAþBiÞ x!i þ F
!

i

� �
hþ bB1=2

ffiffiffi
h

p
g!i þðAþBiÞbB1=2DZi þ 1

2
ðAþBiÞ x!i þ F

!
i

� �
ðAþBiÞh2;

ð9:20Þ

where DZi ¼ 1
2 hðDWi þDVi=

ffiffiffi
3

p Þ and DVi ¼
ffiffiffi
h

p
Nð0; 1Þ.

384 9 Numerical Simulation of Stochastic Point Kinetics Equation …



9.5.3 Numerical Results and Discussion

In the present analysis, we consider the first example of nuclear reactor problem
with the following parameters k1 ¼ 0:1; b1 ¼ 0:05 ¼ b; m ¼ 2:5; m ¼ 2:5,
neutron source q ¼ 200; l ¼ 2=3 and qðtÞ ¼ �1=3 for t� 0. The initial
condition is x!ð0Þ ¼ 400 300½ �T. We observe through 5000 trails, the good
agreement between two methods with other available methods for 40 time intervals
at time t = 2 s. The means and standard deviation of nð2Þ and c1ð2Þ are presented in
Table 9.1.

In the second example, we assume the initial condition as

x!ð0Þ ¼ 100

1

b1
k1l
b2
k2l

..

.

bm
kml

266666666666664

377777777777775
:

The following parameters are used in this example [1, 3] b ¼ 0:007; m ¼
2:5; l ¼ 0:00002; q ¼ 0; ki ¼ 0:0127; 0:0317; 0:115; 0:311; 1:4; 3:87½ � and
bi ¼ 0:000266; 0:001491; 0:001316; 0:002849; 0:000896; 0:000182½ � with m ¼
6 delayed groups. The computational results at t ¼ 0:1 and t ¼ 0:001 are given in
Tables 9.2 and 9.3, respectively, for Monte Carlo, stochastic PCA [4], Euler–
Maruyama, and Taylor 1.5 strong order. It can be seen that there exist approxi-
mately close agreements between the three approaches in consideration of different
step reactivities q ¼ 0:003 and q ¼ 0:007. The mean neutron density and two
individual neutron samples are cited in Fig. 9.1. The mean precursor density and
two precursor sample paths are cited in Fig. 9.2. For these calculations, we used
5000 trials in both Euler–Maruyama and Taylor 1.5 strong order method.

Table 9.1 Comparison of numerical computational methods for one precursor

Monte
Carlo

Stochastic
PCA [4]

Euler–Maruyama
approximation

Strong order 1.5 Taylor
approximation

Eðnð2ÞÞ 400.03 395.32 412.23 412.10

rðnð2ÞÞ 27.311 29.411 34.391 34.519

Eðc1ð2ÞÞ 300.00 300.67 315.96 315.93

rðc1ð2ÞÞ 7.8073 8.3564 8.2656 8.3158
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Table 9.2 Comparison for subcritical step reactivity q ¼ 0:003

Monte
Carlo

Stochastic PCA
[4]

Euler–
Maruyama

Taylor 1.5 strong
order

Eðnð0:1ÞÞ 183.04 186.31 208.599 199.408

rðnð0:1ÞÞ 168.79 164.16 255.954 168.547

Eðc1ð0:1ÞÞ 4:478	 105 4:491	 105 4:498	 105 4:497	 105

rðc1ð0:1ÞÞ 1495.7 1917.2 1233.38 1218.82

Table 9.3 Comparison for critical step reactivity q ¼ 0:007

Monte
Carlo

Stochastic PCA
[4]

Euler–
Maruyama

Taylor 1.5 strong
order

Eðnð0:001ÞÞ 135.67 134.55 139.568 139.569

rðnð0:001ÞÞ 93.376 91.242 92.042 92.047

Eðc1ð0:001ÞÞ 4:464	 105 4:464	 105 4:463	 105 4:463	 105

rðc1ð0:001ÞÞ 16.226 19.444 6.071 18.337

Fig. 9.1 a Neutron density obtained by Euler–Maruyama method using a subcritical step
reactivity q ¼ 0:003 and b neutron density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity q ¼ 0:003
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9.6 Conclusion

In this present research work, the stochastic point kinetics equations have been
solved by using Euler–Maruyama and strong order 1.5 Taylor numerical methods
having easier and efficient calculation in comparison with stochastic PCA method.
The methods, in this investigation, are clearly effective numerical methods for
solving the stochastic point kinetics equations. The methods are simple, efficient to
calculate, and accurate with fewer round-off error. The derivation of stochastic
point kinetics equations may be complicated but numerical solutions obtained more
conveniently. The behavior of the stochastic neutron and precursor distributions
within a reactor can be explicitly described by the stochastic point kinetics equa-
tions. The obvious reason seems to be that the intrinsic stochastic dynamic phe-
nomena in the reactor system can be properly treated with the stochastic point

Fig. 9.2 a Precursor density obtained by Euler–Maruyama method using a subcritical step
reactivity q ¼ 0:003 and b precursor density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity q ¼ 0:003
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kinetics equations. In this chapter, a numerical investigation was performed in order
to observe the random fluctuations in neutron and precursor population dynamics in
subcritical and critical reactors.
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