Santanu Saha Ray

N Nonlinear
Differential
Equations in
Physics



Nonlinear Differential Equations in Physics



Santanu Saha Ray

Nonlinear Differential
Equations in Physics

Novel Methods for Finding Solutions

@ Springer



Santanu Saha Ray

Department of Mathematics

National Institute of Technology Rourkela
Odisha, India

ISBN 978-981-15-1655-9 ISBN 978-981-15-1656-6 (eBook)
https://doi.org/10.1007/978-981-15-1656-6

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


https://doi.org/10.1007/978-981-15-1656-6

Preface

This book provides brief introduction to the fractional derivatives and preliminaries
of local fractional calculus and presents an overview of wavelets in mathematical
preliminaries. The need of the present work for the scientific and engineering
community also has been discussed succinctly in the book.

In Chap. 1, various analytical and numerical methods for solving partial and
fractional differential equations have been discussed along with some numerical
methods for solving stochastic point kinetics equations. In Chap. 2, the utilization
of new approaches of decomposition method in getting solutions for partial and
fractional differential equations has been discussed. In this regard, a modified
decomposition method has been newly applied for solving coupled Klein—-Gordon—
Schrédinger equations. In Chap. 3, the generalized order operational matrix of Haar
wavelet has been used for finding the numerical solution of Bagley—Torvik equa-
tion. Next, the solutions of the Haar wavelet method are compared with OHAM as
well as with the exact solutions for the fractional Fisher-type equation. The gen-
eralized order operational matrix of the Haar wavelet has been proposed for first
time by the author for finding the numerical solution of Bagley—Torvik equation. In
Chap. 4, an investigation into solutions of Riesz space fractional differential
equations by using various numerical methods has been presented. In application,
the solution of inhomogeneous fractional diffusion equation with Riesz space
fractional derivative has been presented by utilizing an explicit finite difference
scheme with shifted Griinwald approximation technique.

In Chap. 5, the exact solutions of fractional differential equations have been
reported. Methods like first integral method, classical Kudryashov method, modi-
fied Kudryashov method, and mixed dn-sn method have been utilized here for
getting new exact solutions of fractional differential equations. Also, the fractional
complex transform with the local fractional derivatives has been used here for the
reduction of fractional differential equations to integer-order ordinary differential
equations. In Chap. 6, the generalized Jacobi elliptic function expansion method has
been used for getting new exact solutions of the coupled Schrédinger—Boussinesq
equations (CSBEs). Moreover, by numerical results, it has been shown that the
nature of the solutions is doubly periodic. For justifying the nature of the solutions



vi Preface

as doubly periodic, the numerical results have also been presented in this work. In
Chap. 7, new techniques, viz. modified fractional reduced differential transform
method (MFRDTM) and coupled fractional reduced differential transform method
(CFRDTM), are proposed for the first time for solving fractional differential
equations. In view of that, the fractional KdV equation has been solved by using the
modified fractional reduced differential transform method (MFRDTM).
Furthermore, convergence analysis and error estimate for MFRDTM and CFRDTM
have been presented in this chapter. The main advantages of the methods emphasize
the fact that they provide explicit analytical approximate solutions and also
numerical solutions elegantly.

In Chap. 8, Riesz fractional coupled Schrédinger—-KdV equations have been
solved by implementing a new approach, viz. time-splitting spectral method. In
order to verify the results, it has been also solved by an implicit finite difference
method by using fractional centered difference approximation for Riesz fractional
derivative. The obtained results manifest that the proposed time-splitting spectral
method is very effective and simple for obtaining approximate solutions of Riesz
fractional coupled Schrodinger—KdV equations. In the last chapter, the stochastic
point kinetics equations in nuclear reactor dynamics have been solved by using
Euler-Maruyama and strong order 1.5 Taylor numerical methods. From the
obtained results, it has been concluded that Euler—Maruyama and strong order 1.5
Taylor numerical methods perform an effective calculation in comparison with
stochastic piecewise constant approximations method. So the proposed method is
efficient and a powerful tool for solving the stochastic point kinetics equations. This
work has been universally recognized as a benchmark work of the author in this
field.

Rourkela, India Santanu Saha Ray
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Chapter 1 )
Mathematical Preliminaries Check for

1.1 Overview

The main objective is to propose novel analytical and numerical techniques to find
the solutions of partial, stochastic, and fractional-order differential equations arising
in physical problems. Most of the physical phenomena that arise in mathematical
physics and engineering fields can be best described by the nonlinear partial dif-
ferential equations. The problems arise in different areas of applied mathematics,
physics, and engineering, including fluid dynamics, nonlinear optics, solid
mechanics, plasma physics, quantum field theory, and condensed-matter physics,
can be modeled by partial differential equations [1-3]. Many problems of physical
interest are described by partial differential equations. The usual procedures nec-
essarily change the actual problems in essential ways in order to make it mathe-
matically tractable by the conventional methods. Unfortunately, these changes
necessarily deviate the actual solutions; therefore, they can differ, sometimes seri-
ously, from the actual physical behavior. Physically accurate and correct solutions
can be obtained by avoiding these limitations, which would add an important
advancement to our insights into the natural behavior of physical systems.
Consequently, it would potentially enhance the scientific and technological
breakthroughs for solving nonlinear physical problems.

Nowadays, the subject of fractional calculus and its applications has gained
considerable popularity and importance during the past three decades or so, mainly
due to its demonstrated applications in various seemingly diverse and widespread
fields of science and engineering [4—12]. It deals with derivatives and integrals of
arbitrary orders. In many cases, the real physical processes could be modeled in a
reliable manner wusing fractional-order differential equations rather than
integer-order equations [4-6].

In this context, the local fractional calculus theory is very important for mod-
eling problems for fractal mathematics and engineering on Cantorian space in
fractal media [13—15]. Most nonlinear physical phenomena that appear in many
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areas of scientific fields, in particular in modeling anomalous dynamics of complex
systems, neutron diffusion and transport, control theory, viscoelasticity, rheology,
signal processing, biomechanics, plasma physics, solid state physics, fluid dynamics,
optical fibers, mathematical biology, and chemical kinetics, can be best modeled by
nonlinear fractional partial differential equations.

Various important phenomena in electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, advection-diffusion models, biological population
models, optics and signals processing are well described by fractional differential
equations [4—6, 9—12]. But it is quite difficult to get the exact solutions of nonlinear
fractional differential equations. For that reason, we need a reliable and efficient
technique for the solution of fractional differential equations.

Stochastic differential equations (SDEs) [16-20] occur where a system described
by differential equations is influenced by random noise. Typically, SDEs contain a
variable which represents random white noise calculated as the derivative of
Brownian motion or the Wiener process. However, other types of random behavior
are possible. Stochastic differential equation (SDE) models play a prominent role in
a range of application areas, including biology, chemistry, epidemiology,
mechanics, microelectronics, economics, and finance.

The aim of this book is to develop and improve significantly analytical and
numerical techniques in order to have advanced approaches to reinforce and
complement classical methods. The improved and developed techniques have been
examined to be reliable, accurate, effective, and efficient in both the analytic and
numerical purposes.

The present research work focuses on new development of valuable analytical
and numerical techniques that have been examined for effectiveness and reliability
over other existing methods.

1.2 Introduction to Fractional Calculus

Fractional differential operators have a long history, having been mentioned by
Leibniz in a letter to L’Hospital in 1695. Referring to the question of
fractional-order differentiation, Leibniz wrote, “It will lead to a paradox, from
which one-day useful consequences will be drawn.” Early mathematicians who
contributed to the study of fractional differential operators include Liouville,
Riemann, and Holmgrem (See [8] for a history of the development of fractional
differential operators). A number of definitions for the fractional derivative have
been emerged over the years: Griinwald-Letnikov fractional derivative, Riemann—
Liouville fractional derivative, and the Caputo fractional derivative [4-6, 8].

The fractional differential equations appear more and more frequently in dif-
ferent research areas and engineering applications. An effective and easy-to-use
method for solving such equations is needed. It should be mentioned that from the
viewpoint of fractional calculus applications in physics, chemistry, and engineering,
it was undoubtedly the book written by Oldham and Spanier [6] which played an
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outstanding role in the development of this subject. Moreover, it was the first book
that was entirely devoted to a systematic presentation of the ideas, methods, and
applications of the fractional calculus.

Later, there appeared several fundamental works on various aspects of the
fractional calculus including an extensive survey on fractional differential equations
by Podlubny [4], Miller and Ross [5], and others. Furthermore, several references to
the books by Oldham and Spanier [6], Podlubny [4], and Miller and Ross [5] show
that applied scientists need first of all an easy introduction to the theory of fractional
derivatives and fractional differential equations, which could help them in their
initial steps to adopting the fractional calculus as a method of research.

1.2.1 Fractional Derivative and Integration

Fractional calculus has been used to model physical and engineering processes
which are found to be best described by fractional differential equations. For that
reason, we need a reliable and efficient technique for the solution of fractional
differential equations. The fractional calculus has gained considerable importance
during the past decades mainly due to its applications in diverse fields of science
and engineering.

Definition 1 A real function f(¢), r > 0 is said to be in the space C,, y € R if there
exists a real number p( > 7), such that f(¢) = #f1 (), where fi(r) € C[0, o] and it
is said to be in the space C;,” ifff<’") e C,, meN.

Riemann-Liouville Integral and Derivative Operator

The most frequently encountered definition of an integral of fractional order is the
Riemann—Liouville integral [4].

The fractional-order Riemann-Liouville integral of order a(>0), of a function
fecC,, y>—1is defined as

t

/@-ﬂ*?@ﬁm 1>0, xcR". (11)

0

P = %

where R is the set of positive real numbers.

Remark 1 For f € C,, y> —1, we have the following property

r(p+1)d+e

JP =
T(Fratl)

,B>—1, 0a>—-1—p.
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Definition 2 The left-hand side and right-hand side Riemann-Liouville fractional
integral of a function f € C,, (y> — 1) are defined as

t

_ochf(t)ﬁ/ (t—1)" " 'f(r)dt, m —1<a<m,me N, (1.2)

—00

and

JLf() =iﬂ;)/ (t—0)""f(x)dr, for m —l<a<m,me N (1.3)

t

respectively.

Definition 3 Riemann-Liouville fractional derivative of order o (x>0 and
o € RT) is defined as

Df(t) = D" (1)

t
(m—o—1) .
— | (t—1 t)dr, ifm—l<a<m,méeN
r(m—a)d,mof( ) f(x) (1.4)

s ifo=m, meN

Definition 4 The left Riemann-Liouville fractional derivative of order
o(m—l<oa<m, m € N) can be defined as

t
—oo DI (1) :1"(1111—0()(;1#" / (t—1)" " 'f(t)dr, m— 1<a<m,me N (1.5)

—00

Definition 5 The right Riemann-Liouville fractional derivative of order
o(m— 1<o<m, m € N) can be defined as

,Dgof(;):ré;l_)@g:;/(r_z)m—“—‘ (t)dt, m — l<a<m,me N. (1.6)

t

Remark 2 One of the interesting properties of the Riemann-Liouville fractional
derivative is the derivative of a constant which is not zero. So mathematically, it can
be written as

Ct "

DIC=——
! Il —a)’

(1.7)

where C is a constant.
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The Semi-group Property of the Fractional Integral Operator

If Re(e) > 0 and Re(f) > 0 then the equation J“JPg(t) = JPJ?g(t) = J*TPg(1) is
satisfied at almost every point ¢ € [a, b] for f(r) € L,a,bJ(1 <p <o). If o+ f > 1,
then J*JPg(t) = JPJ*g(t) = J**Pg(¢) held at any point of [a, b].

Caputo Fractional Derivative

The fractional derivative, introduced by Caputo [4] in the late sixties, is called
Caputo fractional derivative. The fractional derivative of () in the Caputo sense is
defined by

D?( (t) — Jl117“Dl1l‘f<t)

t m
L f(t—t)(mﬂ*l)ddff:)dr, ifm—1<a<m,mé€N,
2k . (1.8)

d"r) e
dm ifao=mméeN,

where the parameter « is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive o will be considered.
For the Caputo’s derivative, we have

D*C =0, (Cisaconstant) (1.9)

0 p<a—1
D =< riginpe L ’ 1.10
{I—W, ﬁ >o— 1. ( )

Similar to integer-order differentiation, Caputo’s derivative is linear.

D*(3f (1) +08(1)) = yD*f (1) +0D"g (1), (1.11)
where y and  are constants, and satisfies so-called Leibnitz’s rule.

o0

D(g(f (1) = > <k> YD (1), (112)

k=0

if f(7) is continuous in [0,7] and g(t) has continuous derivatives sufficient number
of times in [0, 7].

Lemma 1: Let Re(x) > 0 and let n = [Re(a)] 4+ 1 fora € No = {0,1,2,...}; n=
a for o € Ny. If f(t) € AC"[a, b](the space of functions f(¢) which are absolutely
continuous and possess continuous derivatives up to order n — 1 on [a, b]) or f(¢) €
C"[a, b] (the space of functions f(¢) which are n times continuously differentiable
on [a, b)), then
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“DLIf(1) = f (1), (1.13)
JCDH (1) = f(1) — i;: fO0+),1>0. (1.14)
k=0 """

Proof Let o ¢ Ny. Since f(f) € AC"[a, b], the Caputo derivative Df(t) is con-
tinuous on [a, b], i.e., “D*f(t) € Cla, b].
Now, according to the definition of Caputo derivative Eq. (1.8),
DI (1) = J*D"I*f(t)
= J"J*7"f(¢), by the property J*"f(t) = D"J*f(¢)
=/(0).
Thus, Eq. (1.13) has been derived.

Again, according to the definition of Caputo derivative Eq. (1.8),

TCD}f (1) = "D (1)
= J"D"f(1), using the semi-group property in (1.1)

JO(JI‘[—OC — Jn
n—1 i (k)
*fH04)
=10 =Y S
S
Hence, Eq. (1.14) has been obtained. ]

Theorem 1.1 (Generalized Taylor’s formula [21])
Suppose that D**f(t) € C(a,b] fork =0,1,...,n+ 1, where 0<a < 1, we have

_ . (tia)m ior oAy
.f(t) - ;1—*(1‘ + 1) I:Daf(t)]t:a+m]1(t7a)7 (115)
—a (n+1)a n o
with R(t;.a) = (6 [Dg 1) f(t)}lzf, a<E<tVi€ (a,bl,

where D’;“ =D%.D}.D5...D% (k times).
Proof The proof of the Theorem 1.1 can be found from Theorem 3 in Ref. [21]. B

Griinwald-Letnikov Fractional Derivative

The Griinwald—Letnikov fractional derivative was first introduced by Anton Karl
Griinwald (1838-1920) from Prague, in 1867 and by Aleksey Vasilyevich Letnikov
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(1837-1888) from Moscow in 1868. The Griinwald-Letnikov fractional derivative
is based on finite differences, which is equivalent to the Riemann—Liouville
definition.

The Griinwald-Letnikov fractional derivative of an order (> 0) [4, 8, 22] is
defined as

DI (1) = hli_r)no hfqg wlf(t — rh), (1.16)
r=0
mh=t—a

where w? = (—1)r<q>.
r

1
wgzlandwgz(l—q+ )w" r=1,2,... (1.17)

r r—1°

Riesz Fractional Integral and Derivative

In this section, some significant definitions, viz. the right Riemann—Liouville
derivative, left Riemann—Liouville derivative, Riesz fractional derivative, and Riesz
fractional integral which are to be used subsequently in consequent chapters, have
been presented.

Definition 6 Riesz fractional integral [4, 8, 23, 24] of the order o, n — 1 <o <n of
a function f € C,, (y> — 1) is defined as

02 () = eal oo+ T2 (%)
+ 00
Cy

-t5 / - A AL,

—00

__ 1
where ¢, = 2o (@)’ o # 1.
Here,_.J}, ;J5, are the left-hand and right-hand side Riemann—Liouville frac-
tional integral operators defined in definition 2.

Definition 7 The Riesz fractional derivative of order o (n — 1 <o <n,n € N) on
the infinite domain —oo <t < oo of a function f € C,, (y > —1) is defined as [4, 8,
23-25]

d’f (x)
djx|”

= ¢y (oD (x) +.D7% £ (%)) , (1.18)
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where ¢, = m, o # 1.

Here,_D? and ,D?%  are the left-hand and right-hand side Riemann-Liouville
fractional differential operators defined in definitions 4 and 5, respectively.

In case of a<t<b (ie., t defined in a finite interval), the Riesz fractional

derivative of order o (n — 1 <o <n,n € N) can be written as

d*f (1) 1

d|x|” - 2 cos(&

] (aDf (x) +D}f (x))

where

X

" _ 1 d" F(Odc
le)ﬁf(x) - F(n _ O() dx? / (x _ g)l*il“rl}(’

a

b
ey (DT f(Odl
xDbf(x) = F(n — OC)@/ (C 7x)17n+q.

Lemma 2 For a function ¢(t) defined on the infinite domain (—oo <x<oo), the
following equality holds:

—(—AY(x) = —cy(_ooD* + D% ) P(x) = %}:'“d)(x),forn —1l<a<n,neN.

(1.19)

Proof According to Samko et al. [8], a fractional power of the Laplace operator is
defined as follows:

—(=AP(x) = —F'E["F($(x)), (1.20)

where F and F~!' denote the Fourier transform and inverse Fourier transform of
f(x), respectively. Hence, we have

8t =5 [ e [ engnande

Supposing that ¢(x) vanishes at x = +o00, the integration by parts yields

7 » 1 7 P
/ e”””qﬁ(n)dn:—% e’ (n)dn.
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Thus, we obtain

oo o
Let/=i [ e’f(”’)‘)%di, then

—00

J—i [_ / eif(xfn)éx—leé =+ / eif(’?x)él—ld€:| ,
0 0

for 0<a<1, we have

[T T ] s nT@T0 =),
= {[i(n—x)]“Jr[i(x—n)]“} Ferov e UG Rt

Using T'(a)[(1 — ) = =% and i~ + (=)' 7" = 2sin(%), we obtain

sin(mor)

sign(x — n)n
I= — 5 .
cos (%) [x — n|*T(1 — «)

Hence, for O<a<1

; 1 i , sign(x — n)m
—(=A)yd(x) = -5~ / ¢<”>Cos(a7n)|x_n|“r(1—oc)d”

___ 1 A L IR S A A0)
= 2005(%) [F(l—a) / (x_”)adrl r(l—a)/(n—x)“d;{|'

—00 X

Following [1, 3], for 0 <a <1, the Griinwald-Letnikov fractional derivative in
[a,x] is given by

o @O 1 )
D) == +r(1foc)/(t—n)°‘d"’

Therefore, if ¢(x) tends to zero for a — —oo, then we have
‘ 1 [ o0
D) = [

Il —a) x—1)

—00
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Similarly, if ¢(x) tends to zero for b — + oo, then we have

R S A A ()
Do) = i [ o

X

Hence, if ¢(x) is continuous and ¢(x) is integrable for x> a, then for every
a2(0<a<1), the Riemann-Liouville derivative exists and coincides with the
Griinwald—Letnikov derivative. Finally, for 0 <o <1, we have

P 1 d*
—(—A)? " 7ooDa xDa = T )
(=00 = = g DI+ D9 = g 900
o _ d T ¢ ds o - d Ocqﬁ d
where _oD*¢(x) = F(ll—a)a_{c (X(Z)W’ and D* ¢(x) = r(limaxf (’gi)x)].
Following a similar argument, for 1 <o <2, we can obtain
CCAFB) = — e [ DIB) + DA D) = s (),
2 cos(%) * * d|x|
o _ 1 d T émdy o _ 1 & T emmdy
where _oDId(x) = 174z 7{0 T and D%, P(x) = 17 4 ! T
Finally, for n — 1 <o <n, we have
(A L [DE() D] = ()
—N\TA)PX) = — < |- X x =52 PX)
2 cos(%) x > d|x|

-2 dv

where DXb(x) = ol i [ 05 and WD) = dRl [
t

Remark 3 For a function f(z) defined on the finite interval [0, L], the result in
Eq. (1.19) holds by setting

sy J o) 1€(0,L),
¢@—{o ¢ (0.L),
That is ¢*(¢) = 0 on the boundary points and beyond the boundary points.

Definition 8 Riesz—Feller fractional derivative proposed by Feller [24] is a gener-
alization of the Riesz fractional derivative. For 0 <o <2, o # 1 and free parameter 0,
|0] <min{o, 2 — o}, the Riesz—Feller fractional derivative is defined as [26]

FDY(x) = (Cy (o, 0)D%, +C— (o)D" (v), (1.21)
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where the coefficients Cy (o, ) are given by

and D% and D* are the left- and right-sided Weyl fractional derivatives of order o,
defined forx e Rand « >0, n —1<a<n, n€ N as

(D% )Y (x) == (%)n (I'""Y) (x), (1.22)

0= () (). (123

In the above formulae, I’~* are the left- and right-sided Weyl fractional integrals
given by

X

w(@:ﬁ [ -0t (1.24)
and
P = s [ (=00 (1.25)

1.2.2 Preliminaries of Local Fractional Calculus

In this section, the basic definitions and some elementary properties of local frac-
tional derivative have been briefly discussed.

Local Fractional Continuity of a Function
Definition 9 Suppose that f(x) is defined throughout some interval containing x

and all points near xo, then f(x) is said to be local fractional continuous at x = x,
denoted by lim f(x) = f(xo), if to each positive ¢ and some positive constant
X—X0

k corresponds some positive ¢ such that [27-29]

If(x) = fxo)| <ke*, O0<a<l, (1.26)
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whenever |x — xp| <J, &, 6 > 0 and ¢, 6 € R. Consequently, the function f(x) is
called local fractional continuous on the interval (a,b), denoted by

f(x) € Cy(a, b), (1.27)

where o is fractal dimension with 0 <o <1.

Definition 10 A function f(x) : R — R, X+ f(X) is called a nondifferentiable
function of exponent o, 0 <o <1, which satisfies Holder function of exponent o,
then for x,y € X, we have [27-29]

() =f)| < Clx =y (1.28)

Definition 11 A function f(x) : R — R X+ f(X) is called to be local fractional
continuous of order o, 0 <« < 1, or shortly a-local fractional continuous, when we
have [27-29]

f(x) = fx0) = O((x = x0)"). (1.29)
Remark 4 A function f(x) is said to be in the space Cy|a, b] if and only if it can be

written as [27-29]

J(x) = f(x0) = O((x = x0)%),
with any xo € [a,b] and 0<a <1.

Theorem 1.2 (Generalized Hadamard’s Theorem) [30]
Any function f(x) € C*(I) in a neighborhood of a point xy can be decomposed
in the form

(x —x0)"

mg(x),

f(x) =f(x0) +

where g(x) € C"™*(I) (the space of functions which are m times « th differentiable on
I CR).

Local Fractional Derivative

If a function is not differentiable at x = x;, but has a fractional derivative of order o
at this point, then it is locally equivalent to the function

709 =)+ £ ) 10w, (130)
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Definition 12 Following to Eq. (1.30), the local fractional derivative of f(x) €
C,(a,b) of order o at x = xq is defined as [27-29]

fwwﬂzﬁgﬁ__:ggéﬁg%iﬁﬁﬁ, (1.31)

where A*(f(x) — f(x0)) 2 T(1+a)(f(x) — f(x0)) and O<a < 1.

Another definition of local fractional derivative has been proposed by Kolwankar
and Gangal [31] by means of theory on the Cantor space, which is given as follows.

Definition 13 Local fractional derivative of order o(0<a<1)) of a function
f€C%:R — Ris defined as

Df(x) = lm DI(F(0) ~ £ (). (1.32)

if the limit exist in R U oo.

If f(x) is differentiable at the point other than x = x,, with nonzero value of the
derivative, then it can be approximated locally as

f(x) = f(x0) +f (x0) (x — x0) + 0(x — x0). (1.33)
So the local fractional derivative of f(x) at x = xo becomes
& (f (x) —
Dflan) = Jim 0 =S50

, . d*(x — x0)
F) e d(x —xp)"

(1.34)

Remark 5 The following rules are hold [13]

d'x T +ke) k—1)a.
M) G = rrren s

) % = kE,(kx"), k is a constant.

Remark 6 [13, 27-29]
(D If y(x) = (f o u)(x) where u(x) = g(x), then we have

d*y(x)
dxc{

=g (V@) (135)

when £ (g(x)) and g((x) exist.
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I If y(x) = (f o u)(x) where u(x) = g(x), then we have

d*y(x)
dxat

= (g(x))g™ (), (1.36)

when f(1)(g(x)) and g (x) exist.

1.3 Wavelets

Nowadays, wavelets [32] have found their place in many applications for a wide
range of engineering disciplines. Wavelets are very effectively used in signal
analysis for waveform demonstration and segmentations (separation or partition),
time-frequency analysis, and fast algorithms for easy execution. Wavelets allow
accurate depiction of a variety of functions and operators. With the widespread
applications of wavelet methods for solving difficult problems in diverse fields of
science and engineering such as wave propagation, data compression, image pro-
cessing, pattern recognition, computer graphics and in medical technology, these
methods have been implemented to develop accurate and fast algorithms for solving
integral, differential, and integro-differential equations, especially those whose
solutions are highly localized in position and scale [32, 33]. Using the powerful
multiresolution analysis, one can represent a function by a finite sum of components
at different resolutions so that each component can be adaptively processed based
on the objectives of the application. This capability of representing functions
compactly and in several levels of resolutions is the major strength of the wavelet
analysis.

The word “wavelet” has been derived from the French word “ondelette,” which
means “small wave.” An oscillatory function y(x) € L*(R) with zero mean and
compact support is a wavelet if it has the following desirable characteristics:

(i) Smoothness: ¥(x) is n times differentiable, and their derivatives are
continuous.
(ii) Localization: y(x) is well localized in both time and frequency domains, i.e.,

(x) and its derivatives must decay rapidly. For frequency localization, @(w)

must decay sufficiently fast as w — oo and that ‘T’(w) becomes flat in the
neighborhood of w = 0. The flatness is associated with the number of van-
ishing moments of ¥ (x), i.e.,

/ Ay (x)dx = 0 orequivalently w‘l’(w) =0fork=0,1,...,n

—00
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in the sense that larger the number of vanishing moments, more is the flatness when
w 1s small.

(iii)) The admissibility condition

/OO liI(w)’dw< 00
|o]

suggests that ’@(w)‘ decay at least as ||~ or |x|°”" for & > 0.

Although most of the numerical methods have been successfully applied for
many linear and nonlinear differential equations, they have also some drawbacks in
regions where singularities or sharp transitions occur. In those cases, the solutions
may be oscillating and for an accurate representation of the results, adaptive
numerical schemes must be used which complicates the solution. To overcome the
above difficulty, wavelet transform [32, 34] methods are quite useful.

1.3.1 Wavelet Transform

Morlet and Grossmann [35, 36] first introduced the concept of wavelets in the early
1980s. Since then, a lot of researchers were involved in the development of
wavelets. Some notable contributors include Morlet and Grossmann [36] for for-
mulation of continuous wavelet transform (CWT), Stromberg [37] for early works
on discrete wavelet transform (DWT), Meyer [38] and Mallat [39] for multireso-
lution analysis using wavelet transform, and Daubechies [40] for proposal of
orthogonal compactly supported wavelets. Thereafter, a lot of work has been done
both on development and application of wavelet analysis on a wide variety of
problems like signal and image processing, data condensation, and solution of
differential equations.

In 1982, Jean Morlet, a French geophysical engineer, first introduced the concept
of wavelets as a family of functions constructed from dilation and translation of a
single function known as the “mother wavelet” y/(¢). They are defined by

1

Vil

where a is called a scaling parameter which measures the degree of compression or
scale, and b is a translation or shifting parameter that determines the location of the
wavelet. If |a| <1, the wavelet (1.37) is the compressed version of the mother

Vap(1) = w(%), a,beR, a#0 (1.37)
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wavelet and corresponds mainly to higher frequencies. On the other hand, when
la| > 1, Y, ,(t) has a larger time width than (¢) and corresponds to lower fre-
quencies. Thus, wavelets have time widths adapted to their frequencies, which is
the main reason for the success of the Morlet wavelets in signal processing and
time-frequency signal analysis. It can be noted that the resolution of wavelets at
different scales varies in the time and frequency domains as governed by the
Heisenberg uncertainty principle. At large scale, the solution is coarse in the time
domain and fine in the frequency domain. As the scale decreases, the resolution in
the time domain becomes finer while that in the frequency domain becomes coarser.

The success of Morlet’s numerical algorithms encouraged Grossmann, a French
theoretical physicist, to make an extensive study of the Morlet wavelet transform
which led to the recognition that wavelets y,, , () correspond to a square integrable
representation of the affine group. Grossmann was concerned with the wavelet
transform of f € L?(R) defined by

Wylfl(a,b) = (F¥,,) = ﬁ / f(t)¢(%> dr, (1.38)

where ¥, , (1) plays the same role as the kernel e’ in the Fourier transform. The

continuous wavelet transform %", is linear. The inverse wavelet transform can be
defined so that f can be reconstructed by means of the formula

10 =t [ [ wulsta b0 s (1.39)

provided Cy satisfies the so-called admissibility condition, that is,

~ 2
%)

where ¥ (o) is the Fourier transform of the mother wavelet (z).

Grossmann’s ingenious work revealed that certain algorithms that decompose a
signal on the whole family of scales can be utilized as an efficient tool for multiscale
analysis. In practical applications, the continuous wavelet can be computed at
discrete grid points. For this, a general wavelet y can be defined by replacing a with
ag(ag # 0,1), b with nboaf (by # 0), where m and n are integers and making

Vo (£) = ag " (g™t — nby). (1.41)
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The discrete wavelet transform of f is defined as

o0

f(m,n) = Hlf(m,n) = (F.hy,,) = /f(t)lﬁm,n(f)dt (1.42)

—00

where ¥, , (1) is given in Eq. (1.41).
The series

S Fmm ) (1.43)

m,n=—00

is called the wavelet series of f, and the functions {i,, ,(¢)} are called the discrete
wavelets or simply wavelets. To compute the wavelet transform of a function at
some point in the time-scale plane, we do not need to know the function values for
the entire time axis. All we need is the function at those values of time at which the
wavelet is nonzero. Consequently, the evaluation of the wavelet transform can be
done almost in real time.

It is known that the continuous wavelet transform is a two-parameter repre-
sentation of a function. In many practical applications particularly in signal pro-
cessing, data are represented by a finite number of values, so it is essential and often
expedient to consider the discrete version of the continuous wavelet transform.
From a mathematical perspective, continuous representation of a function of two
continuous parameters a, b in Eq. (1.38) can be converted into a discrete one by
assuming that a and b take only integral values as given in Eq. (1.41). In general,
the function f belonging to the Hilbert space, L?(R) can be completely determined
by its discrete wavelet transform if the wavelets form a complete system in L*(R).
In other words, if the wavelets form an orthonormal basis of Lz(R), then they are
complete and f can be reconstructed from its discrete wavelet transform
{f(m,n) = (f.¥,,,)} by means of the formula

0= 3 b, (1.44)

provided the wavelets form an orthonormal basis.
Alternatively, the function f can be determined by the formula

=3 ()bl (1.45)

m,n=—00



18 1 Mathematical Preliminaries
provided the wavelets form a basis and {{pm,n(t)} is the dual basis.

For some particular choice of ¢ and ay, b, the V,, , constitute an orthonormal
basis for L>(R). If ap = 2 and by = 1, then there exists a function i with good
time-frequency localization properties such that

Vo (1) = 272927 — ) (1.46)

form an orthonormal basis for L?(R). These {{,,,(¢)} are known as the
Littlewood—Paley wavelets. It has good space-frequency localization, given in the
following representation of f as

f(t) = Z (f: ‘//m,n)lpm,n(t)' (147)

m,n

An orthodox example of a wavelet i for which ,, , constitute an orthonormal
basis of L*(R) is the Haar wavelet

1, 0<t<}
y() =< —1, 1<e<l. (1.48)
0, otherwise

Historically, the Haar basis is the first orthonormal wavelet basis that was
invented long before the concept of wavelet was introduced. The joint venture of
Morlet and Grossmann led to a detailed mathematical study of the wavelet trans-
forms and applications.

Wavelet techniques enable us to divide a complicated function into several
simpler ones and study them separately. This property, along with a fast
wavelet algorithm, makes these techniques very attractive for analysis and syn-
thesis. Unlike Fourier-based analyses that use global (nonlocal) sine and cosine
functions as bases, wavelet analysis uses bases that are localized in time and fre-
quency to more effectively represent nonstationary signals. As a result, a wavelet
representation is much more compact and easier for implementation. Using the
powerful multiresolution analysis, one can represent a function by a finite sum of
components at different resolutions so that each component can be adaptively
processed based on the objectives of the application. This capability of representing
functions compactly and in several levels of resolutions is the major strength of the
wavelet analysis.

1.3.2 Orthonormal Wavelets

The orthonormal wavelets with good time-frequency localization are found to play
a significant role in wavelet theory and have a great variety of applications.
In general, the theory of wavelets instigates with a single function y € L?(®), and a
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family of functions /,, , is constructed from this single function i by the operation
of binary dilation (i.e., dilation by 2™) and dyadic translation of n2~" so that

Wna(t) = z%l//(zm(, - %)), mn€Z
= 2°y(2"t — n),

(1.49)

where the factor 27 is introduced to ensure orthonormality.

Definition 14 Orthonormal Wavelet A wavelet € [*(R) is called an
orthonormal, if the family of functions v, ,, generated from v, is an orthonormal

basis of L*(R); that is,

<wi,ja lﬁm’n> = 5i,n15j,na i,jym,n € Z.

Definition 15 Semi-orthogonal Wavelet A wavelet y € L*(R) is called an
semi-orthogonal wavelet [33], if the family {i,, ,} satisfies the following condition,

m,n

<wi,/" lpm,n> = 07 i 7é m, iaja m,n € 7.

Obviously, every semi-orthogonal wavelets generate an orthogonal decompo-
sition of L?(R), and every orthonormal wavelet is also a semi-orthogonal wavelet.

Construction of Orthonormal Wavelets

The construction of an orthonormal wavelet, viz. the Haar wavelet, is discussed by
using the properties of scaling functions and filters. The scaling function ¢ satisfies
the dilation equation as

o(t) =2 i enp(2t — n), (1.50)

n=—00

where the coefficients ¢, are given by
=2 / (1) (2t — n)dr. (1.51)

Evaluating the above integral given in Eq. (1.51), with ¢ = yp 1), gives ¢, as
follows:

co=c = and ¢, =0 for n#0,1.

V2
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[u—

40 1 ¢Q20) 1 P2t -1)

0 1 t 0 05 t 0 05 1 ¢

Fig. 1.1 Two-scale relation of ¢(t) = ¢(2t) + (2t — 1)

Here yy 1) denotes the characteristic function given by

(1) = I, 0<t<l1
Tonp\t) = 0, otherwise’

Hence, the dilation equation becomes

b(t) = (20) + p(2t — 1). (1.52)

This means that ¢(¢) is a linear combination of the even and odd translates of
¢(2t) and satisfies a very simple two-scale relation (1.52), which is shown in
Fig. 1.1.

Thus, the Haar mother wavelet is obtained as a simple two-scale relation

V(1) = d(21) — p(2t - 1)

(1.53)
= X[0,05) — £[0.5,1)
L, 0<r<}
=< -1, l<i<l (1.54)

0, otherwise

This two-scale relation (1.53) of y is represented in Fig. 1.2.

1.3.3 Multiresolution Analysis

In 1989, Stephane Mallat and Yves Meyer introduced the idea of multiresolution
analysis (MRA) [33, 34]. The fundamental idea of MRA is to represent a function
as a limit of successive approximations, each of which is a “smoother” version of
the original function. The successive approximations correspond to different reso-
lutions, which lead to the name multiresolution analysis as a formal approach to
construct orthogonal wavelet bases utilizing a definite set of rules. It also provides
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w (o) $(21)

—pQ2t=1)

Fig. 1.2 Two-scale relation of () = ¢(2t) — (2t — 1)

the existence of so-called scaling functions and scaling filters which are then used
for the construction of wavelets and fast numerical algorithms. In applications, it is
an effective mathematical framework for the hierarchical decomposition of a signal
or an image into components of different scales represented by a sequence of
function spaces on R.

Any wavelet, orthogonal or semi-orthogonal, generates a direct sum decompo-
sition of Lz(R). For each j € Z,, let us consider the closed subspaces

Vj:,..@VVJLQ@Vijh ]627

of L>(R). A set of subspaces {‘/j}jez is said to be MRA of L*(R) if it possesses the
following properties:

(1) VjCVj+la VjGZ,
(i) U V;is dense in L*(R),
j€z
dii) () V; = {0},
j€z
) Vipr =V, oW,
V) f(yeVief2t)eViy, Vjel
Properties (ii)—(v) state that {Vj}j - is a nested sequence of subspaces that
effectively covers L?(R) That is, every square integrable function can be approx-
imated as closely as desired by a function that belongs to at least one of the

subspaces V;. A function ¢ € L*(R) is called a scaling function if it generates the
nested sequence of subspaces V; and satisfies the dilation equation, namely
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o(t) = peolat — k), (1.55)
k

with p; € 2 and a being any rational number.

For each scale j, since V; C V;,, there exists a unique orthogonal comple-
mentary subspace W; of V; in V;, ;. This subspace W; is called wavelet subspace
and is generated by ¥, = ¥(2/t — k), where § € L? is called the wavelet. From the
above discussion, these results follow easily

lemij :V_i27j1 > 2,
Vlem‘/ij =0,/ 7éj2’
® lemvvjzzovjl <j2-

Mathematically, the fundamental idea of multiresolution analysis is to represent
a function or signal as a limit of successive approximations, each of which is a finer
version of the function. These successive approximations correspond to different
levels of resolutions. Thus, multiresolution analysis is a formal approach to con-
structing orthonormal wavelet bases using a definite set of rules and procedures.
The key feature of this analysis is to describe mathematically the process of
studying signals or images at different time scales. From the point of view of
practical applications, MRA is a really effective mathematical framework for the
hierarchical decomposition of an image or signal into components of different
scales or frequencies.

In recent years, there have been many developments and new applications of
wavelet analysis for describing complex algebraic functions and analyzing empir-
ical continuous data obtained from many kinds of signals at different scales of
resolutions. The wavelet-based approximations of ordinary and partial differential
equations have been attracting the attention, since the contribution of orthonormal
bases of compactly supported wavelet by Daubechies and multiresolution
analysis-based fast wavelet transform algorithm by Beylkin et al. [41] gained
momentum to make wavelet approximations attractive.

In order to solve partial differential equations by numerical methods, the
unknown solution can be represented by wavelets of different resolutions, resulting
in a multigrid representation. The dense matrix resulting from an integral operator
can be sparsified using wavelet-based thresholding techniques to attain an arbitrary
degree of solution accuracy. The main feature of wavelets is its ability to convert
the given differential and integral equations to a system of linear or nonlinear
algebraic equations that can be solved by numerical methods.
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1.4 New Analytical and Numerical Techniques for Partial
and Fractional Differential Equations

1.4.1 Introduction

The purpose of this section is to deliver a brief description of various analytical and
numerical methods for solving partial and fractional differential equations. The
present research work focuses on new development of valuable analytical and
numerical techniques that have been examined for effectiveness and reliability over
other existing methods. Also, various analytical methods such as first integral
method (FIM) [42—46], optimal homotopy asymptotic method (OHAM) [47, 48],
homotopy analysis method (HAM) [49], variational iteration method (VIM)
[50, 51], and homotopy perturbation method (HPM) [52, 53] are used to compare
the accuracy of solutions for numerous partial as well as fractional differential
equations with the results obtained by the proposed techniques. The applicability of
these proposed methods has been examined for solving nonlinear partial differential
equations (PDEs) and fractional partial differential equations (FPDEs). The main
aim is to develop and improve significantly analytical and numerical techniques in
order to have advanced approaches to reinforce and complement classical methods.
The improved and developed techniques have been examined to be reliable,
accurate, effective, and efficient in both the analytic and numerical purposes. Thus,
the goal of this work is to encourage the researcher to get familiar with the beauty as
well as the effectiveness of these analytical and numerical techniques in the study of
nonlinear physical phenomena.

1.4.2 Modified Decomposition Method

Let us consider the following system of coupled partial differential equations

Lyu = Lyu — u+N(u,v),

1.56
Ly = iLywv+iM(u,v), (1.56)

=2
— o

and the notations N(u,v) = |v|> and M(u,v) = uv symbolize the nonlinear
operators.

Applying the twofold integration inverse operator L' = [j [; (¢)dzdt to the
system (1.56) and using the specified initial conditions yields

where L; = é%, L and L, = % symbolize the linear differential operators,
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u(x, 1) = u(x,0) +tu,(x,0) + L Loou — L 'u+L;'N(u,v),

o » (1.57)
v(x,t) = v(x,0) +iL, Lyv+iL, M(u,v).

The Adomian decomposition method [54, 55] assumes an infinite series of
solutions for unknown function u(x,¢) and v(x,) given by

u(x, 1) =
(1.58)

M 10

3
I
o

and nonlinear operators N(u,v) = |v|* and M(u,v) = uv by the infinite series of
Adomian’s polynomials given by

00

N(u,v)=ZA,,(uo,ul,...,un,vo7v1,..., , M(u,v) = ZB UQy ULy« v oy Uny VO, VIy - - oy Vi),
n=0

where A, and B, are the appropriate Adomian polynomial which is generated
according to algorithm determined in [54, 55]. For the nonlinear operator N(u, v),
these polynomials can be defined as

An(u()?btla . -,M,”V(),Vl, . '1‘})1) =

(Zﬂu uk,ZA vk>] ,n>0

=0

'dA
(1.59)

Similarly for the nonlinear operator M (u,v),

1 dn 00 ‘ o0 T
Bn(uo,ul,...,un,vo,vl,...,vn):;W M Z}L ”’”ZA Vi ,n>0
: k=0 k=0

2=0
(1.60)

These formulae are easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. For the sake of
convenience of the readers, we can give the first few Adomian polynomials for

N(u,v) = [v|*, M(u,v) = uv of the nonlinearity as
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Ag = voVp,
Ay = vV + vy,
Ay = vavp +vovp + vy,

and

Bo = ugvo,
By = uyvo +upvy,
By = upvo +ugva +uyvy,

and so on, and the rest of the polynomials can be constructed in a similar manner.

Substituting the initial conditions into Eq. (1.57) and consequently identifying
the zeroth components u, and vy, then we obtain the subsequent components by the
following recursive equations by using the standard ADM

Up+1 :L;ILxxun_Lglun‘f'L;lAnanZOa (1 61)
Va1 =il Ly, +iL7'B, , n>0. '

Recently, Wazwaz [56] proposed that the construction of the zeroth component
of the decomposition series can be defined in a slightly different way. In [56], he
assumed that if the zeroth component uy = g and the function g are possible to
divide into two parts such as g; and g, the one can formulate the recursive
algorithm for u( and general term u, . | in a form of the modified recursive scheme
as follows:

Up = 81
U =g +L;1Lmu0 - L;luo +L;1A() (162)
Upp1 = Lglexun - L;lun +L;1An yn>1

Similarly, if the zeroth component vy = g’ and the function g’ are possible to
divide into two parts such as g} and g}, the one can formulate the recursive
algorithm for vy and general term v, | in a form of the modified recursive scheme
as follows:

Vo =& lla
v) = gy +iL, 'Lyvo+iL, ' By, (1.63)
Va1 = il Lov, +il'B,, n>1.

This type of modification is giving more flexibility to the ADM in order to solve

complicate nonlinear differential equations. In many cases, the modified decom-
position scheme avoids unnecessary computation especially in the calculation of the
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Adomian polynomials. The computation of these polynomials will be reduced very
considerably by using the MDM.

It is worth noting that the zeroth components uy and v are defined; then, the
remaining components u, and v,, n>1 can be completely determined. As a
result, the components ug,u;,..., and vy, vy,..., are identified, and the series
solutions thus entirely determined. However, in many cases, the exact solution in a
closed form may be obtained.

The decomposition series (1.58) solutions generally converge very rapidly in
real physical problems [55]. The rapidity of this convergence means that few terms
are required. The convergence of this method has been rigorously established by
Cherruault [57], Abbaoui and Cherruault [58, 59], and Himoun et al. [60]. The
practical solutions will be the n-term approximations ¢, and v,

—_

n—

=
|

ui(x, 1), n>1,

Il
=}

(1.64)

3
|
—_

<
B
Il

V,'(X, t)» n>1,

Il
=}

with
lim ¢, = u(x,1),

lim ,, = v(x,1).

n—oo

1.4.3 New Two-Step Adomian’s Decomposition Method

First, consider a one-dimensional fractional diffusion equation considered in [61]

Ou(x,t) O"u(x, 1)
o 495

+q(x,1) (1.65)

on a finite domain x; < x < xg with 1 <« < 2. Here, d(x) > 0 is the diffusion
coefficient (or diffusivity), and o denotes the order of Riemann fractional derivative.

In this case, for solving Eq. (1.65), Adomian’s decomposition method has been
adopted. In light of this method, we assume that

u= iun (1.66)
n=0

to be the solution of Eq. (1.65).
Now, Eq. (1.65) can be rewritten as



1.4 New Analytical and Numerical Techniques for Partial ... 27

Lu(x,t) = d(x)Diu(x, 1) + q(x, 1), (1.67)

where L, E% which is an easily invertible linear operator, and D?(e) is the
Riemann—Liouville derivative of order «.
Therefore, by Adomian’s decomposition method, we can write

u(x,t) = u(x,0) + L (d(x)D;‘ (i un>> +L Y (q(x,1)). (1.68)

n=0

Each term of series (1.60) is given by the standard Adomian decomposition
method recurrence relation

Uo :fa
Up g =L! (d(x)D;u,,), n>0,

T

(1.69)

where f = u(x,0) + L' (q(x, 1)).

It is worth noting that once the zeroth component u, is defined, then the
remaining components u,, n>1 can be completely determined; each term is
computed by using the previous term. As a result, the components ug, u;, ... are
identified, and the series solutions thus entirely determined. However, in many
cases, the exact solution in a closed form may be obtained.

Recently, Wazwaz [56] proposed that the construction of the zeroth component
uy of the decomposition series can be defined in a slightly different way. In [56], he
assumed that if the zeroth component uy = f and the function fis possible to divide
into two parts such as f; and f>, then one can formulate the recursive algorithm for
up and general term u,.; in a form of the modified decomposition method
(MDM) recursive scheme as follows:

up = fi,
ur = fo+ L (d(x)Dluy), (1.70)
Uy = L7 (d(x)Duy) n>1.

Comparing the recursive scheme (1.69) of the standard Adomain method with
the recursive scheme (1.70) of the modified technique leads to the conclusion that in
Eq. (1.69), the zeroth component was defined by the function f, whereas in
Eq. (1.70), the zeroth component u is defined only by a part f; of £ The remaining
part f> of fis added to the definition of the component u; in Eq. (1.70). Although the
modified technique needs only a slight variation from the standard Adomian
decomposition method, the results are promising in that it minimizes the size of
calculations needed and will accelerate the convergence. The modification could
lead to a promising approach for many applications in applied science.

The decomposition series solution (1.66) generally converges very rapidly in
real physical problems [54, 55]. The rapidity of this convergence means that few
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terms are required. The convergence of this method has been rigorously established
by Cherruault [57], Abbaoui and Cherruault [58, 59], and Himoun et al. [60]. The
practical solution will be the n-term approximation ¢,

n—1

(bn:Zu,-(x,t), n>1, (1.71)

i=0
with

lim ¢, = u(x,1).
n—oo

Luo [46] presented the theoretical support of how the exact solution can be
achieved by using only two iterations in the modified decomposition method. In
detail, it is possible because all other components vanish, if the zeroth component is
equal to the exact solution.

Although the modified decomposition method may provide the exact solution by
using two iterations only, the criterion of dividing the function f into two practical
parts, and the case where f consists only of one term remains unsolved so far. The
two-step Adomian decomposition method (TSADM) overcomes the difficulties
arising in the modified decomposition method.

In the following, Luo [62] presents the two-step Adomian decomposition
method. For the convenience of the reader, we consider the differential equation

Lu+Ru+Nu=g, (1.72)

where L is the highest order derivative which is assumed to be easily invertible, R is
a linear differential operator of order less than L, Nu represents the nonlinear terms,
and g is the source term.

The main ideas of the two-step Adomian decomposition method are as follows:

(I) Applying the inverse operator L~ to g, and using the given conditions, we
obtain ¢ = ¢+ L~'g, where the function ¢ represents the term arising from
using the given conditions, all are assumed to be prescribed.

Let

i=0

where ¢g, ¢, .., ¢, are the terms arising from integrating the source term
g and from using the given conditions. Based on this, we define
up = @+ -+ + @, where k=0,1,...,m, s=0,1,...,m — k. Then, we
verify that u, satisfies the original equation Eq. (1.72) and the given conditions
by substitution, once the exact solution is obtained, we stop. Otherwise, we go
to the following step two.
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(IT) We set ug = ¢ and continue with the standard Adomian recursive relation
we+1 = —L"(Rug) — L7 (Ay), k>0.

Next, consider a two-dimensional fractional diffusion equation considered in
[63]

O u(x,y, 1) Ou(x,y,1)

Ou(x,y,t
M:d(-xyy)T +e(x7y)87y'[; +Q(x7yat)7 (174)

ot

on a finite rectangular domain x; < x < xz and y; < y < yg, with fractional orders
l<a < 2and 1< f < 2, where the diffusion coefficients d(x, y) > 0 and e(x,
y) > 0. The “forcing” function g(x, y, ) is used to represent sources and sinks.
Now, following the similar argument for one-dimensional fractional diffusion
equation, for Eq. (1.74) using Adomian’s decomposition method, we can obtain

u(x,y,t) = u(x,y,0) + L " (d(x, y)D? <i u,,)) +L! (e(x7 y)Df <i un>>
n=0 n=0

+L " (q(x,y,1)).
(1.75)

The standard Adomian decomposition method recurrence scheme is

MOZfa

Upt+1 = Lt_l (d(x7 y)D;un) +Lt_1 (e(x, y)D{gun)’ n Z (), (176)

where f = u(x,y,0) + L, (q(x,y,1)).
The modified decomposition method (MDM) recursive scheme is as follows
Uo :fl y
w = fo+ L (d(x, y)Diuo) + L7 (e()@ y)D5M0)7 (1.77)
Upy1 = L;l (d(x,y)D;‘un) —‘—L;1 (e(x7 y)Dgun), n>1.
Compared to the standard Adomian method and the modified method, we can

see that the two-step Adomian method may provide the solution by using two
iterations only.
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1.4.4 New Approach for Adomian’s Decomposition Method

Let us consider the following space fractional diffusion equation

Ou(x, 1)
ot

= kDu(x,t), O<x<L, t>0, l<a<2, (1.78)

with the following boundary conditions

ou(0,1)  Ou(L,t)
ox  Ox

=0, >0, (1.79)

and initial condition
u(x,0) =f(x), 0<x<L, (1.80)

where x is the diffusion coefficient and D? is Caputo fractional derivative of order o.
Therefore, after considering the initial condition u(x,0) = f(x) as Fourier cosine
series, we can take

u(x,0) = % + i%/Lf(é) cos (nLé)dé cos, ("Zx) (1.81)
0

where cos, (""") is the generalized cosine function defined in [8] and y = a/2,

ye (4,1].
It is known that D7 sin,x = cos, x, limsin,x = sinx, and D’ sin, x = cos, x,
i ’ ! !
oo (=)
n=0T(2ny+1)"
According to the Adomian decomposition method, we can write

where cos, x =

u(x,t) = u(x,0) + L, (dD%u(x,1)), (1.82)

where

t‘ll\)

up = u(x,0) % i

w = L; ' (dD}uo),
Uy = Lt_l(dDzul),
Uz = L:l(dD;uz),

/L ) cos < > dé cos, (n_zx) ,
0

and so on.
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The practical solution will be the n-term approximation ¢,,

n—1

b, =D wilx,1), n>1 (1.83)

i=0

with
lim ¢, = u(x,1).

n—0o0

1.4.5 Modified Homotopy Analysis Method with Fourier
Transform

To describe the basic idea, let us consider the following fractional differential
equation

Nlu(x,1)] =0, (1.84)

where N is a nonlinear differential operator containing Riesz fractional derivative
defined in Eq. (1.18), x and ¢ denote independent variables and u(x,?) is an
unknown function. For simplicity, we ignore all boundary or initial conditions,
which can be treated in a similar way.

Then, applying Fourier transform and using Eq. (1.20), we can reduce fractional
differential Eq. (1.84) to the following Fourier transformed the differential equation

Nla(k,1)] =0, (1.85)

where ii(k, t) is the Fourier transform of u(x, 7).
By means of the HAM [64, 65], one first constructs the zeroth-order deformation
equation of Eq. (1.85) as

(1 =p)L[¢p(k, 1;p) — ito(k,1)] = phN[¢p(k, £ )], (1.86)

where L is an auxiliary linear operator, ¢ (k, ; p) is an unknown function, iy (k, ¢) is

an initial guess of ii(k,7), i # 0 is an auxiliary parameter, and p € [0, 1] is the

embedding parameter. For the sake of convenience, the expression in nonlinear

operator form has been modified in HAM. In this modified homotopy analysis

method, the nonlinear term appeared in expression for nonlinear operator form has

been expanded using Adomian’s type of polynomials as >~ A,p" [55].
Obviously, when p = 0 and p = 1, we have

d(k,1;0) = ao(k, 1), Pp(k,1;1) = u(k,1), (1.87)
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respectively. Thus, as p increases from O to 1, the solution ¢(k, #; p) varies from the
initial guess iy(k,?) to the solution ii(k, ). Expanding ¢(x,¢;p) in Taylor series
with respect to the embedding parameter p, we have

DUk, 1:p) = ok )+ 3 Pk, 1), (1.58)

m=1

where i,,(k,t) = %d‘;—m (k, t;p)’

The convergence of the series (1.88) depends upon the auxiliary parameter 7. If
it is convergent at p = 1, we have

+

o0

a(k,t) = bk, 1) + U (K, 1),

S
i

which must be one of the solutions of the original nonlinear equation.

Differentiating the zeroth-order deformation Eq. (1.86) m times with respect to
p and then setting p = 0 and finally dividing them by m!, we obtain the following
mth-order deformation equation

Ll (k1) — ypitm—1 (k1)) = ARy (fhg, Gy - - oty ), (1.89)

where
1 9" 'N[p(k,1;p)]
§}E’nA)A7"'7AW1_ - .
(UO up u l) (m — 1)‘ 8pm,1 0
and
1, m>1
’{’”_{O, m<1 (1.90)

It should be noted that i,,(k, ) for m>1 is governed by the linear Eq. (1.89)
which can be solved by symbolic computational software. Then, by applying
inverse Fourier transformation, we can get u,,(x, 7).

1.4.6 Modified Fractional Reduced Differential Transform
Method

Consider the following general nonlinear partial differential equation:



1.4 New Analytical and Numerical Techniques for Partial ... 33

Lu(x,t) + Ru(x,1) + Nu(x, 1) = g(x,1), (1.91)
with initial condition

u(x,0) = f(x),

where L = D? is an easily invertible linear operator, R is the remaining part of the
linear operator, Nu(x, t) is a nonlinear term, and g(x, ¢) is an inhomogeneous term.

We can look for the solution u(x, ¢) of the Eq. (1.91) in the form of the fractional
power series:

ux, 1) =Y U(x)*, (1.92)

where ¢-dimensional spectrum function Uy (x) is the transformed function of u(x, 7).
Now, let us write the nonlinear term

o0

N(u,t) = Ay (Uo(x), Uy (x), -+, Un(x)) 7, (1.93)
n=0

where A, is the appropriate Adomian’s polynomials [55]. In this specific nonlin-
earity, we use the general form of the formula for A, Adomian’s polynomials as

Ay(Uo(x), Uy (x),- -, Up(x)) = %%nn lN (Z /l’U,()C)) (1.94)
a4 i=0

=0
Now, applying Riemann—Liouville integral J* both sides of Eq. (1.91), we have
u(x,t) = ®+J%g(x,t) — J*Ru(x,t) — J*Nu(x, 1), (1.95)

where from the initial condition ® = u(x,0) = f(x).
Substituting Egs. (1.92) and (1.93), for u(x,t) and N(u,?), respectively, in
Eq. (1.95) yields

f: U (x)* = f(x) + J* (i Gi (x)t“k> —J* <R (i Ur (x)l“k> )
k=0 k=0 k=0
—J* (ZAk(x)tak ,
k=0

where g(x,1) = <Z Gk(x)t“k>, and Gy(x) is the transformed function of g(x, 7).
=0

After carry out Riemann—Liouville integral J*, we obtain
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Y ‘ o K+ D (gk + 1) k1) (k 4 1
];)Uk(x)l“k =f(x)+ (Z()Gk( )%) - ( (Z Ug(x )%))

e (ak 4+ 1)
(Z Ag(x) m)

Finally, equating coefficients of like powers of #, we derive the following
recursive formula

Uo(x) = f(x),
and
I'(ok+1) (ok+1) )
U =G(x)—— L -
1) =G gy 1) ( ) Pk D+ 1) (1.96)
I(ok +1) '
—A(x) =—————, k>0.
Ok K2
Using the known Up(x), all components U, (x), Up(x),- -+, Uy(x), - -,, etc., are
determinable by using Eq. (1.96).
Substituting these Uy(x), U;(x), Uz(x), -, Uy(x),- - ,, etc., in Eq. (1.92), the
approximate solution can be obtained as
P
ity (x,1) = > Un(x) £, (1.97)
m=0
where p is the order of approximate solution.
Therefore, the corresponding exact solution is given by
u(x,r) = lim i, (x,1). (1.98)

p—00

1.4.7 Coupled Fractional Reduced Differential Transform
Method

In order to introduce coupled fractional reduced differential transform, two cases are
considered.

For Functions with Two Independent Variables

In this case, U(h,k — h) is considered as the coupled fractional reduced differential
transform of u(x, ). If the function u(x, ¢) is analytic and differentiated continuously
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with respect to time ¢, then we define the fractional coupled reduced differential
transform of u(x, ) as

1 ho+ (k—h)p)
Uh,k —h) = {D( ], 1.99
( U sy oy u@n| (1.99)
whereas the inverse transform of U(h, k — h) is
c© k
=> > U(hk — byt 6P, (1.100)
=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 1.3 Suppose that U(h,k — h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,t) and v(x,t), respectively.

@) Ifu(x,t) =f(x,1) £ g(x,t), then U(h,k — h) = F(h,k — h) &+ G(h,k — h).
() Ifu(x,t) = af (x,t), where a € R, then U(h,k — h) = aF (h,k — h).

(i) If f(x, 1) = ulx,t)v(x,t), then F(hk—h)= i kih Uh—1s)V(l, k—

i=0 5=0
h—s).
(v) Iff(x,t) = D*u(x,t), then
I'i(h+1 k—nh 1
Fhk—h) = ((F(Zai“(ﬁhm)f;; YUth+ 1,k - n).
v) If f(x,1) = Dv(x,1), then
Flhk—ny = Ttk =ht DEFD) iy,

T(ho+ (k—h)f+1)

Proof of Theorem 1.3 (i)
If u(x,t) = f(x,1) £ g(x, 1), then according to Eq. (1.99)
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Ulh.k—h) = T (ho + (klf nB+1) {D’(M(kfhw(f(x’ )+ g(x, ’))}

1

T T(hat (k—h)B+1)
1

Tt k—hp+1)

t=0

{ pli+ (=hB) (. ,)}

[Dam (k=1)) g (., ,)}

Therefore, in view of Eq. (1.99),
U(hk—h) =F(h,k —h) £ G(h,k — h)

where F(h,k —h) = W

and G(h,k — h) = F i

[D(hac + (kfh)ﬁ)f(xv t)] o

[D(hoc+ (k=h)B) g (x t)} .
) =

Proof of Theorem 1.3 (ii)
If u(x,t) = af (x,t) where a € R, then according to Eq. (1.99)

1

T(ho+ (k— W)+ 1)
1

- a(r(ha+ k—m)p+1)

= aF(h,k — h)

U(h,k —h) =

[D(howr(kfh)ﬁ)af(x’ t)} )
1=l

[D<hx+ (k1)) £ (x, ,)] t_())

Proof of Theorem 1.3 (iii)

According to Eq. (1.100)
+(U(1,0)V(0,0)+ U(0,0)V(1,0))*
0

)+ U(0,0)V(0,1)}2°
+U(0,1)V(1,0)+ U(1,1)V(0,0)+ U0,0)V(1, 1)) +F + ...

= i i <Z Uh—1s)V(,k—h— s)) {1+ (k=

=S
©
—

=

h k=h
Hence, F(h,k—h)=>.> U(h—1,5)V(l,k—h —s), identified in view of
i=0 5=0
Eq. (1.100).
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Proof of Theorem 1.3 (iv)
If f(x,t) = D¥u(x,t), then according to Eq. (1.99)

(h k— h) 1 [ (h+ 1)+ (k—h)B

Tt (k= mp+1) 2 )],
_ T((h+ Dot (k — h)ﬁ+1){ 1 DI I)}
Tha+(k—h)p+1) |[I'((h+Da+(k—m)p+1) ' ’
_ T((h+ Do+ (k—h)B+1)
 T(ha+(k—h)p+1)

t=0

U(h+1,k — h)

(4 Vot (k—h)p
where U(h+1,k —h) = {F((thl)aJrl(k—h)ﬂqtl)Dz u(x, f)}

=0
Proof of Theorem 1.3 (v)
If f(x,) = Dv(x, 1), then according to Eq. (1.99)
_ 1 (ot (k—h + 1)f)
Flhk=h) = =g+ 1) [Df V(x”)],:o
o F(hoc+ (k —h+ 1)ﬁ+ l) [ 1 D(lu+(k7h+l)/f)v(x l):|
T(ho+(k—-n)p+1) |T(ha+(k—-h+1)p+1) " g P
I'(ho+ (k—h+1)p+1)
hk—h+1
Tt k=g k= +D)
h V(hk—h+1) = {%me(k#ﬁl)/}) 1
where V/( +1) Tlhat k—h+ D +1) 1 v(x, 1) o

For Functions with Three Independent Variables

In this case, U(h,k — k) is considered as the coupled fractional reduced differential
transform of u(x,y, ). If the function u(x,y,¢) is analytic and differentiated con-
tinuously with respect to time #, then we define the fractional coupled reduced
differential transform of u(x,y,t) as

_ 1 (hae+ (k=h)p)
Ulh k=) = 5 o) [D, u(x,y,t)}t . (L.101)

whereas the inverse transform of U(h, k — h) is

ook
u(x,y, 1) = Y Ulh k= k)™ 0P (1.102)
k=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 1.4. Suppose that U(h,k — h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,y,t) and v(x,y,t), respectively.
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() If ulxy.0) =f(x,3,1) £g(ey.0). then U(h,k —h) = F(hk — ) % G,

k—h).
() If u(x,y,1) = af (x,y,t), where a € R, then U(h,k — h) = aF (h,k — h).
i) If f(e,y,1) = u(x,y,t)v(x,y,t), then F(h,k—h)= Xh:ki‘f Uh—1,5)V(l,
=0 s=0
k—h—s).
(iv) If f(x,y,1) = Dfu(x,y,1), then
oy _T((h+ Do+ (k—h)B+1) B
Flhk =) == gen U Lk= )
V) I f(x,3,1) = D/v(x,y,1), then
Flk—py = LUk =hr DB o0y,

C(ho+ (k— h)p+1)

The proofs of Theorem 1.4 (i), (ii) and (iv), (v) can be obtained in a similar manner
as done for the functions with two independent variables.

Proof of Theorem 1.4 (iii)

ok <k
Z Z U(h,k _ h)thx+(kh)/i> (Z Z V(h,k _ h)th:lJr(kh)/f)
(=0

+

0))* + (U(0, 1)V(0,0) + U(0,0)V(0, 1))
0,0)+ U(0,0)V(1, 1) +F ...

F(hk—h) = i Uh—1,5)V(Ik—h—s).

1.4.8 Optimal Homotopy Asymptotic Method

The OHAM was introduced and developed by Merinca et al. [66]. In OHAM, the
control and adjustment of the convergence region are provided in a convenient way.
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To illustrate the basic ideas of optimal homotopy asymptotic method [67, 68], we
consider the following nonlinear differential equation

Au(x, 1)) +g(x, 1) =0,xe Q (1.103)

with the boundary conditions

Ou
B(u,E) =0, xeTl (1.104)

where A is a differential operator, B is a boundary operator, u(x, f) is an unknown
function, I' is the boundary of the domain Q, and g(x,7) is a known analytic
function.

The operator A can be decomposed as

A=L+N, (1.105)

where L is a linear operator and N is a nonlinear operator.
We construct a homotopy ¢(x, 7; p) : Q x [0,1] — R which satisfies

H(o(x, t;p),p) = (1 = p)[L(p(x, t; p)) +g(x,1)]

— H(p)[A(p(x, t; p)) +g(x,1)] =0, (1.106)

where p € [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function
forp # 0 and H(0) = 0. When p = Oandp = 1,, we have ¢(x, #; 0) = up(x,#) and
o(x, t; 1) = u(x,t), respectively.

Thus, as p varies from 0 to 1, the solution ¢(x, ¢; p) approaches from ug(x, t) to

u(x,1).
Here ug(x,?) is obtained from Egs. (1.106) and (1.104) with p = 0 yields

L(p(x, 1;0))+g(x,1) =0, B(uo, %) =0. (1.107)

The auxiliary function H(p) is chosen in the form
H(p) = pCi+p’Ca+p°Cs + ... (1.108)

where Ci, Cy, C3, ... are constants to be determined. To get an approximate solu-
tion, @(x, t; p,C1,C,,Cs,...) is expanded in a series about p as

o0
P(x, t;p,C1,Cy,Cs,..) = up(x, 1) + > ui(x,2,Cy,Ca, C3,..)p". (1.109)
i=1

13

Substituting Eq. (1.109) in Eq. (1.106) and equating the coefficients of like
powers of p, we will have the following equations
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L(u1(x, l) +g(x, l)) = ClNo(uo(x, l))7 B(ul, %) =0. (1110)

L(uz(x, 1)) — L(uy (x, 1)) = CoNo(uo(x, 1)) + Cr(L(u1(x, 1)) + Ny (uo(x, 1), u;1(x, 1))),

(1.111)

and hence, the general governing equations for u;(x, ) are given by

L(uj(x, t)) :L(uj,l(x t)) + CiNo(uo(x, 1))

1.112
+ ZC ”J 1(x, t)) +]\7]'_1(u0(x, 1), ttjy (X, t))} ; ( )

i=2,3,...
where N;(ug(x, t), ...u;(x, 1)) is the coefficient of p/ in the expansion of
N(¢(x, t; p)) about the embedding parameter p and

o0

N(QD()C, t;p,C1, G, Gy, . )) :No(uo(x, t))+ Zjvj(uoaulv R uj)pj' (1113)
J=1

It is observed that the convergence of the series (1.109) depends upon the
auxiliary constants Cy, Cy, Cs, ...
The approximate solution of Eq. (1.103) can be written in the following form

n—1
i(x, t5 C1,Cy,Cs,..) = uo(x, 1) + Y _ui(x,1,C1,Ca, C3, ... (1.114)
=1

~.

Substituting Eq. (1.114) in Eq. (1.103), we get the following expression for the
residual

Rn(x7 t;C17C27C37' ) :L(Ijt()ﬁ t;C17C27C37"’))+N(’2(x1 t;C|7C2,C37.-.))+g(X7I)-
(1.115)

IfR,(x, t;C1,Cy,Cs,...) =0, then ii(x, 1;Cy, C,, Cs, .. .) is the exact solution.
Generally, such case does not arise for nonlinear problems. The nth-order
approximate solution given by Eq. (1.114) depends on the auxiliary constants
Cy,Cy, Cs, . . ., and these constants can be optimally determined by various methods
such as weighted residual least square method, Galerkin’s method, and collocation
method.
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The convergence of the nth approximate solution depends upon the optimal
values of the unknown constants C;, Cy, Cs,.... When the convergence control
constants Cj, C,, Cs,... are known by the above-mentioned methods, then the
approximate solution of Eq. (1.103) is well determined.

1.4.9 First Integral Method

Let us consider the time fractional differential equation with independent variables
X = (x1,X2,...,Xm,?) and a dependent variable u.

o 200
P(u, DXttty Uy, Uy, D71, U )y Uy s Uy y Uy - - <) = 0, O<ar <1 (1.116)

where Dfu is the fractional modified Riemann—Liouville derivatives of u.
Using the variable transformation

2 +%

u(xr, %2, X, 1) = U(E), E=x1+hxo+. .+ lu1Xm+ F(IA—|— o)

. (1.117)

where k, I;, and A are constants to be determined later; the fractional differential
Eq. (1.117) is reduced to a nonlinear ordinary differential equation

H=(U(),U'(),U"(¢),...) (1.118)
We assume that Eq. (1.117) has a solution in the form
U(g) = X(9), (1.119)

and introduce a new independent variable Y (&) = U(¢), which leads to a new
system of ODEs of the form

] oo
1.120
L (GRTG)

Now, let us recall the first integral method [69]. By using the division theorem
for two variables in the complex domain C which is based on the Hilbert’s
Nullstellensatz Theorem [70], we can obtain one first integral to Eq. (1.120) which
can reduce Eq. (1.118) to a first-order integrable ordinary differential equation. An
exact solution to Eq. (1.116) is then obtained by solving this equation directly.

Theorem 1.5 (Division theorem) Suppose that Q(x,y) and R(x,y) are polynomials
in C[[x,y]], and Q(x, y) is irreducible in C[[x,Y]]. If R(x,y) vanishes at all zero
points of Q(x,y), then there exists a polynomial H(x,y) in C[[x,y|| such that
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R(x,y) = Q(x,y)H(x,y). (1.121)

The division theorem follows immediately from the Hilbert’s Nullstellensatz
theorem from the ring theory of commutative algebra [70-72].

Theorem 1.6 (Hilbert’s Nullstellensatz theorem, see [70]) Let K be a field and L be
an algebraic closure of K. Then

(i) Everyidealyof K[X1,Xa, . . ., X,| not containing 1 admits at least one zero in L.

(i) Letx = (x1,%2,...,%,) andy = (y1,¥2, ..., ¥n) be two elements of L"; for the
set of polynomials of K[X1,X2, . . ., X, zero at x to be identical with the set of
polynomials of K[X1,Xa, ..., X,| zero at y, it is necessary and sufficient that
there exists an K-automorphism S of L such that y; = S(x;) for 1 <i<n.

(iii) For an ideal o of K[X1,Xa,...,X,] to be maximal, it is necessary and suf-
ficient that there exists an x in L" such that o is the set of polynomials of
K[X1,Xs,...,X,] zero at x.

(iv) For a polynomial Q of K[X1,X3, . .., X,] to be zero on the set of zeros in L" of
an ideal y of K[X1,Xz, . .., X,), it is necessary and sufficient that there exists
an integer m > 0 such that Q" € y.”

Using the ring conception of commutative algebra, Feng [069] first proposed the
first integral method in solving Burgers—KdV equation. The basic idea of this
method is to construct the first integral with polynomial coefficients of an explicit
form to an equivalent autonomous planar system by using the division theorem.

1.4.10 Haar Wavelets and the Operational Matrices

Morlet (1982) [33] first introduced the idea of wavelets as a family of functions
constructed from dilation and translation of a single function called the “mother
wavelet.” Haar wavelet functions have been used from 1910 and were introduced
by the Hungarian mathematician Alfred Haar [73]. Haar wavelets (which are
Daubechies wavelets of order 1) consist of piecewise constant functions on the real
line that can take only three values, i.e., 0, 1, and —1 and are therefore the simplest
orthonormal wavelets with a compact support. Haar wavelet method to be used due
to the following features: simpler and fast, flexible, convenient, small computa-
tional costs, and computationally attractive. The Haar functions are a family of
switched rectangular waveforms where amplitudes can differ from one function to
another.
The Haar wavelet family for x € [0, 1) is defined as follows [74]

1 xe€[&, &)
h,-(x) = -1 xe€ [52, 53) (1122)
0  else where
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where
k k+0.5 k+1
G=—,8= s G=—.
m m m
In these formulae integer m = 2/, j = 0,1,2,...,J indicates the level of the
wavelet; k = 0,1,2,...,m — 1 is the translation parameter. The maximum level of

resolution is J. The index i is calculated from the formula i = m 4 k + 1; in the case
of minimal values m =1, k=0, we have i=2. The maximal value of
i=2M =2'"1! Tt is assumed that the value i = 1 corresponds to the scaling
function for which

(o J1 forxe[0,1)
hi(x) = {0 elsewhere. (1.123)

In the following analysis, integrals of the wavelets are defined as

X X X

P = [ meode a0 = [ s nto = [

0 0 0

This can be done with the aid of (1.122)

x—¢& forxe[,5)

pi(x) =< & —x forxe[&,8). (1.124)
0 elsewhere
0 , forx € [0,¢&))
Ix—¢&) forx € [£, &)
(N —J2
Ql(x) #_% 63_)6)2 forx € [527£3>' (1125)
4—1:12 forx € [&,1]
é(X—51)3 forx € [£, &)
rx) = 4 ar = &)+ (& —x)7 forx e [6,8) (1.126)
ﬁ(x - &) forx € [&3,1)
0 elsewhere

The collocation points are defined as

105

=— 1=1,2,..., 2M.
X M ) ) 4 ’

It is expedient to introduce the 2M x 2M matrices H, P, Q, and R with the
elements H(i,l) = h;i(x;), P(i,1) =pi(x;), O(i,]) =qi(x;), and R(i, 1) = ri(x)),
respectively.
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In 2012, the generalized Haar wavelet operational matrix of integration has been
derived by the learned researcher Saha Ray [75]. Usually, the Haar wavelets are
defined for the interval ¢ € [0, 1), but in general case t € [A, B], we divide the
interval [A, B] into m equal subintervals; each of width At = (B — A)/m. In this
case, the orthogonal set of Haar functions is defined in the interval [A, B] by [75]

Cf1 e,
ho(t)_{O elsewhere - (1.127)

and
L L) <t< 6(9)
hi() =< =1, &) <t< (). (1.128)
0, otherwise
where
) k—1 k—1
; k—(1/2) k—(1/2)
LE) =A+ <2]> (B—A)=A+ <2j mAt,
. k k
L) =A+ % (B—A)=A+ i mAt,
fori=1,2,---,m, m =2’ and J is a positive integer which is called the maximum

level of resolution. Here j and k represent the integer decomposition of the index i,
ie,i=k+2/ —1,0<j<i and 1 <k<2/41.
The mutual orthogonalities of all Haar wavelets can be expressed as

b
s _ [b—a2d m=n=2tk
/hm(t)hn(z)dt_(b a)2 5,,1,1—{ 0, mtn )

Function Approximation

Any function y(f) € L*([0, 1)) can be expanded into Haar wavelets by [76]

y(l) = Coho(t) +Clh1(t) +C2h2(l) + -+, where Cj = /y(t)hj(t)dl. (1129)
0
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If y(r) is approximated as piecewise constant in each subinterval, the sum in
Eq. (1.129) may be terminated after m terms, and consequently, we can write
discrete version in the matrix form as

m—1
Y ~ <Z c,»hi(t,)> =C’'H,, (1.130)
i=0

Ixm

where Y and C; are the m-dimensional row vectors.
Here H,, is the Haar wavelet matrix of order m defined by

Hm = [h07h17' te 7hm—l]Ta ie.

I ]’l(),() hO,l t hO,mfl
hy hio hig - hime
H,=| " = . . ) (1.131)
hm—l hmfl,O hmfl.,l cee hmfl,mfl
where ho,hy,---,h,,_ are the discrete form of the Haar wavelet bases.
The collocation points are given by
h=A+(1—-05At1=1,2, --- ,m. (1.132)

Operational Matrix of the General-Order Integration

The integration of the H,,(r) = [ho(¢), hy(2), ..., hu_1(r)]" can be approximated by
[77]

/ H,,(1)dt = QH,, (1), (1.133)
0

where Q is called the Haar wavelet operational matrix of integration which is a
square matrix of m-dimension. To derive the Haar wavelet operational matrix of the
general order of integration, we recall the fractional integral of order o( > 0) which
is defined by Podlubny [4]

JHf(t) = ﬁ/ (t— 1) 'f(1)dr, « >0, a € RT (1.134)
0

where R is the set of positive real numbers.
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The operational matrix for a general order was first time derived by learned
researcher Saha Ray [75]. The Haar wavelet operational matrix Q* for integration
of the general order o is given by [75]

Q H,u (1) = J*Hyn(1) = [J2ho(t), TRy (1), - .o, T 1 ()]

Thus,
Q*H,, (1) = [Qho (1), Oy (1), - - -, Qhm1(1)]". (1.135)
where
Qho(t):{{)(ltla)) ::lie&flefe]:y' (1.136)
and
O, A<t<C1()
on) =4 4 SO SI<o. (1137
¢3, G(i) <t<B,
where
(=4
(,251* ( 1)
=4@)" ,t=50)
7T Taet) Tty
4@ =50)" =50
DT Tar ) T Tt
fori=1,2,- ,m =2’ and J is a positive integer, called the maximum level of

resolutlon. Here j and k represent the integer decomposition of the index i,
iei=k+2/—1,0<j<iand 1 <k<2/+1.

1.5 Numerical Methods for Solving Stochastic
Point Kinetics Equation

The point kinetics equations are the most essential model in the field of nuclear
science and engineering. The modeling of these equations intimates the
time-dependent behavior of a nuclear reactor [78-81]. Noise in reactors can be
described by conventional point reactor kinetic equations (PRKE) with fluctuation
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introduced in some of the parameters. Such equations may be referred to as
stochastic point reactor kinetic equations. Power reactor noise analysis may be
viewed as study of a reactor’s response to a stochastic reactivity or source input.
The difficulty of solving stochastic point reactor kinetic equations arises from the
fact that they are nonlinear. The stochastic behavior of a point reactor is modeled
with a system of Itd stochastic differential equations.

The point kinetics equations model a system of interacting populations,
specifically the populations of neutrons and delayed neutron precursors. The
dynamical process explained by the point kinetics equations is stochastic in nature.
The neutron density and delayed neutron precursor concentrations differ randomly
with respect to time. At the levels of high power, random behavior is imperceptible.
But at low-power levels, such as at the beginning, random fluctuation in the neutron
density and neutron precursor concentrations can be crucial.

The numerical solutions for neutron population density and sum of precursors
concentration population density have been solved with stochastic piecewise con-
stant approximation (PCA) method and Monte Carlo computations by using dif-
ferent step reactivity functions [81]. The derivation and the solution for stochastic
neutron point kinetics equation have elaborately described in the work of [82] by
considering the same parameters and different step reactivity with Euler—-Maruyama
method and strong order 1.5 Taylor method. It can be observed that the numerical
methods like Euler-Maruyama method and strong order 1.5 Taylor method are
likely reliable with stochastic PCA method and Monte Carlo computations. Here,
Euler—Maruyama method and Taylor 1.5 strong order approximations method have
been applied efficiently and conveniently for the solution of the stochastic point
kinetics equation.

In the present investigation, the main attractive advantage, of these computa-
tional numerical methods, is their elegant applicability for solving stochastic point
kinetics equations in a simple and efficient way.

1.5.1 Wiener Process

A standard Wiener process (often called Brownian motion) on the interval [0, 7] is a
continuous time stochastic process W(z) that depends continuously on ¢ € [0, 7] and
satisfies the following properties [82-85]

(i) W(0) = 0 (with probability 1).

(i) For 0<s<t<T, the increment W(¢) — W(s) is normally distributed with
mean E(W(r)) = 0, variance E(W(r) — W(s))> = |t —s|, and covariance
E(W(t)W(s)) = min(¢,s); equivalently W(z) — W(s) ~+/t—sN(0,1)
where N(0,1) denotes a normal distribution with zero mean and unit
variance.

(ili) For 0<s<tr<u<v<T, the increments W(z) — W(s) and W(v) — W(u) are
independent. For the computational purpose, it is useful to consider
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discredited Brownian motion, where W(z) is specified at discrete ¢ values.
We thus set Az = T//N for some positive integer N and let W; = W(z;) with
t; = iAt. We discretize the Wiener process with time step Az as

W; =W, +dW;i=1,2,...,N, where each dW; ~vAtN(0, 1).

Stochastic differential equation (SDE) models play a prominent role in a range of
application areas, including biology, chemistry, epidemiology, mechanics, micro-
electronics, economics, and finance.

An It6 process (or stochastic integral) X = {X,,#> 0} has the form [82-85]

t t

X, =Xo+ /a(XS)ds—&- /b(Xs)dWY7 fort>0. (1.138)
0 0

It consists of an initial value Xy = xo, which may be random, a slowly varying
continuous component called the drift and rapid varying continuous random
component called the diffusion. The second integral in Eq. (1.138) is an It6
stochastic integral with respect to the Wiener process W = {W,, ¢ > 0}. The integral
equation in Eq. (1.138) is often written in the differential form

dX, = a(X,)dt + b(X,)dW,, (1.139)

Then Eq. (1.139) is called stochastic differential equation (or Itd stochastic
differential equation). Here Euler—-Maruyama Method and the order 1.5 Strong
Taylor methods have been described which are used later for solving a stochastic
point kinetics equation.

1.5.2 Euler-Maruyama Method

The Euler—Maruyama approximation is the simplest time-discrete approximations
of an It process. Let {¥;} be an Itd process on t© € [fy, T] satisfying the stochastic
differential equation (SDE)

dY, = a(z, Y;)dt + b(z, Y, )dW, . (1.140)

Y, =Y

For a given time discretization
th=to<T1<--<1,=T, <1.141>

an Euler approximation is a continuous time stochastic process {X(1),% <t<T}
satisfying the iterative scheme [84, 85]
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Xn+1 = Xn +a(fn;Xn)ATn+l +b(7naXn)AVVn+1» (1142)
forn=0,1,2,...,N — 1, with initial value
X() = X(‘E()),

where X, = X(t,), Atyy1 =Tus1 — Tn, and AW, = W(z,41) — W(x,). Here,
each random number AW, is computed as AW, = nn\/A_tn, where 1, is chosen
from the standard normal distribution N (0, 1).

We have considered the equidistant discretized times

T, = 190+ nA with A=A, = (T;,W for some integer N large enough so that
A€ (0,1).

1.5.3 Order 1.5 Strong Taylor Method

Here we consider Taylor approximation having strong order ¢ = 1.5. The order 1.5
strong Taylor scheme can be obtained by adding more terms from It6—Taylor
expansion to the Milstein scheme [84, 85]. The order 1.5 strong It6—Taylor scheme is

1 1 1
Y1 =Y, +al, +bAW, + Ebe(AW,f —A,) +a,bAZ, + 3 (aa, + 3

1 1 1
+ (ab, + Ebzbﬂ)(AWnA,, —AZ,) + Eb(bbﬂ + bf)(gAW,f — A)AW,

bzaxx)Aﬁ

(1.143)
forn=0,1,2,...,N — 1, with initial value
Yo = Y(19) and A, = At,,.
Here, partial derivatives are denoted by subscripts, and the random variable AZ,

is normally distributed with mean E(AZ,) = 0 and variance E(AZ}) = 1At and
correlated with AW, by covariance

1
E(AZ,AW,) = 3 AT
We can generate AZ, as

1
AZy =5 Aty (AW, + AV, /\/3), (1.144)



50

1 Mathematical Preliminaries

where AV, is chosen independently from /At, N(0, 1). Here the approximation
Y, = Y(z,) is the continuous time stochastic process {Y (1), 1 <t<T}, the
time-step size At, = 1, — T,—1, and AW,, = W(z,,) — W(1,-1).
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Chapter 2 )
New Approaches for Decomposition e
Method for the Solution of Differential
Equations

2.1 Introduction

In many practical applications regarding the field of science and engineering, the
physical systems are modeled by nonlinear partial differential equations (NLPDE's).
These equations play a significant role in modeling problems in science and
engineering. Many physical phenomena of the physical problems arising in various
fields of science and engineering can be elegantly investigated by the NPDE:s.
Furthermore, NPDEs are widely used to describe complex phenomena in various
fields of sciences, such as physics, biology, and chemistry and engineering.
Because, in many of the cases exact solutions are very difficult or even impossible
to obtain for NPDEs, the approximate analytical solutions are particularly important
for the study of dynamic systems for analyzing their physical nature. In the case of
approximate analytical solutions, the success of a certain approximation method
depends on the nonlinearities that occur in the studied problem, and thus a general
algorithm for the construction of such approximate solutions do not exist in the
general cases. Various methods have been devised to find the exact and approxi-
mate solutions of nonlinear partial differential equations in order to impart a great
deal of information for understanding physical phenomena arising in numerous
scientific and engineering fields. The investigation of the analytical solutions of
NPDEs plays a prominent role in the study of nonlinear physical phenomena.

In this chapter, the modified decomposition method has been implemented for
solving a coupled Klein-Gordon Schrédinger equation. In this purpose, a system of
coupled Klein-Gordon Schrddinger equation with appropriate initial values has
been solved by using the modified decomposition method. The proposed method
does not need linearization, weak nonlinearity assumptions or perturbation theory.

Spatially fractional order diffusion equations are generalizations of classical
diffusion equations which are increasingly used in modeling practical superdiffusive
problems in fluid flow, finance and other areas of application. This chapter presents
the analytical solutions of space fractional diffusion equations by two-step Adomian
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decomposition method (TSADM). By using initial conditions, the explicit solutions
of the equations have been presented in the closed form and then their solutions
have been represented graphically. The solution procedures of a one-dimensional
and a two-dimensional fractional diffusion equation are presented to show the
application of the present technique. The solutions obtained by the standard
decomposition method have been numerically evaluated and presented in the form
of tables and then compared with those obtained by TSADM. After examining the
results, it manifests that the present TSADM performs extremely well in terms of
efficiency and simplicity.

This chapter also presents the new approach of the Adomian decomposition
method (ADM) for the solution of space fractional diffusion equation with insulated
ends. A typical example of special interest with fractional space derivative of order
o, 1<o<2 is considered in the present analysis and solved by ADM after
expressing the initial condition as Fourier series. The explicit solution of space
fractional diffusion equation has been presented in the closed form and then the
numerical solution has been represented graphically. The behaviour of Adomian
solutions and the effects of different values of o are shown graphically.

2.2 Outline of the Present Study

The aim of the present chapter is to focus on the study of nonlinear partial dif-
ferential equations (NLPDESs) that have particular applications appearing in engi-
neering and applied sciences. The analytical approximate methods have been used
for solving some specific nonlinear partial differential equations like coupled
nonlinear Klein-Gordon-Schrodinger equations, space fractional diffusion equations
on finite domain, space fractional diffusion equation with insulated ends, which
have a wide variety of applications in physical models.

2.2.1 Coupled Nonlinear Klein—-Gordon-Schraédinger
Equations

The coupled nonlinear Klein—Gordon—Schrodinger (K-G-S) equations are consid-
ered in the following form:

o b0 o)
W+ Ve +uv = 0.
The modified decomposition method has been applied for solving coupled
Klein-Gordon-Schrédinger equations which play an important role in modern
physics.
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Darwish and Fan [1] have been proposed an algebraic method to obtain the
explicit exact solutions for coupled Klein-Gordon-Schrdédinger (K-G-S) equations.
Recently, the Jacobi elliptic function expansion method has been applied to obtain
the solitary wave solutions for coupled K-G-S equations [2]. Hioe [3] has obtained
periodic solitary waves for two coupled nonlinear Klein—-Gordon and Schrodinger
equations. Bao and Yang [4] have presented efficient, unconditionally stable and
accurate numerical methods for approximations of the Klein-Gordon-Schrodinger
equations. In order to determine the explicit series solutions of the coupled K-G-S
equations, the notion of Adomian’s decomposition method (in short ADM) [5, 6]
has been used. Without the use of any linearization or transformation method, the
ADM accurately computes the series solution. The ADM method which is of great
interest to applied sciences [5-7], provides the solution in a rapidly convergent
series with components that can be elegantly computed. The nonlinear equations
are solved easily and elegantly without linearizing the problem by using the ADM
[5, 6]. Large classes of linear and nonlinear differential equations, both ordinary as
well as partial, can be solved by the Adomian decomposition method [5—41].
A reliable modification of Adomian decomposition method has been done by
Wazwaz [42]. The decomposition method provides an effective procedure for
analytical solution of a wide and general class of dynamical systems representing
real physical problems [5-10, 12, 14-20, 23-25, 28-38, 40, 41]. This method
efficiently works for initial-value or boundary-value problems and for linear or
nonlinear, ordinary or partial differential equations and even for stochastic systems.
Moreover, we have the advantage of a single global method for solving ordinary or
partial differential equations as well as many types of other equations. Recently, the
solution of the fractional differential equation has been obtained through the
Adomian decomposition method by the researchers [38—40]. The method has
features in common with many other methods, but it is distinctly different on close
examinations, and one should not be misled by apparent simplicity into superficial
conclusions [5, 6].

In the present chapter, the modified decomposition method (in short MDM) has
been used to obtain the analytical approximate solutions of the coupled sine-Gordon
equations (2.1).

2.2.2 Space Fractional Diffusion Equations on Finite
Domain

Fractional diffusion equations are used to model problems in physics [43—45],
finance [46—49], and hydrology [50-54]. Fractional space derivatives may be used
to formulate anomalous dispersion models, where a particle plume spreads at a rate
that is different than the classical Brownian motion model. When a fractional
derivative of order 1 <o <2 replaces the second derivative in a diffusion or dis-
persion model, it leads to a superdiffusive flow model. Nowadays, fractional
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diffusion equation plays important roles in modeling anomalous diffusion and
subdiffusion systems, description of fractional random walk, the unification of
diffusion and wave propagation phenomenon, see, e.g., the reviews in [43-58], and
references therein.

A one-dimensional fractional diffusion equation has been considered as in [59]

Ou(x, 1)
ot

0"u(x, 1)
Ox*

= d(x) +4q(x,1), (2.2)
on a finite domain x; <x <xg with 1 <o <2. It is to be assumed that the diffusion
coefficient (or diffusivity) d(x) > 0. We also assume an initial condition u(x,t =
0) = s(x) for x;, <x<xg and Dirichlet boundary conditions of the form u(x,7) = 0
and u(xg, ) = bg(t). Equation (2.2) uses a Riemann fractional derivative of order o.
Also, a two-dimensional fractional diffusion equation has been considered as in
[60]
0" u(x,y,1) Pu(x,y, 1)

+€()C7 y) ay/;

+q(x,y,1), (2.3)

on a finite rectangular domain x; <x<xy and y; <y<yy, with fractional orders
l<a<2and 1< f <2, where the diffusion coefficients d(x,y) > 0 and e(x,y) > 0.
The ‘forcing’ function g(x,y, ) can be used to represent sources and sinks. We will
assume that this fractional diffusion equation has a unique and sufficiently smooth
solution under the following initial and boundary conditions. Assume the initial
condition u(x,y,t = 0) = f(x,y) for x, <x<xg, y, <y <y, and Dirichlet bound-
ary condition u(x,y,t) = B(x,y,?) on the boundary (perimeter) of the rectangular
region xp<x<xy, y,<y<yy, with the additional restriction that
B(xp,y,t) = B(x,y1,t) = 0. In physical applications, this means that the left/lower
boundary is set far away enough from an evolving plume that no significant con-
centrations reach that boundary. The classical dispersion equation in two dimen-
sions is given by o« = ff =2. The values of 1<ua<?2, or 1<ff<2 model a
super-diffusive process in that coordinate. Equation (2.3) also uses Riemann frac-
tional derivatives of order o and f.

In this chapter, the new two-step Adomian Decomposition Method (ADM) [6]
has been used to obtain the solutions of the fractional diffusion equations (2.2) and
(2.3).

2.2.3 Space Fractional Diffusion Equation with Insulated
Ends

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. Nowadays, fractional diffusion equa-
tion plays important roles in modeling anomalous diffusion and subdiffusion
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systems, description of fractional random walk, the unification of diffusion and
wave propagation phenomenon, see, e.g. the reviews in [43, 44, 55-58, 61], and
references therein.

In this chapter, the following space fractional diffusion equation with insulated
ends has been considered [62]

Ou(x, 1)
ot

=dD%u(x,t), O<x<L, (>0, l<o<2, (2.4)

where d is the diffusion coefficient and D? is Caputo fractional derivative of order «,
which is defined as [63]

der ao=meN
Dif () = r(nLa) oj (x— é)mﬂ*l%ﬁ)df, m—1l<oa<m, m€N. 23)
We further consider the following Dirichlet’s boundary conditions
6”;2’ 0 _ a”éi’ 0 _ 0, >0, (2.6)
and initial condition
u(x,0) =f(x), 0<x<L (2.7)

In the present chapter, the Adomian decomposition method (ADM) [5, 6] with a
simple variation has been used to obtain the analytical approximate solution of
space fractional diffusion equation (2.4) with insulated ends.

2.3 Analysis of Proposed Methods

In this section, the analysis of modified decomposition method (MDM), the new
two-step Adomian Decomposition Method, and Adomian decomposition method
with a simple variation have been presented for solving the above physical
problems.

2.3.1 A Modified Decomposition Method for Coupled K-G-S
Equations

The coupled K-G-S equations (2.1) can be written in the following operator form
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Lyu = Lyu —u+N(u,v)

2.8
Ly = iLyv+iM(u,v) 28)

where L, = %, L; = % and L,, = % symbolize the linear differential operators and

the notations N(u,v) = |v|* and M(u,v) = uv symbolize the nonlinear operators.
tt
Applying the two-fold integration inverse operator L' = JJ()drdr to the
00
system (2.8) and using the specified initial conditions yields

u(x, ) = u(x,0) + tu,(x,0) + L, Loou — L, 'u~+L,"N(u,v)

- _— (2.9)
v(x,0) +iL; " Lyv+il, M(u,v).

<
—~
=

~
~—

Il

The Adomian decomposition method [5, 6] assumes an infinite series of solu-
tions for unknown function u(x,¢) and v(x, ) given by

u(x, 1) = Z un(x, 1),
=0 (2.10)

v(x, 1) = zoo:v,,(x, 1),
n=0

and nonlinear operators N(u,v) = |v|* and M(u,v) = uv by the infinite series of
Adomain polynomials given by

o0
N(u,v) = ZA,,(uo,ul, e Uny VO, VL, ey V)i
n=0

o0

M(u,v) = Z n (U ULy oo Uy VO, Ve oy Vi),
n=0

where A, and B, are the appropriate Adomian’s polynomial which are generated
according to algorithm determined in [5, 6]. For the nonlinear operator N(u,v),
these polynomials can be defined as

1 4 > >
Ap(Uoy Uy e oy Uy VO, VI ey V) = A [N (Z IKug, Z )Lkvk>] , n>0.
: =0 =0 =0
(2.11)

Similarly for the nonlinear operator M (u,v),

l d” s k O k
Bn(uo,ul,...,un,vo,vl,...,vn):Ed/ln M Zl uk,Z/l Vi , n>0.
’ 7=0
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These formulae are easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. For the sake of
convenience of the readers, we can give the first few Adomian polynomials for

N(u,v) = [v|*, M(u,v) = uv of the nonlinearity as

Ag = vovo,
Ay = vivp + vy,

Ay = vaVy + voVs + vy,

and
By = ugvo,

By = uyvo +upvy,

By = upvg + ugvy +uyvy,

and so on, the rest of the polynomials can be constructed in a similar manner.

Substituting the initial conditions into Eq. (2.9) and identifying the zeroth
components u, and vy, we then obtain the subsequent components by using the
following recursive equations according to the standard ADM

-1 —1 —1
Up+1 = Ltt Lxxun _Ln Up +L[f Ana n207

o o (2.13)
Vg1 =il Lyv,+iL,'B,, n>0.

Recently, Wazwaz [42] proposed that the construction of the zeroth component

of the decomposition series can be defined in a slightly different way. In [42], he
assumed that if the zeroth component uy = g and the function g is possible to divide
into two parts such as g; and g;, the one can formulate the recursive algorithm for
uy and general term u, | in a form of the modified recursive scheme as follows:

Uy = &1,
uy =g+ L, Loug — L, ug+ L, Ag, (2.14)
Uni1 =L Loy — L 'uy +L'A,, > 1.

Similarly, if the zeroth component vy = g’ and the function g’ is possible to
divide into two parts such as g} and g), the one can formulate the recursive
algorithm for vy and general term v, | in a form of the modified recursive scheme
as follows:
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Vo = gllv
v = gh+iL, ' Lyvo +iL; ' By, (2.15)
Va1 =il 'Lov, +iL'B,, n>1.

This type of modification is giving more flexibility to the ADM in order to solve
complicate nonlinear differential equations. In many cases, the modified decom-
position scheme avoids unnecessary computation especially in the calculation of the
Adomian polynomials. The computation of these polynomials will be reduced very
considerably by using the MDM.

It is worth noting that the zeroth components uy and v, are defined then the
remaining components u, and v,, n>1 can be completely determined. As a
result, the components ug,uy,..., and vg,vy,..., are identified and the series
solutions thus entirely determined. However, in many cases, the exact solution in a
closed form may be obtained.

The decomposition series solutions (2.10) generally converge very rapidly in
real physical problems [6]. The rapidity of this convergence means that few terms
are required. The convergence of this method has been rigorously established by
Cherruault [64], Abbaoui and Cherruault [65, 66] and Himoun et al. [67]. The
practical solutions will be the n-term approximations ¢, and y,,

(2.16)

with

e (2.17)

2.3.2 The Two-Step Adomian Decomposition Method
Equation (2.2) can be rewritten as
Lu(x,t) = d(x)Du(x, t) + q(x,1) (2.18)

where L, =2 which is an easily invertible linear operator, D?(.) is the
Riemann-Liouville derivative of order o.
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The solution u(x,7) of Eq. (2.18) is represented by the decomposition series

u= iun. (2.19)
n=0

Now, operating L;l both sides of Eq. (2.18) and then substituting Eq. (2.19)
yields

u(x, 1) = u(x,0) + L' (d(X)DZ (i “) > +L (g(x, 1)) (2.20)
n=0

Each term of series (2.19) is given by the standard ADM recurrence relation

uo :fa
unHzL*l(d(x)D;‘un), n>0

t

(2.21)

where f = u(x,0) + L, (q(x,1)).

It is worth noting that once the zeroth component uy is defined, then the
remaining components u,, n>1 can be completely determined; each term is
computed by using the previous term. As a result, the components ug, uy, ... are
identified and the series solutions thus entirely determined. However, in many
cases, the exact solution in a closed form may be obtained.

Without loss of generality let us assume that the zeroth component uy = f and
the function f is possible to divide into two parts such as f; and f>, then one can
formulate the recursive algorithm for uy and general term u,; in a form of the
modified decomposition method (MDM) recursive scheme as follows:

uo = fi
ur = fo+L; ' (d(x)Du,) (2.22)
Up+1 = L;1 (d(x)D;Mn), n>1.

Comparing the recursive scheme (2.21) of the standard Adomain method with
the recursive scheme (2.22) of the modified technique leads to the conclusion that in
Eq. (2.21) the zeroth component was defined by the function f, whereas in
Eq. (2.22), the zeroth component u is defined only by a part f; of /. The remaining
part f, of fis added to the definition of the component u; in Eq. (2.22). Although the
modified technique needs only a slight variation from the standard Adomian
decomposition method, the results are promising in that it minimizes the size of
calculations needed and will accelerate the convergence. The modification could
lead to a promising approach for many applications in applied science.
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The decomposition series solution (2.19) generally converges very rapidly in
real physical problems [5, 6]. Here also, the practical solution will be the n-term
approximation ¢,

bp =) uwilx,1), n=>1 (2.23)

with
. = u(x,1). (2.24)

Luo [68] presented the theoretical support of how the exact solution can be
achieved by using only two iterations in the modified decomposition method. In
detail, it is possible because all other components vanish if the zeroth component is
equal to the exact solution.

Although the modified decomposition method may provide the exact solution by
using two iterations only, the criterion of dividing the function f into two practical
parts, and the case where f consists only of one term remains unsolved so far. The
two-step Adomian decomposition method (TSADM) overcomes the difficulties
arising in the modified decomposition method.

In the following, Luo [68] presents the two-step Adomian decomposition
method. For the convenience of the reader, we consider the differential equation

Lu+Ru+Nu=g, (2.25)

where L is the highest order derivative which is assumed to be easily invertible, R is
a linear differential operator of order less than L, Nu represents the nonlinear terms,
and g is the source term.

The main ideas of the two-step Adomian decomposition method are:

1. Applying the inverse operator L™ to g, and using the given conditions we
obtain

p=¢+L'g,

where the function ¢ represents the term arising from using the given
conditions, all are assumed to be prescribed.

Let
o= ¢ (2.26)
i=0
where ¢g, ¢,..., ¢, are the terms arising from integrating the source term

g and from using the given conditions. Based on this, we define uy =
Qr+ ...+ @r s wherek=0,1,...,m,s=0,1,...,m — k. Then we verify that
uy satisfies the original equation Eq. (2.25) and the given conditions by
substitution, once the exact solution is obtained, we stop. Otherwise, we go to
the following step two.
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2. We set uy = ¢ and continue with the standard Adomian recursive relation

Up+1 = —L_I(Ruk) - L_I(Ak), kZO

Similarly, for Eq. (2.3), we can obtain

u(x,y,1) = u(x,y,0) JrL;1 ( x,y)D% (iun>>
n=0

L ( e(x,y)D! <Zu>> (q(x,y,1)).

Now, the standard Adomian decomposition method recurrence scheme is

(2.27)

up = f,

2.28
Uy 1= Lt_l (d(x,y)iju,,) —i—Lt_1 (e(x, y)Dfun), n>0, ( )

where f = u(x,y,0) + L' (q(x,y,1)).
In the other hand, the modified decomposition method recursive scheme is as
follows

uo = fi
= fo+ L7 (A )Dg) + 17 (e, ) Dl (229)

tnon = L (dle0)D2) + 17 (elr Db ), n= 1.

Compared to the standard Adomian method and the modified method, we can
see that the two-step Adomian method may provide the solution by using two
iterations only.

2.3.3 ADM with a Simple Variation for Space Fractional
Diffusion Model

Equation (2.4) can be written as
Liu(x,t) = dD%u(x, 1), (2.30)

where L, = gt which is an easily invertible linear operator, DZ(-) is the Caputo
fractional derivative of order o
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If f(x) is a periodic function with period L, then the Fourier Cosine series of f(x)
in [0, L] can be obtained as

flx) = % + i%jf(i)cos(%ﬂé>décos(nl‘£>. (2.31)
0

The Fourier Cosine series is well adapted to functions whose first order
derivatives are zero at the endpoints x = 0 and x = L of the interval [0, L], since all
the basis functions cos(2*) have this property.

Therefore, after considering the initial condition u(x, 0) = f(x) as Fourier Cosine
series, we can take

u(x,0) = % + i%/f(f) cos (%) dé cos, (n_zx>7 (2.32)
0

where cos, (@) is the Generalized Cosine function defined in [69] and y = «/2,

L
ye (1]
It is known that

D’ sin, x = cos, x, lirrll sin, x = sinx
T

and

Y sin. x —
D: sin, x = cos, x,

0 (—l)”x2”7’
where cos, x = Z:Om
n=

According to the Adomian decomposition method, we can write,

u(x,t) = u(x,0) + L, (dD u(x,1)), (2.33)
where
uo = u(x,0)
Sk 52 [ 166y cos ("5 Jazeos, ("),
=1

and so on.
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The decomposition series solution

0
u= E Up,
n=0

generally converges very rapidly in real physical problems [6]. The practical
solution will be the n-term approximation ¢,

n—1

by =Y ui(x,t), n>1 (2.34)
i=0
with
lim ¢, = u(x,1). (2.35)

2.4 Solutions of Coupled Klein—-Gordon—Schrédinger
Equations

In this section, the modified decomposition method has been used for getting the
analytical approximate solutions for the coupled K-G-S equations (2.1).

2.4.1 Implementation of MDM for Analytical Approximate
Solutions of Coupled K-G-S Equations

We first consider the coupled K-G-S equations (2.1) with the initial conditions

u(x,0) = 6B* sec h*(Bx), u;(x,0) = —12B*csec h*(Bx) tanh(Bx),

. 2.36
v(x,0) = 3Bsec h*(Bx)e'™, (2.36)

where B(>1/2), ¢ and d are arbitrary constants.

Using (2.14) and (2.15) with (2.11) and (2.12) respectively and considering
c=Y4=1 g = — < for the coupled K-G-S equations (2.1) and initial conditions
(2.36) gives
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ug =0,
up = u(x,0) + tu,(x,0) + L, ' Lo — L, 'ug + L, Ag
= 6B” sec h*(Bx) — 12B*ct sec h*(Bx) tanh(Bx),
uy = L Loy — L uy + LA
= 1*(—3B* sec h*(Bx) — 9B* sec h*(Bx) + 3B* cosh(3Bx) sec i°(Bx))
+ 3 (=2B*c sec b (Bx)(—11 sinh(Bx) + sinh(3Bx))
+ 2B%c sec h* (Bx) tanh(Bx)),

and
vo =0,
vi =v(x,0)+ iL;lexvo + iL,’lBo
= 3Bsec h*(Bx)e'™,

va = il 'Lyvy +iL; ' B
= —3iBe'®1 sec h*(Bx)(2B* sec h (Bx) + (d + 2iB tanh?(Bx))?)

and so on, in this manner, the other components of the decomposition series can be
easily obtained of which u(x, ) and v(x, ) were evaluated in the following series
form
u(x,t) = 6B sec h*(Bx) — 12B%ct sec h*(Bx) tanh(Bx)

+ (—3B% sec h?(Bx) — 9B* sec h*(Bx) -+ 3B* cosh(3Bx) sec h°(Bx))

+ 3 (=2B*csec I’ (Bx)(—11 sinh(Bx) + sinh(3Bx)) + 2B%c sec h*(Bx) tanh(Bx)) + - - -
v(x,1) = 3Bsec h?(Bx)e™®

(2.37)

—3iBe®tsec h*(Bx)(2B° sec h>(Bx) + (d + 2iB tanh®(Bx))*) + - - -. (2.38)

follow immediately with the aid of Mathematica [70].

2.4.2 Numerical Results and Discussion for Coupled K-G-S
Equations

In this section, we analyze the numerical solutions for coupled K-G-S equations
obtained by the modified decomposition method.

The numerical simulations using MDM

In the present numerical experiment, Eqs. (2.37) and (2.38) have been used to draw
the graphs as shown in Figs. 2.1, 2.2, 2.3 and 2.4 respectively.
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The numerical solutions of the coupled K-G-S equations (2.1) have been shown
in Figs. 2.1, 2.2, 2.3 and 2.4 with the help of five-term and four-term approxima-
tions ¢s and y, for the decomposition series solutions of u(x,7) and v(x,?)
respectively. In the present numerical computation, we have assumed B = 0.575.
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Fig. 2.1 a The decomposition method solution for u(x, ), b Corresponding 2D solution for u(x, 7)
when 1 =0

5 10
Fig. 2.2 a The decomposition method solution for Re(v(x,?)), b Corresponding 2D solution for
Re(v(x,7)) when t =0

(a) (b)

1o

Im[w(x,t)]

Fig. 2.3 a The decomposition method solution for Im(v(x, 7)), b Corresponding 2D solution for
Im(v(x,7)) when t =0
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(a) (b)
5
E
“j.(l 5 ]_‘0 £

Fig. 2.4 a The decomposition method solution for Abs(v(x,)), b Corresponding 2D solution for
Abs(v(x,7)) when r =0

2.5 Implementation of Two-Step Adomian Decomposition
Method for Space Fractional Diffusion Equations
on a Finite Domain

In this section, the new two-step Adomian decomposition method has been
implemented for the solutions of one-dimensional and two-dimensional space
fractional diffusion equations with finite domain respectively.

2.5.1 Solution of One-Dimensional Space Fractional
Diffusion Equation

Let us consider the one-dimensional fractional diffusion equation (2.2), as taken in
[59]

Ou(x, 1)
ot

O"Bu(x, )
Ox18

=d(x) +q(x,1), (2.39)

on a finite domain 0 <x < 1, with the diffusion coefficient
d(x) = T'(2.2)x*%/6 = 0.183634x*%,
the source/sink function
q(x,1) = —(14+x)e™'x°,

the initial condition
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u(x,0) =x°, for0<x<l
and the boundary conditions

u(0,¢) =0,u(l,t) =e*, fort>0.

)

Now, Eq. (2.39) can be rewritten in operator form as
Lu(x, ) = d(x)D Su(x, 1) +q(x, 1), (2.40)

where L, = % symbolizes the easily invertible linear differential operator, D}C'g(.) is
the Riemann-Liouville derivative of order 1.8.

t
Applying the one-fold integration inverse operator L' = [ (.)ds to Eq. (2.40)

0
and using the specified initial condition yields

”(xa t) = u(x7 0) +Lt_l (d(x)DAl"AS (zoc: u”)) +Lt_l (q(xa t))

n=0

=e X +ex —xt+L! <d(x)D}c'8 (Z un> ) .
n=0

The standard Adomian decomposition method:

(2.41)

up = e 'x +ext —xt,

b <r(2.2)x2-861-8u0>
1 =L, I

6 Ox!8
4(—e "+ 1—1)x°
= (et A DY
< 22%8818 )
Uy = "
4 41— 1)x (e’ ﬁ—i—t—l)x(’
- 22 32 %222 ’

28618
u =1L ( 6 8x13)

80(—e '+ G-t 1)a0  SOT(6)(—er — g+ f—1+1)¥

3.2 x2.22 + 42 %x322x223 ’

and so on.
Therefore, according to the decomposition method, the two-term approximation

¢, is
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by = uo+u
4(—eTT+1— 1) (2.42)

_ —1.3
=e x + 25

Therefore, the three-term approximation ¢5 is

O3 =uo+ur+us

L so(e = h =) (2.43)
se 32 %222

Therefore, according to the decomposition method, the four-term approximation
by is
(f)4 =ug+uy+uy+us
B0T(6) (—e = § + §— 1+ 1) (2.44)
42 %x322%x223

—e ¥

The TSADM:
Using the scheme (2.26) of TSADM, we have

@ = Qo+ @1+ @,

where @, = e7'x%, ¢, = e 'x*, @, = —x*.
Clearly, ¢, and ¢, do not satisfy the initial condition u(x,0) = x>. By selecting
up = @, and verifying that u justifies Eq. (2.39) and satisfies the initial as well as

boundary conditions, we obtain the following terms from the recursive scheme of
MDM

uy =e 'x’,
_ 1 (T(2.2)x*8 913y,
—ex* —xt— (e — 1)x*
=0
[(2.2)x28 918
w =L 1 (2.2) 0" °u;
6 Ox!8
=0

and so on.
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Therefore, the solution is
u(x, 1) =e 'y’ (2.45)

The solution (2.45) can be verified through substitution in Eq. (2.39).

2.5.2 Solution of Two-Dimensional Space Fractional
Diffusion Equation

Let us consider the two-dimensional fractional diffusion equation Eq. (1.2), as in
(60]

9" %u(x, y,1)

0" u(x,y, 1)
61‘ - d(xay) 8)(1‘8

+e(x,y) 8y‘~6

+q(x,,1), (2.46)

on a finite rectangular domain 0 <x <1, 0 <y <1, for 0 <t < T,pg with the diffusion
coefficients

d(x,y) = T(2.2)x*%y/e6,
and
e(x,y) = 2xy"°/T(4.6),

and the forcing function
q(x,y,1) = —(1+2xy)e x>,
with the initial condition
u(x,y,0) = 'y,

and Dirichlet boundary conditions on the rectangle in the form wu(x,0,7) =
u(0,y,t) = 0, u(x, 1,¢) = e~'x>, and u(1,y,t) = e~'y>%, for all £ >0.
Now, Eq. (2.46) can be rewritten in operator form as

Liu(x,y,t) = d(x,y)DPu(x, y, 1) + e(x, y)Dyl‘ﬁu(x,y, 1) +q(x,y,1), (2.47)

where L, = % symbolizes the easily invertible linear differential operator, D!3(.)

and D}°(.) are the Riemann—Liouville derivatives of order 1.8 and 1.6 respectively.
t
Applying the one-fold integration inverse operator L' = [(.)dr to the
0
Eq. (2.47) and using the specified initial condition yields
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u(x,y,1) = u(x,y,0) + L <d<x,y>Di‘8 (i >>
n=0
+L! (e(x,y)D;'ﬁ (i u)) +L  (q(x, 1)

n=0

_x3y36 —t+2x4 4.6 —t 2x4 46+Lt_1 (d()ﬁy)D)lCS <Zun>>

n=0
+L! (e(x, )Dy° (i u) )
n=0

The standard Adomian decomposition method:

(2.48)

Uy = x3y3A6e—l +2x4y4 Ge t 2x4y4467
T(2.2)x* 1.8 2 2.6 9l1.6
“ :L;_l (2.2)x*8y 0" 8uq +L;_l xy=® 0" %uyq
6 Ox!8 I'(4.6) Oy'6
8 2 x4.6
=24 (e 1)+ (2= + . Xy O(—e 1 1)
2.2 3
1106
— 2x4y4.6(7eft+ 1) 165 SyS 6( e ' +1— t),

l—*(z 2)x2 Sy 81 8141 2Xy2.6 81'614
= L 18 +Lt 1461
6 Ox I'(4.6) Oy

1106 5 5¢, 9101827 ¢ ¢ 2
=285 1 2201040 e
TR 0+ 70050 XY T3

and so on.
Therefore, according to the decomposition method, the three-term approxima-
tion ¢ is

O3 =uo+ur+us

33661 1 _9101827 6 66( f2> (2.49)

= X 1 t——
Y 272250 tiey

The TSADM:
Using the scheme (2.26) of TSADM, we have

Q= Qo+ @1+ Pa,

t 446 _0xtyS,

where @, = x*y*%e™, @, = 2x*y o
Clearly, ¢, and ¢, do not satisfy the initial condition u(x,y,0) = x’y*¢. By
selecting up = ¢, and verifying that ug justifies Eq. (2.46) and satisfies the initial as
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well as boundary conditions, we obtain the following terms from the recursive
scheme of MDM

"y = x3y3.6e—17
[(2.2)x*8y 08y, 2xy*6 91Ouy
o~ A4 46— 446 -1 -1
up = 2x"y*%e™" — 2x'y +L, <76 ERE +1L, T(4.6) Oy ©
_ x4y4'66*’ . 2x4y4.6 2 — 1)x4y4.6
= 07
. _L—l F(Z.z)x2.8yal.8ul +L—l ny2.6 (91‘61/!1
S 6 ox!8 © \I'(4.6) dy'©
=0
and so on.

Therefore, the solution is
u(x,y,1) = Xy %", (2.50)

The solution (2.50) can be verified through substitution in Eq. (2.46).

2.5.3 Numerical Results and Discussion for Space
Fractional Diffusion Equations

In this section, the numerical solutions for space fractional diffusion equations
obtained by proposed new two-step Adomian decomposition method have been
analyzed. Also, an analysis for the comparison of errors between TSADM solution
and standard Adomian decomposition method solution has been presented here.

The numerical simulations using TSADM

In this present numerical experiment, Eqs. (2.45) and (2.50) have been used to draw
the graphs as shown in Figs. 2.5 and 2.6 respectively. Figure 2.5 shows the 3D
surface solution u(x, ) for one-dimensional fractional diffusion equation. On the
other hand, Fig. 2.6 shows the 3D surface solution u(x,y,) for two-dimensional
fractional diffusion equation.

Comparison of errors between TSADM solution and standard Adomian
decomposition method solution

In this present analysis, the solutions of the two-step Adomian decomposition
method have been compared with that obtained by standard Adomian decompo-
sition method. Here we demonstrate the absolute errors by taking different values of
x and ¢. Comparison results in Tables 2.1, 2.2, 2.3 and 2.4 exhibit that there is a
good agreement between TSADM and standard Adomian decomposition method
solutions.
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uix,t)

Fig. 2.5 Three dimensional surface solution u(x,f) of one-dimensional fractional diffusion
Eq. (2.39)

Fig. 2.6 Three dimensional surface solution u(x,y,t) of two-dimensional fractional diffusion
Eq. (2.46) at time t = 1

From Tables 2.1, 2.2 and 2.3, it can be observed that the standard Adomian
decomposition method solution converges very slowly to the exact solution. On the
other hand, TSADM requires only two iterations to achieve the exact solution.
Therefore, TSADM is more effective and promising compared to standard Adomian
decomposition method.
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Table 2.1 Comparison between TSADM solution and standard Adomian decomposition method

solution ¢,

(x, 1) Two-step Adomain Standard Adomian Absolute error
decomposition decomposition method lu— ¢,
method solution two term solution ¢,

(exact solution
u(x, 1) = e~'x)

0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1,0 1 1 0

O, 1) 0 0 0

(0.25, 1) 0.00574812 0.00509492 0.000653195

(0.5, 1) 0.0459849 0.0250827 0.0209022

(0.75, 1) 0.155199 —0.00352725 0.158726

0, 2) 0 0 0

(0.25, 2) 0.00211461 0.0000987486 0.00201587

0.5, 2) 0.0169169 —0.0475908 0.0645077

(0.75, 2) 0.0570946 —0.432761 0.489855

0, 3) 0 0 0

(0.25, 3) 0.000777923 —0.00286161 0.00363954

(0.5, 3) 0.00622338 —0.110242 0.116465

Table 2.2 Comparison between TSADM solution and standard Adomian decomposition method

solution ¢5

(x, 1) Two-step Adomain Standard Adomian Absolute error
decomposition decomposition method Ju — s3]
method solution three term solution ¢,

(exact solution
u(x,t) = e'x%)

0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

(0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1,0) 1 1 0

©, 1) 0 0 0

(0.25, 1) 0.00574812 0.0055815 0.000166612

0.5, 1) 0.0459849 0.0353218 0.0106631

(0.75, 1) 0.155199 0.0337393 0.12146

0, 2) 0 0 0

(0.25, 2) 0.00211461 0.00102422 0.00109039

0.5, 2) 0.0169169 —0.0528681 0.0697851

0, 3) 0 0 0

(0.25, 3) 0.000777923 —0.00231194 0.00308986

0.5, 3) 0.00622338 —0.191528 0.197751
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Table 2.3 Comparison between TSADM solution and standard Adomian decomposition method

solution ¢,

(x, 1) Two-step Adomain Standard Adomian Absolute error
decomposition decomposition method lu— 4l
method solution four term solution ¢,

(exact solution
u(x,t) = e7'x%)

0, 0) 0 0 0

(0.25, 0) 0.015625 0.015625 0

0.5, 0) 0.125 0.125 0

(0.75, 0) 0.421875 0.421875 0

(1, 0) 1 1 0

©, 1 0 0 0

0.25, 1) 0.00574812 0.00570392 0.0000442011

0.5, 1) 0.0459849 0.0403272 0.00565774

0.75, 1) 0.155199 0.0585313 0.0966678

©, 2) 0 0 0

(0.25, 2) 0.00211461 0.00151496 0.000599653

0.5, 2) 0.0169169 —0.0598386 0.0767556

©, 3) 0 0 0

(0.25, 3) 0.000777923 —0.00184474 0.00262266

0.5, 3) 0.00622338 —0.329478 0.335701

Table 2.4 Comparison between TSADM solution and standard Adomian decomposition method

solution ¢
(x,y,t=1) Two-step Adomain Standard Adomian Absolute error
decomposition method decomposition method |u — 5]
solution (exact solution three term solution ¢
u(x,y,t =1) = x'y%)
0, 0.25, 1) 0 0 0
(0.25, 0.25, 1) 0.000039094 0.0000389794 0.0000001146
(0.5, 0.25, 1) 0.000312752 0.000305417 0.000007335
(0.75, 0.25, 1) 0.00105554 0.000971995 0.0000835416
(1, 0.25, 1) 0.00250201 0.00203262 0.000469391
0, 0.5, 1) 0 0 0
(0.25, 0.5, 1) 0.000474043 0.000462926 0.0000111166
(05,05, 1) 0.00379234 0.00308088 0.000711464
(0.75,0.5, 1) 0.0127992 0.00469513 0.00810402
(1,05, 1) 0.0303387 —0.015195 0.0455337
0, 0.75, 1) 0 0 0
(0.25,0.75, 1) 0.00204054 0.00187904 0.000161501
0.5,0.75, 1) 0.0163244 0.00598829 0.0103361
(0.75, 0.75, 1) 0.0550947 —0.0626396 0.117734
0,1, 1) 0 0 0
0.25, 1, 1) 0.00574812 0.00466974 0.00107838
05,1, 1) 0.0459849 —0.0230313 0.0690162
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From Table 2.4, it can be observed that the absolute errors for TSADM solution
and standard Adomian decomposition method solution ¢ are very small for small
values of x and y. But as the values of x and y increase the absolute errors also
increase.

2.6 Solution of Space Fractional Diffusion Equation
with Insulated Ends

In this section, a variation of Adomian decomposition method has been proposed
for getting analytical approximate solution of space fractional diffusion equation
with insulated ends.

2.6.1 Implementation of the Present Method

Let us consider initial conditions
u(x,0) =x*, 0<x<nm (2.51)
and boundary conditions

O0u(0,t)  Ou(m,t)

= = > .
o o =0 120 (2.52)

for Eq. (2.4), as taken in [62].
We see that f(x) = x? is a periodic function with period 7. The Fourier sine
series of f(x) in [0, 7] can be obtained as

B 00
fx) = % + Z’%(—l)" cos nx. (2.53)
n=1

Therefore, after considering f(x) as Fourier Cosine series, we can take

= 4
Z_z —1)" cos, nx, (2.54)

w|<‘|

where cos, nx is the Generalized Cosine function and y = a/2, y € ( 1].
From Eq. (2.33), the following terms can be obtained
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2

3

M2
§M| N

Il
—

up = u(x,0) == + (—1)" cos, nx,

n

— 1 A,
(—1)"n* cos, nx,

:\&
NgE
SN| N

up = Lr_l(dD:M())
Ton
2

uy = L (dD%uy) = (—1)"n* cos, nx,

-
N‘:':’
> L[]
:N|'l>

Bdd S 4
uz = (dD“uz —3—2—2 —1)"'n% oS, nx

and so on.
Therefore, the solution is

X4 tdn®  Pd’n®  Pd’n®
M(XJ)_?J'_Z;E(_l) cos/nx(l— TR TR Ta >
2 00 4
= % + Z_z(_l) cos, nx E (—tdn”")

where E;(z) is the Mittag-Leffler function in one parameter.

L ST
== —(—1)"cos, nxe

3 &t ’

Lo, (2.55)
=3+ Z;(fl)” cos,y nxe "

3
Il
—_

The solution (2.55) can be verified through substitution in Eq. (2.4).

2.6.2 Numerical Results and Discussion

In this section, the numerical solutions of the space fractional diffusion equation
with insulated ends obtained by the proposed method have been analyzed.

The numerical simulations for the proposed method

In this present numerical experiment, Eq. (2.55) has been used to draw the graphs
as shown in Figs. 2.7, 2.8 and 2.9 for different fractional order values of o
respectively. In this numerical analysis, we assume d = 0.4 for Eq. (2.4).

Figures 2.7, 2.8 and 2.9 show anomalous diffusion behaviour. These figures
exhibit slow diffusion at the beginning and fast diffusion later. From these figures, it
is also observed that diffusion behaviour increases as o increases.
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(a)

ulx,5)

0.5 1 1.5 z z.5 2

Fig. 2.7 a The 3D surface solution, b The corresponding 2D solution at t = 0.5, d = 0.4 and
=15

(B) ux. e
[
5
4
2
0.75
z
1

0.5 1 1.5 4 2.5 2

Fig. 2.8 a The 3D surface solution, b The corresponding 2D solution at t = 0.5, d = 0.4 and
o=175

ulx,.t)
[P T S T -

0.5 1 1.5 z 2.5 2

Fig. 2.9 a The 3D surface solution, b The corresponding 2D solution at = 0.5, d = 0.4 and
o=2
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2.7 Conclusion

In the present chapter, the modified decomposition method has been used for
finding the solutions for the coupled K-G-S equations with initial conditions. The
approximate solutions to the coupled K-G-S equations have been calculated by
using the MDM without any need of transformation techniques and linearization of
the equations. Additionally, it does not need any discretization method to get
numerical solutions. This proposed method thus eliminates the difficulties of
massive computational work.

This chapter includes an analytical scheme to obtain the solutions of the one
dimensional and two-dimensional fractional diffusion equations. Two typical
examples have been discussed as illustrations. In this work, it has been established
that TSADM is well suited to solve the fractional diffusion equation. TSADM
proceeds in two steps. The first step consists of verifying that the zeroth component
of the series solution includes the exact solution. Once the exact solution is
obtained, we stop. Otherwise, we continue with the standard Adomian recursion
relation in the second step.

In this chapter, TSADM has been applied for the solutions of space fractional
diffusion equations. The TSADM may provide the solution by using two iterations
only if compared with the standard Adomian method and the modified decompo-
sition method. Moreover, the TSADM overcomes the difficulties arising in the
modified decomposition method as discussed earlier. A comparison study between
the TSADM and the standard decomposition method is conducted to illustrate the
efficiency of the TSADM and the results obtained indicate that the TSADM is more
feasible and effective.

This chapter also presents an analytical scheme to obtain the solution of space
fractional diffusion equation with insulated ends by ADM with a simple variation.
In the present analysis, a new approach of Adomian decomposition method has
been successfully applied after expressing the initial condition as a Fourier series.
The physical significance of the solution has been also presented graphically. The
present work demonstrates that this proposed technique is well suited to solve the
space fractional diffusion equation with insulated ends.

The proposed methods are straightforward, without restrictive assumptions and
the components of the series solution can be easily computed using any mathe-
matical symbolic package. Moreover, these methods do not change the problem
into a convenient one for the use of linear theory. Therefore, they provide more
realistic series solutions that generally converge very rapidly in real physical
problems. When solutions are computed numerically, the rapid convergence is
obvious. Moreover, no linearization or perturbation is required. It can avoid the
difficulty of finding the inverse of the Laplace Transform and can reduce the labour
of perturbation method. It is quite obvious to see that these methods are quite
accurate, easy and efficient technique for solving fractional partial differential
equations arising in physical problems.
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As mentioned, the proposed methods avoid linearization and physically unre-

alistic assumptions. Furthermore, as the present methods do not require dis-
cretization of the variables, i.e., time and space, it is not affected by computational
round off errors and one is not faced with the necessity of large computer memory
and time. Consequently, the computational size will be reduced.
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Chapter 3 M)
Numerical Solution of Fractional e
Differential Equations by Using New

Wavelet Operational Matrix of General

Order

3.1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders (including complex orders). It is also known as gen-
eralized integral and differential calculus of arbitrary order [1, 2]. In the last few
decades, fractional calculus has been extensively investigated due to their broad
applications in mathematics, physics, and engineering such as viscoelasticity, dif-
fusion of a biological population, signal processing, electromagnetism, fluid
mechanics, electrochemistry, and so on. Fractional differential equations are
extensively used in modeling of physical phenomena in various fields of science
and engineering. Fractional calculus was described by Gorenflo and Mainardi [3] as
the field of mathematical analysis which deals with investigation and applications
of integrals and derivatives of arbitrary order.

Fractional calculus is in use for the past 300 years ago. And many great mathe-
maticians [2] (pure and applied) such as N. H. Abel, M. Caputo, L. Euler, J. Fourier,
A. K. Griinwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren,
P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz,
and H. Weyl made major contributions to the theory of fractional calculus.

The history of fractional calculus was started at the end of the seventeenth
century, and the birth of fractional calculus was due to a letter exchange. At that
time, scientific journals did not exist and scientists exchanged their information
through letters. The first conference on fractional calculus and its applications was
organized in June 1974 by B. Ross and held at the University of New Haven.

In recent years, fractional calculus has become the focus of interest for many
researchers in different disciplines of applied science and engineering because of
the fact that realistic modeling of a physical phenomenon can be successfully
achieved by using fractional calculus.
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The fractional derivative has been occurring in many physical problems such as
frequency-dependent damping behavior of materials, motion of a large thin plate in
a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the
PI’D* controller for the control of dynamical systems, etc. Phenomena in elec-
tromagnetics, acoustics, viscoelasticity, and electrochemistry and material science
are also described by differential equations of fractional order. The solution of the
differential equation containing fractional derivative is much involved.

Fractional calculus has been used to model physical and engineering processes
that are found to be best described by fractional differential equations. For that
reason, we need a reliable and efficient technique for the solution of fractional
differential equations.

Recently, orthogonal wavelet bases are becoming more popular for numerical
solutions of partial differential equations due to their excellent properties such as the
ability to detect singularities, orthogonality, flexibility to represent a function at a
different level of resolution and compact support. In recent years, there has been a
growing interest in developing wavelet-based numerical algorithms for the solution
of fractional-order partial differential equations. Among them, the Haar wavelet
method is the simplest and is easy to use. Haar wavelets have been successfully
applied for the solutions of ordinary and partial differential equations, integral
equations, and integro-differential equations.

3.2 Outline of the Present Study

In this chapter, a numerical method based on the Haar wavelet operational method
is applied to solve the Bagley—Torvik equation. In the present analysis, a new
numerical technique based on Haar wavelet operational matrices of the general
order of integration has been employed for the solution of fractional-order Bagley—
Torvik equation. In this regard, a general procedure of obtaining this Haar wavelet
operational matrix of integration Q* of the general order « is derived. To the best
information of the author, such correct general order operational matrix is not
reported earlier in the open literature. In the present chapter, the Haar wavelet
operational method has been applied for the numerical solution of the Bagley—
Torvik equation and then compared with the analytical solution obtained by
Podlubny [4].

Also, in this chapter, the fractional Fisher-type equation has been solved by
using two reliable techniques, viz. Haar wavelet method and optimal homotopy
asymptotic method (OHAM). Haar wavelet method is an efficient numerical
method for the solution of fractional-order partial differential equation like Fisher
type. The obtained results of the fractional Fisher-type equation are then compared
with the optimal homotopy asymptotic method as well as with the exact solutions.
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3.2.1 Fractional Dynamic Model of Bagley—-Torvik
Equation

Torvik and Bagley [5] derived a fractional differential equation of degree o = % for
the description of the motion of an immersed plate in a Newtonian fluid [6]. The
motion of a rigid plate of mass m and area A connected by a massless spring of
stiffness k, immersed in a Newtonian fluid, was originally proposed by Bagley and
Torvik.

A rigid plate of mass m immersed into an infinite Newtonian fluid as shown in
Fig. 3.1. The plate is held at a fixed point by means of a spring of stiffness k. It is
assumed that the motions of spring do not influence the motion of the fluid and that
the area A of the plate is very large, such that the stress—velocity relationship is valid
on both sides of the plate.

Let u be the viscosity and p be the fluid density. The displacement of the plate
y is described by

Fig. 3.1 Rigid plate of mass
m immersed into a Newtonian
fluid [6]

8
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AY'(1) + BDY?y() + Cy(t) = g(t), y(0) =y'(0) =0 (3.1)

where A = m, B = 2A,/up, and C = k.

In the present analysis, the Haar wavelet method has been applied for the
numerical solution of the Bagley—Torvik equation of fractional order. Then, the
obtained numerical results have been also compared with the exact solutions.

3.2.2 Generalized Time Fractional Fisher-Type Equation

The generalized time fractional Fisher’s biological population diffusion equation is
given by

*u 2u
?)7 = % +F(u), u(x,0) =) (3.2)
where u(x, 1) denotes the population density and ¢ > 0,x € R, F(u) is a continuous
nonlinear function satisfying the following conditions F(0) = F(1) =0,
F'(0) > 0 > F'(1). The derivative in Eq. (3.2) is the Caputo derivative of order o.

The aim of the present work is to implement Haar wavelet method and optimal
homotopy asymptotic method (OHAM) in order to demonstrate the capability of
these methods in handling nonlinear equations of arbitrary order so that one can
apply it to various types of nonlinearity.

3.3 Haar Wavelets and the Operational Matrices

In this section, a brief survey is introduced for the Haar wavelet operational matrix
method which is used to solve the fractional-order Bagley—Torvik equation and
fractional Fisher-type equation. In this context, a short review of Haar wavelets and
operational matrices has been discussed here.

3.3.1 Haar Wavelets

Haar functions have been used from 1910 when they were introduced by the
Hungarian mathematician Alfred Haar. Haar wavelets are the simplest wavelets
among various types of wavelets. They are step functions (piecewise constant
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functions) on the real line that can take only three values, i.e., 0, 1, and —1. We use
the Haar wavelet method due to the following features, simpler and fast, flexible,
convenient, small computational costs, and computationally attractive.

The Haar functions are a family of switched rectangular waveforms where
amplitudes can differ from one function to another. The orthogonal set of Haar
functions are defined in the interval [0,1) by

ho(t) =1
1
1, kl<i<®a
2’1 - ! (3.3)
h() =19 —1, <<k
0, otherwise
where i = 1,2,...,m — 1, m = 27, and J is a positive integer. j and k represent the

integer decomposition of the index i, i.e., i= k+2/—1, 0 <j<i, and
1<k<2/+41.

Theoretically, this set of functions is complete. The first curve of Fig. 3.2 is that
ho(t) = 1 during the whole interval [0, 1). It is called the scaling function. The
second curve #;(7) is the fundamental square wave or the mother wavelet which
also spans the whole interval [0, 1). All the other subsequent curves are generated
from £ (¢) with two operations: translation and dilation. /,(¢) is obtained from #; (¢)
with dilation, i.e., hi(f) is compressed from the whole interval [0,1) to the half
interval [0, 1/2] to generate h,(¢) is the same as h,(¢) but shifted(translated) to the
right by 1/2. Similarly, A, (¢) is compressed form a half interval to a quarter interval
to generate f4(r). The function h4(z) s translated to the right by 1/4,2/4,3/4 to
generate hs(t), he(t), hq(t), respectively.

In the construction, f(¢) is called the scaling function and h (¢) is the mother
wavelet.

Usually, the Haar wavelets are defined for the interval 7 € [0, 1]. In general case
t € [A, B], we divide the interval [A, B] into m equal subintervals; each of width
At = (B — A)/m. In this case, the orthogonal set of Haar functions are defined in
the interval [A, B] by Saha Ray [7]

1, t€[A,B]
]’lo(l) = s
0, elsewhere

L GG <<l (3.4
hi(r) = =1, &) <t<&()
0, otherwise
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where
) k—1 k—1
k-1 k-1
) = A k B—-—A)=A k A
53(1)*+E(*)*+5mt,
fori=1,2,...,m,m =2’ and Jis a positive integer which is called the maximum

level of resolution. Here, j and k represent the integer decomposition of the index i,
ie,i=k+2 —1,0<j<i and 1 <k<2/41.
In the following analysis, integrals of the wavelets are defined as

This can be done with the aid of (3.4)

x—& for x € [¢1,&,)
pilx) =4 & —x for x € [&,&3) (3.5)
0 elsewhere

0 for x € [0,¢))
%(x—él)z for x € [£), &)

() = 3.6
qi(%) (&G —x)? forxe[&,E) 30
ﬁ for x € [&3, 1]
é(x—fl)S for x € [¢1, &)
) = &) TG - forxe [6,&) (37)
(= &) for x € [&5, 1)
0 elsewhere
The collocation points are defined as
[—0.5
TV o M 3.8
X M [t ’ ( )

It is expedient to introduce the 2M x 2M matrices H, P, Q, and R with the
elements H(i,l) = hi(x;), P(i,1) =pi(x), Q@G 1) =gqi(x;) and R(i,1) = ri(x;),
respectively.
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3.3.2 Operational Matrix of the General Order Integration

In 2012, the generalized Haar wavelet operational matrix of integration has been
devised first time ever by Saha Ray [7].

The integration of the H,,(¢) = [ko(¢), k1 (¢), . . ., Am_1(¢)]" can be approximated
by Chen and Hsiao [8]

/&mumngHMg, (3.9)
0

where Q is called the Haar wavelet operational matrix of integration which is a
square matrix of dimension m X m.

Now, we shall derive the Haar wavelet operational matrix of the general order of
integration. In this purpose, we first introduce the fractional integral of order o (>0)
which is defined as Podlubny [4]

t
—/(t—r)“_]f(r)dr, >0, xeR" (3.10)
0
where R is the set of positive real numbers.
The Haar wavelet operational matrix Q* of integration of the general order « is
given by
Q*H,,(¢) = J*H,,(¢)
= [J*ho (1), J*hi (1), . . s SR (1)]"
= [Qho(1), Qi (1), .., Qh 1 (D],

where

L’ A,B
Oho(t) = {B(H ! ::lfeENher]e’
0, A<r<&(i)
fis &) <1< & (h)
f, &) 4
féa é?(l)

(3.11)
Oh;(t) =
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where
(r—& ()
fir= oc—li—l)
(f—ql())OC (1= &)
= Far ) P Tarl)
(f—f @0)* . (t—&30)" (f—éz())
RS N v ai s eyt

for i=1,2,...,m, m =2/, and J is a positive integer. Here, j and k represent
the integer decomposition of the index i, ie., i= k+2/—1, 0 <j<i, and
1<k<2/+1.

For instance, if m = 4, we have

0.398942  0.690988 0.892062 1.0555
Q'2H, — 0.398942  0.690988  0.0941775  —0.326475
710398942 —0.106896 —0.0909723 —0.0376338

0 0 0.398942  —0.106896
1 3 5 1
P 350
— 8 8 8 8
QH, L Too
1 1
00 L1
19 25 49
5 A A
QH, = | 1§81 1% 1
128 128 116 176
0 0 &4 &

Although, the learned researchers Chen and Hsiao [8], Kilicman and Zhour [9],
Li and Zhao [10] and Bouafoura and Braiek [11] proposed the generalized oper-
ational matrix of integration which is an approximate matrix in nature. It is not the
exact generalized operational matrix. Moreover, it has a drawback for obtaining the
correct integer-order operational matrices from the generalized operational matrix.
In the present analysis, the derived Haar wavelet operational matrix of inte-

gration Q* = (Q"H)H ! of the general order « is the correct operational matrix.
The above examples justify its correctness.

3.3.3 Function Approximation by Haar Wavelets

Any function f(¢) € L*([0,1)) can be expanded into Haar wavelets by



3.3 Haar Wavelets and the Operational Matrices 97

¥(2) = coho(t) + c1h (1) +c2ha (1) + - - (3.12)

where ¢; = fol y(t)h;(r)ds.

If y(¢) is approximated as a piecewise constant in each subinterval, the sum in
Eq. (3.12) may be terminated after m terms and consequently, we can write a
discrete version in the matrix form as

m—1
Y ~ (Z cihi(tl)> =C"H,, (3.13)
i=0 1

Xm

where Y is the discrete form of the continuous function y(z), and C' =
[co,c1y- -, cm—1] is called the coefficient vector of Y which can be calculated from

CcT = Y.H;l. Y and CT are both row vectors, and H,, is the Haar wavelet matrix of

order m = 27, J is a positive integer and is defined by H,, = [ho, k1, .. .,hm,l]T
ie.,
hg ho,o ho.1 oo hom—
H, = hy _ h1’0 h171 Ce h1,,,1,1 (314)
hmfl hm—l,O hm—lﬁl e hm—l‘m—l
where ho,hy, ..., h,_ are the discrete form of the Haar wavelet bases; the discrete
values are taken from the continuous curves kg (z), iy (), . . ., hy—1 (1), respectively.

The expansion of a given function f(7) into the Haar wavelet series is
m—1
&)=Y chi(t), telAB] (3.15)

i=0

where ¢; are the wavelet coefficients.
In the present paper, we apply wavelet collocation method to determine the
coefficients c;. These collocation points are given by

h=A+(—05)A, 1=12,.. . m (3.16)

The discrete version of (3.15) is

flu) = Zcihi(tl)- (3.17)
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Equation (3.17) can be written in the matrix form as
f=C'H,, (3.18)

where f and CT are m-dimensional row vectors, and H,, is the Haar wavelet matrix
of order m.

3.3.4 Convergence of Haar Wavelet Approximation

In this subsection, the convergence analysis for the Haar wavelet method has been
employed.

Theorem 3.1 Let, f(x) € L*(R) be a continuous function defined in [0, 1). Then,
the error at Jth level may be defined as

i a,-h,- ()C)

i=2M

E;(x) = If(x) = fi(x)| = P(X) - Za,-h,-(x) = : (3.19)

Then, the error norm at Jth level satisfies the following inequalities

2
E <K72*21 3.20
IEsll < 35277, (3.20)

where |f'(x)| <K, for all x€ (0, 1) and K > 0 and M is a positive number
related to the Jth level resolution of the wavelet given by M = 2’ .

Proof The error at the Jth level of resolution is defined as
Es| = If (x) = fi(x)]

i a,»h,- (x)

i=2M

)

where

2M—1

filx) = Z ahi(x), M= 27,
i=0
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IES|)* = / <§: aihi(x), i a,h,(x))dx

K i—2M =M
o0
o0 o0
= Z Z a;a / Ry (x) Ry (e e
i=2M [=2M e
- 2
<> laif
i—2M

Now, a; = [, 2/2f(x)h(2/x — k)dx,
where h;(x) = 22h(2ix — k), k=0,1,2,...,2/ = 1,j=0,1,....J
and
‘ 1, k27 <x<(k+3)27
h(2x—k) =< -1, (k+3)27 <x<(k+1)27.
0 elsewhere

)

Therefore, applying integral mean value theorem, we obtain

(k+1)27 (k+1)27
a; =2 / F(x)dx — / f(x)dx
k2 (k+1)27

. 1 .
where & € (ka, (k+ 2> 2’) and
. 1 . .
e (i Dk o)

Consequently, applying Lagrange’s mean value theorem, we have
ai=2"1E — &) (&), where &€ (&1, &).
This implies that
a; = 277G — &)y

<279727HK? since |f/(x)| <K
— W22

99
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Therefore,

o0 o0
B[P < Y ai< Y 277K
i=2M i=2M
oo 2tl_]

K2 Z Z 7—3-2

j=J+1 i=2i

=Ky 2V - 1-2741)
j=J+1
— K2 (272]'71 _ 272]72)
AT (3.21)

From the above Eq. (3.21), it is obvious that the error bound is inversely pro-
portional to the level of resolution J of Haar wavelet. Hence, the accuracy in the
wavelet method improves as we increase the level of resolution J.

3.4 Basic Idea of Optimal Homotopy Asymptotic Method

To illustrate the basic ideas of optimal homotopy asymptotic method, we consider
the following nonlinear differential equation

A(u(x, 1))+ g(x,1) =0,x € Q (3.22)
with the boundary conditions

Ou

Blu,— | = r 2
(u, 8t> 0,x € (3.23)

where A is a differential operator, B is a boundary operator, u(x, ) is an unknown
function, I" is the boundary of the domain Q, and g(x,) is a known analytic
function.
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The operator A can be decomposed as
A=L+N, (3.24)

where L is a linear operator, and N is a nonlinear operator.
We construct a homotopy ¢(x,#;p) : Q x [0,1] — R which satisfies

H(p(x,t;p),p) = (1 = p)[L(@(x,1;p)) + g(x,1)]

—Hp)A(o(x,5;p)) +g(x,1)] =0, (3.25)

where p € [0,1] is an embedding parameter, and H(p) is a nonzero auxiliary
function for p # 0 and H(0) = 0. When p =0 and p = 1, we have ¢(x,#0) =
uo(x, 1) and @(x,1;1) = u(x, t), respectively.

Thus as p varies from O to 1, the solution ¢(x,; p) approaches from ug(x, ) to
u(x,1).

Here ug(x, ) is obtained from Egs. (3.25) and (3.23) with p = 0 yields

L(p(x,1;0)) +g(x,1) =0, B<uo,fi9u;’> =0. (3.26)

The auxiliary function H(p) is chosen in the form
H(p) = pCi+p’Co+p°Cs + -+, (3.27)

where Cy, C;, C3, ... are constants to be determined. To get an approximate solu-
tion, o(x,%;p,Cy,C,,C3,...) is expanded in a series about p as

o0

(7)('X7 Lp, C17C2a C37 .. ) = L{()(x, t) + Zui(xa Z ClaCZa C37 <. )pl (328)

i=1
Substituting Eq. (3.28) in Eq. (3.25) and equating the coefficients of like powers

of p, we will have the following equations

L(uy (x, 1) + g(x,2)) = C1No(up(x,1)), B(uh%) =0. (3.29)

L(uz(x,1)) — L(u1(x,1)) = CaNo(uo(x,1))

€Ll )+ M), 00 0. B 1,5 ) =

E) — 0.

and hence, the general governing equations for u;(x, ) is given by
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L(uj(x, t)) = L(uj_l(x, t)) + CiNo(uo(x, 1))
j—1
+ Z Ci[L(uj—1(x, 1)) + Nj—y (uo(x,2), .. o uj—1 (x,2)) |5 (3.31)

where N;(ug(x,1),...,u;j(x,1)) is the coefficient of p/ in the expansion of
N(¢@(x,1;p)) about the embedding parameter p and

o0

N(¢(x,t;p,C1,Ca, Cs,...)) = No(uo(x, 1)) + Y _ Ni(uo,ur,...,u5)p?.  (3.32)

=1

It is observed that the convergence of the series (3.28) depends upon the aux-
iliary constants Cy, C,, Cs, .. ..
The approximate solution of Eq. (3.22) can be written in the following form

n—1
ﬁ(x, t;C1,Cy,Cs, .. ) = uo(x, l) + Zuj(x, t,Cy,Cp,Cs, .. ) (333)
=

Substituting Eq. (3.33) in Eq. (3.22), we get the following expression for the
residual

Rn(x, t;C1,Cy,Cs, .. ) = L(it(x, t;C1,Cy,Cs, .. ))

+N(12(x,t; Cl,Cz,C3,...))+g(x,t). (334)
If R,(x,2;C1,C2,Cs,...) =0, then i(x,t; Cy, Cy, C3,...) is the exact solution.
Generally, such case does not arise for nonlinear problems. The nth-order
approximate solution given by Eq. (3.33) depends on the auxiliary constants
Cy,C,,Cs, .. ., and these constants can be optimally determined by various meth-
ods. Here, we apply the collocation method.
According to the collocation method, the optimal values of the constants
Cy,Cy,Cs, ... can be obtained by solving the following system of equations:

Ry(xi,4;;C1, C2, Cs, ..., Ci2) =0, fori=1,2,....k and j=1,2,...,k (3.35)

After obtaining the optimal values of the convergence control constants
Cy,C,,C5,... by the above-mentioned method, the approximate solution of
Eq. (3.22) is well determined.
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3.5 Application of Haar Wavelet Method
for the Numerical Solution of Bagley—Torvik Equation

In the present analysis, we are using the operational matrix of Haar wavelet for

finding the numerical solution of Bagley—Torvik Equation, which arises, for

instance, in modeling the motion of a rigid plate immersed in a Newtonian fluid.
Let us consider the Bagley—Torvik equation [4]

AY'(t) 4+ BD*?y(t) + Cy(t) = f(1),1 > 0 (3.36)

where

Fl) = {8, 0<r<1

0, t>1

subject to initial conditions

y(0) =»'(0) =0.

The Haar wavelet solution is sought in the form

y(t) = Z cihi(t), (3.37)

which can be written in the matrix form as
Y(tl) = CTHm(tl); (338)

where 7 is the collocation points in Eq. (2.7), C T is the m-dimensional row vector,
and H,,(#;) is the Haar wavelet square matrix of order m.
Integrating Eq. (3.36), we get

AO/O/Dzy(t)dthrBO/O/D3/2y(t)dtdt+C!O/y(t)dtdt: O//f(t)dtdt.

0
This implies

1

Aly(r) — y(0) —ty’(O)]+BJ‘/2y(t)+C//y(t)dtdt: //f(t)dtdt.
0 0 0 0
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Substituting the initial conditions, we obtain

Ay(t)+BJ1/2y(t)+C//y(t)dtdt://f(t)dtdt. (3.39)
0 0 0 0

Now, expressing Eq. (3.38) into the discrete matrix form, we obtain
ACTH, (1)) +BC"0'*H,,(t)) + CC" Q*H,, (1)) = EH,," (1)) Q*Hy(1;).  (3.40)

Since, [ Jof(0dtdt =2 " Q?H,, (1), where ¢’ = EH, () and E is the discrete

form of the function f(#;) = 8(u(f;) — u(t; — 1)), where u(z) is the Heaviside step
function, for Eq. (3.36).
From Eq. (3.40), we have

c’ (AHm(tl) +BO"2H, (1) + CQsz(tl)) = EH\(1)QPHu(t).  (3.41)
Solving Eq. (3.41) for the coefficient row vector CT, we get
~1
C" = EH (1) Q*H,(1) (AHm(t,) +BO"2H, (1) + CQ2Hm(z,)) . (3.42)

Using Eq. (3.38), the Haar wavelet numerical solution is obtained as

—1
y(t) = EH,, (1) Q*Hin (1) (A (1) + BQ'*Hyy (1) + CQ*H, (1)) o).
(3.43)
Now, the analytical solution of Eq. (3.36) is [4]

t

y(t) = /G3(t —1)f(7)dr, (3.44)

0

where G3(1) =152, (;})’ (g)’ﬁ"“Ef’; L(F 11/2), E; () is called the Mittag—
; i ’

Leffler function in two parameters A, i (>0) [4] and

r 0 . i
"y d 3 G+nhy’
E y) = E}n y) = T ) V:O,I,Q,...
1 0) ) jZOJ!F(Aj-i-Ar-i-u) ( )

Then, Eq. (3.44) is reduced to
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y(1) = 8yu() —yu(t = 1)], if f(2) = 8(u(r) —u(r - 1)) (3.45)

where

yu(t) = u(1)
r=0

I~ (=D (C r2(r+1) (r B ip
A2 (z)f B

The solution (3.45) is the analytical solution of Eq. (3.36).

3.5.1 Numerical Results and Discussions

In the present numerical computation, we have assumed A =1, B=0.5, and
C = 0.5, as is taken in [4]. It is interesting to note that the graph obtained by Haar
wavelet operation method almost coincides with that of [4] cited in Fig. 3.3.

Equations (3.43) and (3.45) have been used to draw the graphs as shown in
Fig. 3.3. In Fig. 3.3, yapp(¢) and yext(#) specify Haar wavelet numerical solution
and analytical exact solution of Bagley—Torvik equation, respectively.

To have a comparison of the present analysis through Haar wavelet operational
method with that of another available method [4], Table 3.1 creates to cite the
absolute errors at the collocation points given by Eq. (3.16).

The R.M.S. error between the numerical solution and the exact solution is
0.204029. The above numerical experiments presented in this section were com-
puted using Mathematica 7 [12].

Yapp(t)yext(t)
8
2N

[ / \\

£
/ /

o

-4+

-6l

Fig. 3.3 Numerical solution yapp(f) and analytical exact solution yext(f) of Bagley—Torvik
equation (black line for yapp(s) and dash line for yext())
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Table 3.1 Absolute error between numerical solution and analytical exact solution

SI. No. Time (7) Analytical exact solution Numerical solution Absolute error
1 0.15625 0.0871108 0.0794522 0.00765854
2 0.46875 0.721004 0.70136 0.0196437
3 0.78125 1.87889 1.85171 0.0271845
4 1.09375 3.43807 3.35895 0.0791208
5 1.40625 4.85696 4.67105 0.185911
6 1.71875 5.98737 5.71216 0.27521

7 2.03125 6.83165 6.48436 0.347298
8 2.34375 7.39045 6.98837 0.402077
9 2.65625 7.66909 7.22953 0.439556
10 2.96875 7.67925 7.21918 0.460064
11 3.28125 7.43909 6.97477 0.464314
12 3.59375 6.97278 6.51938 0.453404
13 3.90625 6.30966 5.88088 0.428782
14 4.21875 5.48313 5.09093 0.392194
15 4.53125 4.52949 4.18387 0.345618
16 4.84375 3.48673 3.19553 0.291196
17 5.15625 2.39322 2.16206 0.231159
18 5.46875 1.28657 1.11881 0.167756
19 5.78125 0.202504 0.0993191 0.103185
20 6.09375 —0.826127 —0.865657 0.03953
21 6.40625 —1.77019 —1.7489 0.0212933
22 6.71875 —2.60496 —2.52737 0.0775864
23 7.03125 —3.3106 —3.1827 0.127905
24 7.34375 —3.87253 —3.70144 0.171084
25 7.65625 —4.28152 —4.07526 0.206259
26 7.96875 —4.53369 —4.30082 0.232869
27 8.28125 —4.63032 —4.37967 0.250654
28 8.59375 —4.57747 —4.31783 0.259644
29 8.90625 —4.38554 —4.1254 0.260137
30 9.21875 —4.06866 —3.81598 0.252674
31 9.53125 —3.64404 —3.40603 0.238006
32 9.84375 —3.13126 -2.9142 0.217055
33 10.1563 —2.55149 —2.36062 0.190874
34 10.4688 —1.92678 -1.76617 0.160611
35 10.7813 —1.27925 -1.15179 0.12746
36 11.0938 —0.630455 —0.537829 0.0926261
37 11.4063 —0.00071872 0.056568 0.0572867
38 11.7188 0.591432 0.613989 0.0225565
39 12.0313 1.12973 1.11919 0.0105422
40 12.3438 1.60056 1.55946 0.0411051

(continued)
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Table 3.1 (continued)
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SI. No. Time (7) Analytical exact solution Numerical solution Absolute error
41 12.6563 1.99321 1.92484 0.0683651
42 12.9688 2.30003 2.20832 0.0917076
43 13.2813 2.51652 2.40585 0.110679
44 13.5938 2.64127 2.51628 0.124988
45 13.9063 2.6758 2.54129 0.134509
46 14.2188 2.62437 2.4851 0.139268
47 14.5313 2.49368 2.35425 0.139437
48 14.8438 2.29251 2.15719 0.135316
49 15.1563 2.03131 1.90399 0.127317
50 15.4688 1.7218 1.60585 0.115943
51 15.7813 1.37652 1.27475 0.101767
52 16.0938 1.00838 0.922968 0.0854092
53 16.4063 0.630246 0.56273 0.0675157
54 16.7188 0.254542 0.205806 0.0487359
55 17.0313 -0.107127 —0.13683 0.0297033
56 17.3438 —0.444276 —0.455293 0.0110165
57 17.6563 —0.747806 —0.74103 0.00677619
58 17.9688 -1.01021 —0.987015 0.0231906
59 18.2813 —1.22569 —1.18788 0.0378169
60 18.5938 —1.3903 —1.33997 0.0503275
61 18.9063 —1.50186 —1.44138 0.0604813
62 19.2188 —1.56003 -1.49191 0.0681253
63 19.5313 —1.56614 —1.49294 0.0731934
64 19.8438 —1.52304 —1.44734 0.0757026

3.5.2 Error Estimate

The following table demonstrates the comparison between the numerical solution
obtained by Haar wavelet and the analytical solution. The corresponding absolute
errors are presented in Table 3.2.
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Table 3.2 Comparison of error between the numerical solution and analytical exact solution for

1=0,1,2,...,10

Time ¢ Approximate solution of y(¢) Analytical solution of y(f) Absolute error
0 8.88178 x 1071¢ 0 8.88178 x 10716
1 3.53856 2.95258 0.585974

2 7.53718 6.76011 0.77707

3 8.2854 7.66614 0.61926

4 6.26126 6.07725 0.184014

5 2.53055 2.94394 0.41339

6 —1.49195 —0.525171 0.966783

7 —4.50898 —3.2463 1.26268

8 —5.72074 —4.55029 1.17045

9 —5.00085 —4.30286 0.697989

10 —2.84029 —2.84838 0.0080944

3.6 Solution of Fractional Fisher-Type Equation

In this section, the time fractional Fisher-type equation has been solved by reliable

methods, namely the Haar wavelet method and OHAM, respectively.

3.6.1 Application of Haar Wavelet to Fractional
Fisher-Type Equation

Consider the nonlinear diffusion equation of the Fisher type [13, 14]

Pu &*u

where O<a<1,0<x<1,and O<a<1
with the initial condition

1

u(x,0) = |+ Exp [_ (ﬁ)x} .

(3.46)

(3.47)

When o = 1, the exact solution of Eq. (3.46) is given by Wazwaz and Gorguis

[15], Liu [16]

(3.48)
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where ¢ = v2(1 — a).

Let us divide both space and time interval [0, 1] into m equal subintervals; each
of width A =1

Haar wavelet solution of u(x,#) is sought by assuming that azgg,t) can be
expanded in terms of Haar wavelets as

62 m m

=33 cyhilx (3.49)

=1 j=1

Integrating Eq. (3.49) twice w.r.t. x from O to x, we get

m m

=2 Z ciQ*hi(x)hi(1) +q(1) +xp (7). (3.50)

i=1 j=
Putting x = 0, in Eq. (3.50), we get
q(t) = u(0,1). (3.51)
Putting x = 1, in Eq. (3.50) we get
m m
p(t) = u(1,1) — u(0,1) > e [@hi(x)] _ (o). (3.52)

i=1 j=1

Again ¢(f) + xp(t) can be approximated using Haar wavelet function as

m m

1)+ xp(t) er‘f (3.53)

i=1 j=

This implies

u(0,¢) +x|u(1,¢) — u(0,1) iicy[thi(x)]lehj(f)

(3.54)

m m

=D rihi()hi(r)
i=1 j=1
Substituting Eq. (3.53) in Eq. (3.50), we get

= zm: Xm: ciQhi(x)hy(1) + z’“: i righi(x)h;(t). (3.55)

i=1 j=1 =l j=1
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The nonlinear term presented in Eq. (3.46) can be approximated using Haar
wavelet function as

m m

u(l — u)(u — a) ZZd,]h (3.56)

i=1 j=

Therefore,
( i=1 j

Substituting Egs. (3.49) and (3.56) in Eq. (3.46), we will have

c’)t“ Z ch] 1)+ Z Zdl,h (3.58)

i=1 j=1 i=1 j=

Ms

O () + fjr,-,-mx)h,-(r))

Z ;i Q*hi(xX)hj(t) + zm: rijhi(x)hj(t)>

1 j=1 i=1 j

¢ Q% hi(x)hi(1) + zm: rijhi(x)hy (1) — a) = z’": dijhi(x)hy (1)

1 =1 =1 j=1 i=1 j=1

I
S

: I

T

(3.57)

Now applying J* to both sides of Eq. (3.58) yields
u(x,t) — u(x,0 (Z > cjhi(x) ) +J* (Z Zdijhi(x)hj(t)> . (3.59)
=1 j=1 i=1 j=1
Substituting Eq. (8.44) and Eq. (3.55) in Eq. (3.59), we get

zm: Em:c,,Q hi(Ohi (1) + > > rghi(x)hy(1)

i=1 j=1 i=1 j=1

Now substituting the collocation points x; = =22 and 5 =403 for [,k =

1,2,...,m in Egs. (3.54), (3.57), and (3.60), we have 3m? equatlons in 3m?
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unknowns in ¢y, 7, and dj;. By solving this system of equations using mathematical
software, the Haar wavelet coefficients c;;, r;;, and dj; can be obtained.

3.6.2 Application of OHAM to Fractional Fisher-Type
Equation

Using the optimal homotopy asymptotic method, the homotopy for Eq. (3.46) can
be written as

L Pexnp) Oo(x,t;p)  Oo(x,1;p)
=P = =HP) | =%, o2 (3.61)

—o(x, ;p)[1 — @(x,t;p)][@(x, £, p) — d]]

Here,
o(x,1;p) = uo(x, 1) + Y uix (3.62)
i=1
H(p) = pCi +p*Co+p°Cs + -+, (3.63)
N(@(x, ;) = No(uo(x, ) + > Neuto, ur, ..., wi)p". (3.64)
=1

Substituting Eqgs. (3.62)—(3.64) in Eq. (3.61) and equating the coefficients of like
powers of p, we have the following system of partial differential equations.
Coefficients of p:

0"up(x, 1)

o =0 (3.65)

Coefficients of p':

Ouy (x,1)  0"uo(x,1) _ c Pug(x,1) up(x, 1)
or* or* - or Ox2 (366)

+aug(x, 1) — (uo(x,1))>(1 4 a) + (uo(x, 1))’
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Coefficients of p*:

or* or*

_ o o + auy (x,1)

a0, i (x,1) (1 + @) + 3o (x, 1) (5,1)|

up(x,1) D*ug(x, 1)
or* Ox?

g (x,1) = (uo(x, 1)) (14 a) + (o, 1))’

Fuy(x, 1) uy(x,1) c {8°‘u1(x,t) 0%uy(x, 1)
. _

(3.67)

—&-Cz{

and so on.
For solving fractional Fisher-type equation using OHAM, we consider the initial

condition Eq. (3.47) and solving Egs. (3.65)—(3.67), we obtain

1

1+ Exp [— (é)x
) — Ci(2a - l)Expz) {% 5 | 5.69)
2(1 —|—Exp[%D (1 +a)

(3.68)

up(x, 1) =

V2
4(1+Exp {%])41"(1 +2a)

aCi(2a—DExp| 5| (144)Cy(2a — 1)Exp[v/2x] >

2(1 +Exp[\/i§D2l" 1-—0—20() B (1 +Exp[\/i§}>3l“(l +24)
3C;(2a — 1)Exp % 2

2(1 +Exp[\/i§D4F(l —+2a)
& up(x, 1)
Ox?

Ci(2a — 1)Exp [—] (1 — 4Exp [ﬁ} +Exp [ﬂx])th

u2(x7 t) = Ml(-x7 t) + Cl Ml(-x7 t) -

—~

+auo(x, 1) — (uo(x,1))*(1 4+ a) + (uo(x, t))ﬂ ﬁ

(3.70)

ol

Using Eqgs. (3.68)—(3.70) and consequently substituting in Eq. (3.33), the
second-order approximate solution is obtained as follows
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) | C1(2a — 1)Exp [ﬁ] 2
1+EXp[—<\/¢§>X] 2(1+Exp[ﬁ})zr(l+a)
C1(2a — 1)Exp [ﬁ] <1 — 4Exp [ﬁ] +Exp[v24] ) o

4<1+Exp[%])4r(l+2a)

u(x,t) +uy (x,1)

+ Cy ul(x7t) -

aCy(2a — 1)Exp [75} 2

+2(1+Exp%})2r(1Jrzoc)

_(1+G)C1(2a—l)Exp[\/§x]t2‘7+ 3C1(2a71)Exp[3—\/%]z2“ et
<1+Exp[\%}>3r(l+2a) 2<1+Exp[\/i§]>4r(l+2a) T(1+4)

- 20 ) = ()1 0)+ )|

(3.71)

The optimal values of the convergence control constants C; and C, can be
obtained using the collocation method from Eq. (3.35).

3.6.3 Numerical Results and Discussion

Table 3.3 shows the comparison of the approximate solutions of fractional
Fisher-type Eq. (3.46) obtained by using the Haar wavelet method and OHAM at
different values of x and r. Tables 3.4, 3.5, and 3.6 exhibit the comparison of
approximate solutions obtained by Haar wavelet method and OHAM for fractional
Fisher-type Eq. (3.46). The obtained results in Tables 3.3, 3.4, 3.5, and 3.6
demonstrate that these methods are well suited for solving fractional Fisher-type
equation. Table 3.7 exhibits the L, and L., error norm for fractional Fisher-type
equation at different values of # and o = 1. It can be easily observed from Table 3.7
that the solutions obtained by OHAM are more accurate than that of the Haar
wavelet method.

In the case of fractional Fisher-type Eq. (3.46), Figs. 3.4, 3.5, 3.6, and 3.7 show
the graphical comparison between the numerical solutions obtained by Haar
wavelet method and exact solutions for different values of x and ¢ for o = 1.
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Table 3.3 Absolute errors in the solution of fractional Fisher-type Eq. (3.46) using the Haar
wavelet method and second-order OHAM at various points of x and ¢ for o« = 1

X [UExact — Upaar | [#Exact — Honam|

t=02 t=04 t=0.6 t=028 t=02 t=04 t=0.6 t=028
0.1 | 6.3532E-3 | 2.37818E-3 | 1.10276E-2 | 0.01313 1.15082E—6 | 2.2604E—5 | 9.065E—5 | 2.3096E—4
0.2 |0.0157158 | 1.13279E-3 | 0.0156863 0.0202773 | 2.08404E—6 | 9.2861E—6 | 5.967E—5 | 1.7382E—4
0.3 | 0.0254058 | 8.69964E—4 | 0.0188795 0.0256173 | 5.29828E—6 | 4.1167E—6 | 2.814E-5 | 1.151E—4
0.4 |0.0346376 | 3.18353E-3 | 0.0206902 0.0290465 | 8.45965E—6 | 1.7464E—5 | 3.605E—6 | 5.5364E—5
0.5 |0.0392372 | 6.88463E—4 | 0.0293499 0.0394803 | 1.1537E-5 3.0617E-5 | 3.521E-5 | 4.6066E—6
0.6 | 0.0452261 1.29706E-3 | 0.0284296 0.0387295 | 1.45011E-5 | 4.3441E-5 | 6.635E-5 | 6.4167E—5
0.7 |0.0486123 | 0.00292683 | 0.0260098 0.0356642 | 1.73248E—-5 | 5.5811E-5 | 9.668E—5 | 1.2266E—4
0.8 | 0.0489923 | 0.00432643 | 0.0218834 0.0300975 | 1.99841E-5 | 6.761E—5 1.259E—4 | 1.7945E—4
0.9 |0.0461399 0.00580079 0.0157611 0.0218232 | 2.2458E—5 7.8733E-5 1.537E-4 | 2.3396E—4
1.0 | 0.0407954 0.00797543 7.28187E-3 | 0.010615 2.47294E-5 | 8.9092E—5 1.799E-4 | 2.8567E—4

Table 3.4 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and second-order OHAM at various points of x and ¢ for o = 0.75

x t=02 t=04 t=0.6 t=0.8

UHaar UOHAM UHaar UOHAM UHaar UOHAM UHaar UOHAM

0.1 0.529262 | 0.541972 0.550815 0.558464 | 0.57178 0.572871 0.58789 0.586061
0.2 0.54032 0.559441 0.567777 0.57575 0.592323 0.589947 0.610112 | 0.6029

0.3 0.551007 0.576764 | 0.583637 | 0.592852 0.611195 0.606805 0.630359 | 0.619494
0.4 |0.561805 0.5939 0.598653 0.60973 0.628487 | 0.62341 0.648635 0.635808
0.5 0.577346 | 0.61081 0.619426 | 0.62635 0.652014 | 0.639728 0.673325 0.651811
0.6 | 0.589669 0.627458 0.63334 0.642676 0.666293 0.655727 0.687588 0.667476
0.7 0.603304 | 0.643809 0.646865 0.658676 0.679049 | 0.67138 0.699751 0.682775
0.8 0.618509 0.659832 0.659997 | 0.674324 | 0.690193 0.68666 0.709697 0.697687
0.9 0.635416 | 0.675498 0.672635 0.689592 0.699573 0.701546 | 0.717268 0.712192
1.0 | 0.653985 0.69078 0.684559 | 0.704459 0.706961 0.716016 | 0.722251 0.726273

Table 3.5 Approximate solutions of fractional Fisher-type Eq. (3.46) using the Haar wavelet
method and three terms for second-order OHAM at various points of x and ¢ for o = 0.5

X t=02 t=04 t=0.6 t=0.8

UHaar UOHAM UHaar UOHAM UHaar UOHAM UHaar UOHAM
0.1 |0.531396 |0.55521 |0.550389 |0.570645 |0.570167 |0.582442 |0.586081 |0.592358
0.2 | 0.544463 | 0.572501 |0.567129 | 0.587683 |0.589396 |0.599243 |0.606722 |0.608926
0.3 | 0.557098 | 0.589616 |0.582811 |0.604511 |0.607055 |0.615806 |0.625465 |0.625237
0.4 |0.569581 |0.606516 |0.597627 |0.621093 |0.62327 |0.6321 0.642398 | 0.64126
0.5 |0.586931 |0.623164 | 0.617982 |0.637394 |0.645433 |0.648094 |0.665485 |0.656966
0.6 |0.599906 | 0.639526 |0.631544 |0.653383 |0.659045 |0.663758 |0.678972 |0.672331
0.7 10.613502 | 0.655571 | 0.644668 | 0.669033 |0.671439 |0.679069 |0.690761 |0.68733
0.8 |0.627951 |0.671268 |0.657436 |0.684317 |0.682619 |0.694001 |0.700823 |0.701944
0.9 |0.643461 |0.686593 |0.669891 |0.699213 |0.69255 |0.708537 |0.709084 |0.716155
1.0 |0.660213 |0.701522 | 0.682031 |0.713701 |0.701145 |0.722658 |0.715421 |0.729948
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Table 3.6 Approximate solutions of fractional Fisher-type Eq. (8.1) using the Haar wavelet

method and three terms for second-order OHAM

at various points of x and ¢ for o = 0.25

X t=02 t=04

t=0.6 t=0.8

UHaar UOHAM UHaar UOHAM

UHaar UOHAM UHaar UOHAM

0.1 |0.532613 |0.572089 |0.549759 | 0.582288

0.56869 | 0.589109 |0.584364 |0.594376

0.2 |0.546845 |0.589079 |0.566132 | 0.599061

0.586797 | 0.605718 |0.603614 |0.610849

0.3 |0.560632 | 0.605856 |0.581558 |0.615598

0.603479 | 0.622078 | 0.62109 | 0.627063

0.4 |0.574145 |0.622383 | 0.596189 | 0.631866

0.618879 | 0.638157 |0.63693 | 0.642985

0.5 |0.592632 |0.638629 |0.6162 0.647836

0.639969 | 0.653925 |0.658653 | 0.65859

0.6 |0.60613 |0.654561 |0.62967 | 0.663478

0.653168 | 0.669358 |0.671551 |0.673851

0.7 |0.6199 0.670153 | 0.642758 | 0.678767

0.665416 | 0.68443 | 0.683099 | 0.688748

0.8 |0.634137 |0.685379 |0.655588 | 0.693681

0.67679 | 0.699122 |0.693344 |0.703261

0.9 |0.649049 |0.700217 | 0.668278 |0.7082

0.687344 | 0.713415 |0.702305 |0.717372

1.0 | 0.664857 |0.714648 | 0.680936 | 0.722306

0.697114 | 0.727293 | 0.709973 | 0.731069

Table 3.7 L, and L., error norm for Fisher-type equation at different values of ¢

Time (s) Haar wavelet method Optimal homotopy asymptotic
method (OHAM)
L, Ly L, Ly
0.2 0.0377811 0.0489923 1.50470E-5 2.47294E-5
0.4 0.00380168 0.00797543 5.05627E-5 8.9092E-5
0.6 0.020685 0.0293499 9.97048E-5 1.799E—4
0.8 0.0281228 0.0394803 1.69576E—4 2.8567E—4
Fig. 3.4 Comparison of the u(x,0.2)
numerical solution and exact 10 - -
L - Exact solution

solution of fractional
Fisher-type equation when
t=02and a =1

04l

Haar solution

0.0
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Fig. 3.5 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t=04anda=1

Fig. 3.6 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t=06and a=1

Fig. 3.7 Comparison of the
numerical solution and exact
solution of fractional
Fisher-type equation when
t=0.8and a =1
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3.7 Conclusion

In the present chapter, a numerical method based on the Haar wavelet operational
method is applied to solve the Bagley—Torvik equation. An attempt has been made
to apply the Haar wavelet operational method for the numerical solution of the
Bagley-Torvik equation.

We exhibit a numerical method for the fractional-order Bagley—Torvik equation
based on Haar wavelet operational matrices of the general order of integration. In
this regard, a general procedure of obtaining the Haar wavelet operational matrix Q*
of integration of the general order o is derived first time in this work. This oper-
ational matrix is the correct general order operational matrix confirmed after
examined by the author.

The numerical solution is compared with the exact solution and the R.M.S. error
is 0.204029. The error may be reduced if we take more number of collocation
points. The advantage of this method is that it transforms the problem into algebraic
matrix equation so that the computation is simple, and it is a computer-oriented
method. It shows the simplicity and effectiveness of this method. It is based on the
operational matrices of Haar wavelet functions. Moreover, wavelet operational
method is much simpler than the conventional numerical method for fractional
differential equations, and the result obtained is quite satisfactory. The admissible
comparison of the results obtained by the present method justifies the applicability,
accuracy, and efficiency of the proposed method.

Also, in this chapter, the fractional Fisher-type equation has been solved by
using the Haar wavelet method. The obtained results are then compared with exact
solutions as well as the optimal homotopy asymptotic method. These results have
been presented in the tables and also graphically demonstrated in order to justify the
accuracy and efficiency of the proposed schemes. The Haar wavelet technique
provides quite satisfactory results for the fractional Fisher-type Eq. (3.46). The
main advantages of this Haar wavelet method are it transfers the whole scheme into
a system of algebraic equations for which the computation is easy and simple.
OHAM allows fine-tuning of the convergence region and the rate of convergence
by suitably identifying convergence control parameters C,, C,, C3, . ... The results
obtained by OHAM are more accurate as its convergence region can be easily
adjusted and controlled. The main advantages of these schemes are their simplicity,
applicability, and less computational errors. Although the obtained results indicate
that the optimal homotopy asymptotic method provides more accurate value than
Haar wavelet method, and however, the accuracy of the wavelet method may be
improved with the increase in level of resolution.
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Chapter 4 M)
Numerical Solutions of Riesz Fractional Check or
Partial Differential Equations

4.1 Introduction

Nowadays, different applications of fractional differential equations in many areas,
such as engineering, physics, chemistry, astrophysics, and many other sciences, are
observed. Fractional kinetics systems are widely applied to describe anomalous
diffusion or advection-dispersion processes [1]. Fractional differential equations are
comprehensively used in examining physical phenomena in numerous disciplines
of engineering and science. For this, we need reliable and efficient techniques for
the solutions of fractional differential equations [2, 3]. The fractional-order models
are more adequate than the previously used integer-order models because
fractional-order derivatives and integrals enable the description of the memory and
hereditary properties of different substances [4]. This is the most significant
advantage of the fractional-order models in comparison with integer-order models,
in which such effects are neglected. In the area of physics, fractional space
derivatives are used to model anomalous diffusion or dispersion, where a particle
spreads at a rate inconsistent with the classical Brownian motion model [5]. In
particular, the Riesz fractional derivative includes a left Riemann—Liouville
derivative and a right Riemann—Liouville derivative that allows the modeling of
flow regime impacts from either side of the domain [6]. The fractional
advection-dispersion equation (FADE) is used in groundwater hydrology to model
the transport of passive tracers carried by fluid flow in a porous medium [7-9].

The Riesz fractional advection-dispersion equation (RFADE) with a symmetric
fractional derivative, namely the Riesz fractional derivative, was derived from the
kinetics of chaotic dynamics by Saichev and Zaslavsky [10] and summarized by
Zaslavsky [6]. Ciesielski and Leszczynski [11] presented a numerical solution for
the RFADE (without the advection term) based on the finite difference method.
Shen et al. [12] presented explicit and implicit difference approximations for the
space RFADE with initial and boundary conditions on a finite domain and derived
the stability and convergence of their proposed numerical methods.
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Fokker—Planck equation (FPE) was introduced by Adriaan Fokker and Max
Planck, commonly used to describe the Brownian motion of particles [13]. The FPE
describes the change of probability of a random function in space and time, so it is
naturally used to describe solute transport. The FPE is involved with the conser-
vation of probability that a particle will occupy a specific location. At any particular
time, the sum of the probabilities at all locations must equal unity. So if the
probability changes in one location from one moment to the next, the probability
must also change in the vicinity to conserve probability. An ensemble of a large
number of particles can fulfill the probabilities, and the FPE becomes an equation of
the conservation of mass. Also, the nonlinear Fokker—Planck equation has impor-
tant applications in various other fields. The fractional Fokker—Planck equations
have been useful for the description of transport dynamics in complex systems that
are governed by anomalous diffusion and nonexponential relaxation patterns [5].
Fractional derivatives play a key role in modeling particle transport in anomalous
diffusion. For the description of anomalous transport in the presence of an external
field, Metzler and Klafter [5] introduced a time fractional extension of the FPE,
namely the time fractional Fokker—Planck equation (TFFPE).

There are some researchers who have investigated the FFPE. So and Liu [14]
studied the subdiffusive fractional Fokker—Planck equation of bistable systems.
Saha Ray and Gupta [15] established the numerical solutions of time and space
fractional Fokker—Planck equations with the aid of two-dimensional Haar wavelets.
Chen et al. [16] proposed three different implicit approximations for the TFFPE and
proved these approximations are unconditionally stable and convergent. Zhuang
et al. [17] presented an implicit numerical method for the TSFFPE and discussed its
stability and convergence.

Numerous mathematical methods such as the Adomian decomposition method
(ADM) [18], variational iteration method (VIM) [18], operational Tau method
(OTM) [19], and homotopy perturbation method (HPM) [20] have been used in
order to solve fractional Fokker—Planck equations. In Refs. [18-20], the fractional
derivative is considered in Caputo sense. The aim of the present work is to
implement shifted Griinwald approximation and fractional centered difference
approximation to discretize the Riesz fractional diffusion equation and time and
space Riesz fractional Fokker—Planck equation, respectively. The stability and
convergence of the proposed finite difference schemes have been also analyzed
rigorously.

The classical sine-Gordon equation (SGE) [21] is one of the basic equations of
modern nonlinear wave theory, and it arises in many different areas of physics, such
as nonlinear optics, Josephson junction theory, field theory, and the theory of lattices
[22]. In these applications, the sine-Gordon equation provides the simplest nonlinear
description of physical phenomena in different configurations. The theory, methods
of solutions, and applications of the celebrated fractional sine-Gordon equation are
discussed in great detail in two recent books [23, 24]. Special attention is also given
to soliton, antisoliton solutions, and a remarkable new mode that propagates in a
two-level atomic system. In order to further emphasis on the analysis of one-soliton
and two-soliton solitary wave solutions, it may be referred to Ref. [25].
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The more adequate modeling can be prevailed corresponding to the general-
ization of the classical sine-Gordon equation. In particular, taking into account of
nonlocal effects, such as long-range interactions of particles, complex law of
medium dispersion, or curvilinear geometry of the initial boundary problem, clas-
sical sine-Gordon equation results in the nonlocal generalization of SGE.

In this chapter, the nonlocal generalization of the sine-Gordon equation has been
proposed in [26] as follows:

Uy — XD u+ sinu =0, (4.1)

where the nonlocal operator RD;‘ is the Riesz space fractional derivative, 1 <o <2.

These similar types of evolution Eq. (4.2) arise in various interesting problems
of nonlocal Josephson electrodynamics. These problems were introduced in [27—
32]; among these, one of the basic model equation is

uy — Hluy] + sinu =0, (4.2)

where H is the Hilbert transform, given by

Hl¢] E%V'p- / %dé, (4.3)

—00

and the integral is understood in the Cauchy principal value sense. The evolution
Eq. (4.2) was an object of study in a series of papers [27, 28, 31, 33, 34] available
in the open literature. Other nonlocal sine-Gordon equations were considered in
[35, 36].

In this case, the derived approximate solutions are based on modified homotopy
analysis method with Fourier transform. In this present chapter, we employ a new
technique such as applying the Fourier transform followed by homotopy analysis
method. This new technique enables derivation of the approximate solutions for the
nonlocal fractional sine-Gordon Eq. (4.1). To the best possible information of the
author, the present approximation technique has been proposed first time in this
work for solving the nonlocal fractional sine-Gordon equation.

4.2 Outline of the Present Study

In this chapter, numerical solutions of fractional Fokker—Planck equations with
Riesz space fractional derivatives have been developed. Here, the fractional
Fokker—Planck equations have been considered in a finite domain. In order to deal
with the Riesz fractional derivative operator, shifted Griinwald approximation and
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fractional centered difference approaches have been used. The explicit finite dif-
ference method and Crank—Nicolson implicit method have been applied to obtain
the numerical solutions of the fractional diffusion equation and fractional Fokker—
Planck equations, respectively. Numerical results are presented to demonstrate the
accuracy and effectiveness of the proposed numerical solution techniques.

Also, a novel approach comprising modified homotopy analysis method with
Fourier transform has been implemented for the approximate solution of the frac-
tional sine-Gordon equation

uy — XD u+ sinu =0,

where RD;‘ is the Riesz space fractional derivative, 1 <o <2.
For o = 2, it becomes a classical sine-Gordon equation

Uy — Uy + Sinu = 0,
and corresponding to oo = 1, it becomes nonlocal sine-Gordon equation
uy — Hu+ sinu =0,

which arises in Josephson junction theory, where H is the Hilbert transform. The
fractional sine-Gordon equation is considered as an interpolation between the
classical sine-Gordon equation (corresponding to « = 2) and nonlocal sine-Gordon
equation (corresponding to o = 1). Here the approximate solution of the fractional
sine-Gordon equation is derived by using the modified homotopy analysis method
with Fourier transform. Then, the obtained results have been analyzed by numerical
simulations, which demonstrate the simplicity and effectiveness of the present
method.

4.3 Numerical Approximation Techniques for Riesz Space
Fractional Derivative

There are different approximation techniques for Riesz space fractional derivative
[37-40]. In the present chapter, the emphasis has been focused on the shifted
Griinwald formula to discretize the Riesz space fractional differential equation
which, unlike the standard Griinwald formula, does not suffer from instability
problems [41] and also on the fractional centered difference approximation tech-
nique, respectively.

Let us assume that the function W(x, ¢) is n — 1 times continuously differentiable
in the interval [0,L] and that W) (x,7) is integrable in [0,L]. Then for every
a(0<n—1<a<n,n € N), the Riemann-Liouville fractional derivative exists and
coincides with the Griinwald-Letnikov derivative. This relationship enables the use
of the Griinwald-Letnikov derivative for obtaining the numerical solution [8, 42].
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The fractional Griinwald-Letnikov derivative with order 1 — « is given by

k 1=
oD} W (x, 1) = lin(l)r%l Z (-1) < >W(x, ty — 1)

r

(4.4)

k
= ! Z oW (x, i — r7) +0(),
r=0

where t=T/N, f,=rt, o\*=1 o= (—1)"12a-Con g
r=1,2...,N.

4.3.1 Shifted Griinwald Approximation Technique
for the Riesz Space Fractional Derivative

The shifted Griinwald formula which was proposed by Meerschaert and Tadjeran
[41] has been applied for discretizing the Riesz fractional derivative. In this
problem, we discretize the Riesz space fractional derivative using the following
shifted Griinwald approximation:

G“W(xl,t) W [+1 ~ mflJrl~
~ — Wi_: + Wi , 4.5
o)x[* 2cos(%) j;g, =i+l j; 8iWi+j-1 (4.5)
where the coefficients are defined by
- - o —1).. (e —j+1
g =1g=(-1) ( ) ), =1,2,....m.

J!
4.3.2 Fractional Centered Difference Approximation
Technique for the Riesz Space Fractional Derivative

Recently, Celik and Duman [43] derived the interesting result that if f*(x) be
defined as follows

oo J &), x€lab]
f(x)_{o, x & la,b)

such that f*(x) € C3(R) and all derivatives up to order five belong to L;(R), then
for the Riesz fractional derivative of order a(1 <a <?2)
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x—a
h

h

where h =24 and m is the number of partitions of the interval [a, b] and

. (=1)T(a+1)
S T T(/2—j+ D (a/2+j+1)

Property 4.1 The coefficients g; of the fractional centered difference approxima-
tion have the following properties for j = 0, F1,F2,..., and o > —1:

(i) go=>0,
(i) g-j =g <0 forall |j|>1,

i—o/2
(iii) gj+1 :a{/fT’]/ng,

(iv) g =o0("").

Proof For the proof of the above properties, it may be referred to Ref. [43].

Lemma 4.1 Letf € C°(R) and all derivatives up to order five belong to Ly (R) and
the fractional central derivative of f be

P = Y aflc i),
where
o (=1)/T(x+1)
8§ T2 —j+ DI (@/2+j+1)’
then
=i Y i+ o),

j==%0

when h — 0 and 0()]‘;("5) is the Riesz fractional derivative for 1 <o <2.

Proof For the proof also, it may be referred to Ref. [43].
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4.3.3 Inhomogeneous Fractional Diffusion Equation
with Riesz Space Fractional Derivative

Let us consider the following inhomogeneous Riesz fractional diffusion equation
with source term in a finite domain associated with initial and Dirichlet boundary
conditions [42, 43]

oW (x,t)  0*W(x,1)
o =K PR +f(x,8),a<x<b, re]0,T], (4.7)

W(x,0) = ¢(x),a<x<b,
W(a,t) = W(b,t) =0,0<t<T,

where K > 0 is diffusion coefficient and ¢(x) is a real-valued sufficiently smooth
function. We consider a super-diffusion model, i.e., 1 <a<2. This type of
super-diffusion problems largely arises in the modeling of fluid flow, finance, and
other applications.

Explicit Finite Difference Method for Riesz Fractional Diffusion Equation

In this present analysis, numerical solution of Eq. (4.7) has been provided based on
the explicit finite difference method (EFDM). Let us assume that the spatial domain
is [0,L], and it is partitioned into m subintervals. Thus, the mesh is of m equal
subintervals of width h = L/m and x; = lh, for | = 0,1,2, ..., m. Let Wlk denote the
numerical approximation of W (x;, #.) at (x;, ).

Now we obtain the following explicit finite difference numerical discretization
scheme for the Eq. (4.7).

Kh™* [+1 ~ . m—1+1 ~ ) .
_W Zngl*/Jrl_‘_ Z ngqu +1

=0 =0

Wl = w4t , (4.8)

fori=1,2,...m—1,and k=0,1,...,N — 1.

The aforementioned Eq. (4.8) determines the numerical approximate value of
the solution W1 at (x;, # 4 1)

In matrix form, Eq. (4.8) can be written as

UKt = AUF  oF* 12 (4.9)

where U* = (WK, Wk .. | Wr];—l)T’
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= [flfE S 1] ,and A; is a symmetric (m — 1) x (m — 1) matrix of the
followmg form

Kth™* 5 Kth™ (> 5 Kth™* 5 s
1 - cos% 81 - W (go +g2) 2cos°"‘g3 e 2005""g'" 1
~ Kth— ~ ~
A —@(80+g2) I =z & —Ws%n(g(ﬁrgz) T A
Kth™* 5 Kth™* 5 Kth™* 5 Koh™* 5
2COS“ 8m—1 2COS“ 8m—2 2COS“ 8m—-3 e 1- #S%ngl

(4.10)

4.3.4 Time and Space Fractional Fokker-Planck Equation
with Riesz Fractional Operator

In this section, we consider the following time and space fractional Fokker—Planck
equation which describes the anomalous transport in the presence of an external
field [42]

oW(x,t) [0 V(x) . O
o Ka_ mn, 5 O

)W(x, 1) +1(x, t)} ,a<x<b, t€][0,T],
(4.11)

subject to initial and homogeneous Dirichlet boundary conditions

where K/ denotes the anomalous diffusion coefficient; m is the mass of the diffusing

a—2. V'(x)

test particle; 7, is the generalized friction constant of dimension [r,] = s*%; i,

is
known as the drift coefficient, and the force is related to the external potential

through F(x) = d&(\) oD!7%(.) denotes the Riemann-Liouville time fractional
derivative of order 1 — a(0 <o < 1) defined by [44-47]

e LD [ D)
D) = 0/ P (4.12)

For o« — 1 and u — 2, the standard Fokker—Planck equation [5] is recovered,
and for « — 1 and V(x) = const., i.e., in the force-free limit, the inhomogeneous
fractional diffusion Eq. (4.7) emerges.

The Riesz space fractional derivative of order v(1 <v<?2) is defined by [48, 49]
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ow (xlv) 1 )
S D'+ DOW(x, 1), 4.13
a‘x| ZCOS(M) ( x+ b) (‘X t) ( )

2
where D] and ,Dj are the left and right Riemann-Liouville space fractional
derivative operators of order v, which are, respectively, given by

1 ,
D'W(x,1) :F(Z—v)@/(x (i)‘) dé,

a

b
v I SR (<)
xDbW(x’ t) = F(2 — V)@/ (5 - )‘ ldé

X

Implicit Finite Difference Method for Time and Riesz Space Fractional
Fokker-Planck Equation

In order to solve Eq. (4.11) with the drift coefficient —v, fractional centered dif-
ference approximation along with Griinwald-Letnikov derivative approximation
has been used to discretize it.

From Taylor’s theorem, we have

k+1 _ yk k+1/2
Wit —Wi_ (%v:/) +0(7%), (4.14)
T

where the central difference with step size 7/2 has been used.
Thus, using Eq. (4.14) and Lemma 4.1, we obtain the following implicit finite
difference discretization scheme

= k—j
a1§ wla( +1 vVI)

Jj=0

Kymlhuz(ulngl IJ+TO( lzwlalkj

i=l—-m

k+1 Wk+1 —j Wk+1 —Jj k+1

z : — 2 : j : k+1—j
S 1 U)Jl oc( I+1 ; K[A, o— Ih " wl o ng:; J

=0

i=l—m

Wittt -wp 1
T

k+1
+,Ea—1 wjl xfk+l —Jj +TEk+l/2
=0
(4.15)
for I=1,2,....m—1, and k=0,1,...,N — 1, where the local truncation error

TEk+l/2 (7: ).
Now, omitting the local truncation error in Eq. (4.15), we obtain
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k+1 Ik-;rl1 Wk+l 1- k+1
W +K"2h oo ‘Zg,W,, = wf
i=l—m
o k W*)
ot Zw < 1+1 i ) h #Zw: . Znglklr
=0 i=l—m

-
S I—opk—r « l—opk+1—r - WlkJ:rll i Wzkﬂir
—0—?(260 1 +Z(u 1 —vEle —

r=0 r
7KHT h /tlir:lwl o Z Wk+l r
r 8iWi_i .
i=l-m
(4.16)
Further, Eq. (4.16) can be written into the following matrix form
I+A)U ! = (I —Ag — ANU* — (A1 +A4)U" — (A, +43) U -
_ (Ak +Ak+1)UO+TaFk+1/2,
(4.17)

where U* = (WK, W&, ... . wk )T,
1 k k+1 1 k k+1
Fk+l/2 _ |:2 (Z wi—x lk—r + Zwi—aflk-%—l—r) ’5 <Z wi—a 2k—r+ Zw:—yfzk-%—l—r>7
r=0 r=0 r=0 r=0
[ 17 & 1- k+1 r !
73 ;wr + ZU) m—1 ’

and A; is an (m — 1) X (m — 1) matrix of the following form

_ o Kht* KF* o
g 4K L Klpog,
Kit* g o Kht* 4 Kit* g
Ai _ w'lfot 7}1 ”gl —% + D) h ug() . Th ”g3_m
i
K’ 2 Kt R < I
h™* 8m—2 xTh 'ugm73 .o _% + xz h #gO

(4.18)

Now, we define the function space as follows: A(Q)=
{W(x, 1) ang(;c,z) ,Oggg;’;) € C(Q)}, where Q = [a,b] X [0,T]. In this work, we

assume that the Problems (4.7) and (4.11) have a smooth exact solution
W(x,t) € A(Q), and f(x,¢) and ¢(x) are sufficiently smooth functions.
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4.3.5 Numerical Results for Riesz Fractional Diffusion
Equation and Riesz Fractional Fokker—Planck
Equation

In the present section, the numerical examples for Riesz fractional diffusion
Eq. (4.7) and time and Riesz space fractional Fokker—Planck Eq. (4.11) with the
drift coefficient —v have been presented to demonstrate the effectiveness of the
above-discussed numerical schemes for solving Riesz fractional diffusion equation
and time-space fractional Fokker—Planck equation with Riesz derivative operator.

Example 4.1 Let us consider the following Riesz fractional diffusion equation [42,
43] on the finite domain [0, 1].

oW (x,t)  0*W(x,1)
o Ko Ff(x1),0<x<1, t€[0,T], (4.19)

subject to initial and homogeneous Dirichlet boundary conditions

W(x,0) =x*(1 —x)*,0<x<1,
W(0,1) =W(l,1) =0,0<:<T

and the nonhomogenous part is

fOn0) = (1407 (=1 4x)°FPa+ F(Sl— O{)xﬂ‘ [(11 j;)a(—l +x)2x% (1242

—6xo+ (=1 4+ a)a)
+ (140" [12(=1 4 x)* 4+ (=7 + 6x)o + oc2H sec (?)

The exact solution is
W(x, 1) = (141221 —x)°. (4.20)

In this example, we take K = 1, t = 0.001, and & = 0.05. Figures 4.1, 4.2, and
4.3 show the comparison of the exact and numerical solutions when o« = 1.5 at
t = 1,3, 5, respectively. It can be easily observed that the numerical solutions are in
good agreement with the exact solution.

Example 4.2 Let us consider the following time fractional Fokker—Planck equation
with Riesz space fractional derivative operator [42]

_aiM>W(x,t)+f(x,t)],0<x<1, t€[0,T],

®
|
[=)
<
I
K
| —
/I—\
<
&l
_|_
C

(4.21)
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Fig. 4.1 Comparison of numerical solution of W(x,7) with the exact solution at t =1 for
Example 4.1 with « = 1.5, h = 0.05, and 7 = 0.001
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Fig. 4.2 Comparison of numerical solution of W(x,7) with the exact solution at t =3 for
Example 4.1 with « = 1.5, h = 0.05, and 7 = 0.001
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Fig. 4.3 Comparison of numerical solution of W(x,7) with the exact solution at t =35 for
Example 4.1 with o« = 1.5, h = 0.05, and 7 = 0.001

subject to initial and homogeneous Dirichlet boundary conditions

W(x,0) = K3 (1 —x)%,0<x<1,
W(0,1) = W(l,1) =0,0<r<T,

The exact solution is
W(x, 1) = (KE+vi' T2 (1 — x)%. (4.22)

In this example, we take K!' = 25, © = 0.001, & = 0.05, « = 0.8, and u = 1.9.
Figure 4.4 shows the comparison between the exact and numerical solutions at
t=1. In Fig. 4.5, comparison of numerical solution of W(x,7) with the exact
solution at # =3 has been presented for Example 4.2 with o« =0.8, u=1.9,
h=0.02, and 7 =0.075. Figure 4.6 explores the comparison of results for
Example 4.2 with « =0.8, =19, h=0.02, and T =0.1. It can be clearly
observed from the presented figures that the implicit finite difference solutions
highly agree with the exact solutions.
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Fig. 4.4 Comparison of numerical solution of W(x,¢) with the exact solution at =1 for

Example 4.2 with o = 0.8, u = 1.9, h = 0.05, and 7 = 0.01
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Fig. 4.5 Comparison of numerical solution of W(x,7) with the exact solution at t =3 for

Example 4.2 with « = 0.8, £ = 1.9, h = 0.02, and 7 = 0.075
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Fig. 4.6 Comparison of numerical solution of W(x,7) with the exact solution at t =35 for
Example 4.2 with « = 0.8, u = 1.9, h =0.02, and 7 = 0.1

4.3.6 Stability and Convergence of the Proposed Finite
Difference Schemes

Theorem 4.1 The numerical discretization scheme for the problem in Eq. (4.19) is
stable, if

T 2|cos%
r:ﬁg , forl<a<?2.
g1—(80+8&) | =
K(Sgn(cos’g‘) +g0>

Proof The matrix A in Eq. (4.10) can be written as
A=T+R, (4.23)

where T is a tridiagonal (m — 1) x (m — 1) matrix of the following form

I-8e (@) 0 0
o | s+ 1-K2g A (Bo+g) .. 0 7
0 0 0 R Gy €y )

OS2
Cos P

(4.24)
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and R is a symmetric (m — 1) X (m — 1) matrix of the following form

Kth™ > _ Kth™* 3
0 0 2cos“"g3 te 2C05%gm71
0 0 0 s KD
R = ZCOS%gm 2
Kth™* = K<h™* & h™* &
Zcos“" m-1 — ZCos%gm*2 2cos”‘ gn-s - 0

Now, let A; be the eigenvalue of the matrix R. Then, according to the
Gerschgorin circle theorem [50], we have

K'Eh°‘m1 Kth™* & Kth™
|}vi_0|< 0§— Z|gk| 2|cos kz:: 2}009 ’ (4'25>

where > g = —1+a— W D<1.
k=3
This implies that

Kth™*
R||,= p(R) < ———, 4.26
IRIb= () < 57 5 (4.26)

since R is a real and symmetric matrix.
Now, the eigenvalues of the tridiagonal matrix 7 are given by [51]

Kth* . Kth™
=1 g - (g0+g2)cosv— v=1,2,...m—1.  (4.27)
COS7 COS2

Now, let assume that Wf be the computed value of W of the explicit finite
difference  numerical scheme in Eq. (4.8), let & =Wf—Wf and

Yk = [s’f,sg, cn eﬁq_l]T.

Then, the vector Y* satisfies the following equation
Y =AYk, (4.28)
Thus, the explicit finite difference numerical scheme in Eq. (4.8) is stable if
1A[l,= p(A) <|ITl[, + R[], < 1
This implies that

Kth™ Kth™ _ m—1)zn

. (
1-— — cos
cos “2” & cos % (80 +2)

rK
2 cos % 2

<1

, (4.29)




4.3 Numerical Approximation Techniques for Riesz Space Fractional Derivative 135

After simplifications, from Eq. (4.29), we obtain

2|cos &
r< [cos 5 , (4.30)
2—(@o+8) | 5
K (Sgl‘l(cos“—z") + gO)
ash — 0, m — oo.
This completes the proof. |

Theorem 4.2 The numerical discretization scheme for the problem in Eq. (4.21) is
unconditionally stable.

Proof The matrix A; in Eq. (4.18) can be written as

o
Ai:ng(m %1) i=0,1,2,..  k+1, (4.31)
where

Klnrgy  SThrg L KThug,

po |5 B B g |
o o (e

KjThf MgmfZ KX2 h 'ugmf?) K& h /g(]

-1 1 0 ... 0
7 0 -1 1 ... 0

0 0 0 oo =1

Since g_; = g, Pis a (m — 1) x (m — 1) symmetric matrix and J is a (m — 1)x
(m — 1) Jordan block matrix with eigenvalue —1.

Now, let 4; be the eigenvalue of the matrix P. Then, according to the
Gerschgorin circle theorem [50], we have

KHg* KH* m-l KHe*
Jy— mEhRgy| < SEL il < =g 4.32
j— 5 g < ——h Z|gk\<2hgo7 (4.32)
k=1
ki
where > |gk] = go-
k= —00

k0
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This implies that
0<j<Klit*h™"g. (4.33)
Thus, the eigenvalue of A; satisfies the following range

—l ™ e <A} <! K't*hH
i h i f o 80

Therefore, we obtain

p(A;) <col-17“Kgr“h7”go —&-a)}’“%. (4.34)

Now, let assume that W* be the computed value of Wf of the second-order

accurate implicit numerical scheme in Eq. (4.16), let & = Wf— WF and

k 1ok ok k T
YO =[ef,e5,.. .60 4] -

Then, the vector Y* satisfies the following equation
Yol = (T+A0) "I —Ag —A)Y* — (I+A¢) (A +A,)Y*!

N ) (4.35)
— (I +A0) (A +A)Y 2 — o — (T +A)  (Ap +Ap )Y

Therefore, we obtain

72 <+ o)™ @ — Ao — AV ¥4, + T +40)™ (1 + 42 77
440 (s 4 AR 5+ 0440 A+ A ) ¥
(4.36)

Now, without loss of generality, there exists o; € R*,i= 0,1,...,k such that

(I +A40) (I — Ao — A1) ||, = [p([(I +A0) (I — Ao — A [ +A0) "' (T — Ao — A)])]'* <o,

(I +40) " (A1 +A2)[,= [p([(I +A0) " (A1 +A2)] [T +A0) " (A1 +A2)])]"* <oy,

(1 +A0) " (A + A1) ||, = ([ +A0) " (Ak +Ars )] [T +A0) " (Ax + A1) < o0
(4.37)

Consequently, we obtain

P b [ P2 2 3)

>
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Hence, we conclude that
Y|, S oo + 1) (e + 1) . (o + D] YO . (4.39)

Thus, the second-order accurate implicit numerical scheme in Eq. (4.16) for the
problem (4.21) is unconditionally stable. |

Theorem 4.3 Assuming that the problem in Eq. (4.21) has a smooth exact solution
W= W(x,t,) € A(Q) and W]' be the numerically computed solution of the
second-order implicit numerical scheme in Eq. (4.15). Then, the numerical solution
W unconditionally converges to W' as h and t tend to zero.

Proof Let the error at the grid point (x;,#) defined by ef = W} — WF and

Ef = (e, ék,...,ék )T, Then, from Egs. (4.15) and (4.16) for problem 4.2, we
have

k+1 k

k k—r k—r k+1 k+1-r _ k+1-r
I R G B Y e B | ——r“‘ 1 wl aofC41 -~
T2 i h r h
Khrrt 1
o - —0 —-r
_T E g giel ™! (4.40)

i=l—-m

K,u,rxl k+1
_ oc2 Z 1—a gleﬁ”+01+h2)

i=l—m
Now, Eq. (4.40) can be written in the following matrix form
(IT+A)E = (I —Ag—A)EF — (A, +A)EF!

4.41
— (A +ADE? — o — (A + A )E - Cre(P RO (4.41)

Thus, we have

EXFl = (I+A0) "I —Ag—A)EF — (I+Ao) " (A) +A,)EX!
— (I +A0) (A2 +A3)E 7 — - — (T+A0)  (Ax + A 1)E"  (4.42)
+C (P + R +Ay) !

Hence, we obtain

I, < ([ +A0) (= Ao = AN, + [ +40) (A1 +42) [, B,
+ 0+ A0) " (Ao + A5 [ B2+ o (- A0) T Ak Ar )L |E°)
+ (P + 1) || (T +A0) ||, S ooty + 1) (o2 + 1)... (o + 1) || E° |

+C1‘L’(‘[2 Jrhz H I1+A, 71H2 <O(()(OC1 -+ 1)(0(2 + 1) . .(Otk + I)HEOHZ
Cit(? +h?) < s
L TR < eT( 4.
(=0 =T
Consequently, ||[EF*! ||2—> 0 as 1 — 0, h — 0. This completes the proof. |
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4.4 Soliton Solutions of a Nonlinear and Nonlocal
Sine-Gordon Equation Involving Riesz Space
Fractional Derivative

In the present section, a new semi-numerical technique MHAM-FT method has
been proposed to obtain the approximate solution of nonlocal fractional
sine-Gordon equation (SGE). The fractional SGE with nonlocal Riesz derivative
operator has been first time solved by MHAM-FT method.

4.4.1 Basic Idea of Modified Homotopy Analysis Method
with Fourier Transform

Let us focus a brief overview of modified homotopy analysis method with Fourier
transform (MHAM-FT). Consider the following fractional differential equation

Nlu(x,t)] =0, (4.43)

where N is a nonlinear differential operator containing Riesz fractional derivative
defined in Eq. (1.18) of Chap. 1, x and # denote independent variables, and u(x, 1) is
an unknown function.

Then, applying Fourier transform Eq. (4.43) has been reduced to the following
Fourier transformed differential equation

Nli(k,t)] =0, (4.44)

where i(k, ) is the Fourier transform of u(x, 7).
According to HAM, the zeroth-order deformation equation of Eq. (4.44) reads as

(1 = p)L{p(k,1;p) — ito(k, 1)] = phN[¢(k, 1; p)], (4.45)

where L is an auxiliary linear operator, ¢ (k, #; p) is an unknown function, ig(k, t) is
an initial guess of u(k,7), 7l # 0 is an auxiliary parameter, and p € [0,1] is the
embedding parameter. In this proposed MHAM-FT, the nonlinear term appeared in
expression for nonlinear operator form has been expanded using Adomian’s type of
polynomials as Y~ A,p" [52].

Obviously, when p = 0 and p = 1, we have

Pk, 1;0) = i (k, 1), p(k, 1;1) = ia(k,1), (4.46)
respectively. Thus, as p increases from O to 1, the solution ¢(k, z; p) varies from the

initial guess iiy(k,?) to the solution i(k, ). Expanding ¢(x,#;p) in Taylor series
with respect to the embedding parameter p, we have
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+ oo
lk,1:p) = ito(k, 1)+ > itk 1), (4.47)
m=1

where it (k, 1) = o 2 (K, f§P)’

p=
The convergence of the series (4.47) depends upon the auxiliary parameter 7. If

it is convergent at p = 1, we have

+

a(k,t) = ok, 1) + i (k, 1),

8

3
I

which must be one of the solutions of the original nonlinear equation.

Differentiating the zeroth-order deformation Eq. (4.45) m times with respect to
p and then setting p = 0 and finally dividing them by m!, we obtain the following
mth-order deformation equation

L[ilm(k, l) — anﬂm_l (k, t)] = h?Rm(l:t(), U RN l:im—l); (448)

where
1 0" 'N[¢p(k,1;p)]
%mA;Av"wAmf = —
ottt ) = gt
and
1, m>1
Yo = {07 ol (4.49)

It should be noted that i,,(k, ) for m>1 is governed by the linear Eq. (4.48)
which can be solved by symbolic computational software. Then, by applying
inverse Fourier transformation, we can get each component u,(x,t) of the
approximate series solution

In the present analysis, for reducing Riesz space fractional differential equation
to ordinary differential equation, we applied here Fourier transform. In this modified
homotopy analysis method, with Fourier transform (MHAM-FT), we applied the
inverse Fourier transform for getting the solution of Riesz space fractional differ-
ential equation. This MHAM-FT technique has been first time proposed by the
author.
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4.4.2 Implementation of the MHAM-FT Method
Jor Approximate Solution of Nonlocal Fractional SGE

In this section, we first consider two examples for the application of MHAM-FT for
the solution of nonlocal fractional SGE Eq. (4.1).

Example 4.3 In this example, we shall find the approximate solution of the non-
local fractional SGE Eq. (4.1) with given initial conditions [52-54]

u(x,0) = 0,u,(x,0) = 4 sec hx (4.50)

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Egs. (4.1)
and (4.50), we get

iy (ky 1) + |k|°‘i¢(k7 t) + F(sinu) = 0, (4.51)
with initial conditions
N . km
uw(k,0) =0, i,(k,0)=2v2n sech(j), (4.52)

where F denotes the Fourier transform and  is called the transform parameter for
Fourier transform.
Expanding ¢(k, t; p) in Taylor series with respect to p, we have

+ 00
¢k, 1;p) = io(k, 1)+ > pitw(k,1), (4.53)
m=1
where
m!  Op™ p=0

To obtain the approximate solution of the fractional SGE in Eq. (4.51), we
choose the linear operator

Lig(k, t;p)] = pu(k,1; p). (4.54)
From Eq. (4.44), we define a nonlinear operator as
N[p(k, 1;p)] = ¢y (k. 1:p) + |k ¢(k, £; p) + F(sin(¢ (k, 1; p))), (4.55)

where the nonlinear term sin(¢(k,;p)) is expanded in terms of Adomian-like
polynomials.
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The nonlinear term sin(¢(k, 7;p)) has been taken as

o0

sin(p(k, 1;p)) = > p"An,

n=0

+ o0
where A, = %% (sin (ﬁo(k, 1)+ 21 Py (k, t)>> ; n>0.
m= p=
Using Eq. (4.45), we construct the so-called zeroth-order deformation equation

(1 = p)L(¢(k, 1;p) — dto(k,1)] = phN[¢ (k. 1; p)]. (4.56)
Obviously, when p = 0 and p = 1, Eq. (4.56) yields
d(k,1;0) = itg(k,1); p(k, ;1) = ia(k,1).

Therefore, as the embedding parameter p increases from O to 1, ¢(k, #;p) varies
from the initial guess to the exact solution #(k, ).

If the auxiliary linear operator, the initial guess, and the auxiliary parameter % are
so properly chosen, the above series in Eq. (4.53) converges at p = 1, and we
obtain

a(k,t) = ¢k, ;1) = ao(k, ) + +zozoitm(k, 1). (4.57)

m=1

According to Eq. (4.48), we have the mth-order deformation equation

Lt (k, 1) — fonttn1 (k, 1)) = BRo (B0, 11 -+ oy gy ), m > 1, (4.58)
where
i) = oo O N )
ity -1 (.k, 60) s " (4:59)
=7z " k| *tn—1 (k, t;) + F(Ap_1)-

Now, the solution of the mth-order deformation Eq. (4.58) for m > 1 becomes
it (k1) = Zpitm—1 (k1) + RLT (R, (210, 811, -y By )]- (4.60)

From Eq. (4.60), we have the following equations
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ito(k, 1) = it(k, 0) + tit, (k, 0),

g (k, t;
ity (k, 1) = hL™! (%’p) + [k|"ito (k, 7; p) + F(Ao))a
0%y (k, t; 4.61
(ko) = i)+ (I i) + Rl ). ol
0%ty (k, t;
(k) = i)+ (S i)+ Pl ).

and so on.
But here for the sake of efficient computation for the nonlinear term, the above
scheme in Eq. (4.61) has been modified in the following way

’:t()(kv t) = i{(k, O)a
&g (k. 1;p)
or?

+W%mhum+an)

ity (k, t) = tiy(k,0) + AL~ ( + |k it (k, £ p) + F(A0)>7
82ltil (ka t;p)

ﬁz(k, l) =nL! ( By

(4.62)

ity (k, t;

(k) = i)+ 12 (P i)+ Fl) ).
D%z (k, t;

(k) = i)+ 12 (P i)+ Pl ).

and so on.
By putting the initial conditions in Eq. (4.52) into Eq. (4.62) and solving them,
we now successively obtain

iio(k, 1) = 0, (4.63)
ity (k, 1) = 22t sec h(kQ—n), (4.64)

ity (k1) = EG V2ne sec h<%”) + %\/2m3|k|°‘sec h<%”>> (4.65)

and so on.
Then, by applying the inverse Fourier transform of Egs. (4.63)—(4.65), we
determine
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MO(xv t) = 07
uy(x,1) = 4t sec hx,

1 —2i 2i
uy(x,1) = §t3h(2 sec hx 427 17 T (1 4 ) (C(l —o—fx,n zx) +C(1 4—0(,7-[+ lx)

4n 4n
3 ix 3 ix
¢l o) ¢l il
C( Ty 27r) C( +°"4+2n)))’

and so on, where {(s,a) = > 2, W is called Hurwitz zeta function which is a

generalization of the Riemann zeta function {(s) and also known as the generalized
zeta function.

In this manner, the other components of the homotopy series can be easily
obtained by which u(x, ) can be evaluated in a series form as

u(x,t) = uo(x, 1) +uy (x, 1) +uz(x,2) + - -

1 — 92
= 4t sec hx+ 51375(2 sec hx+2’“7r’1’°‘l“(l +o) (((1 +a, %)
7
T+ 2ix 3 ix
1 — (1 -_ =
+C< + o, = ) C( +cx,4 2n)

3 ix
(reed 2N

Example 4.4 In this case, we shall find the approximate solution of the nonlocal
fractional SGE Eq. (4.1) with given initial conditions [55-57]

(4.66)

u(x,0) = m+ecos(ux), u(x,0)=0. (4.67)

Then, using Eq. (1.18) of Chap. 1 and applying Fourier transform on Egs. (4.1)
and (4.67), we get

ity (e, 1) + |k|"u(k, 1) + F (sinu) = 0, (4.68)

with initial conditions

i(k,0) = V21325 (k) + \/gsé(k — )+ \/gaé(lw- w), i;(k,0)=0, (4.69)

where F denotes the Fourier transform, & is called the transform parameter for
Fourier transform, and J(.) denotes the Dirac delta function.

Analogous to arguments as discussed in Example 4.3, we may obtain the fol-
lowing equations
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it (k1) = V2m%5(k),

iy (k, t; yn
ﬁdhﬁ:v%@@fm+wgﬁ&+uﬂﬂb*Cl%giﬁ+wudhmﬁ+ﬂmﬂ,

82’21 (k7 [ap)

i (k,t) = AL~ ( pY

+wmmknm+an}

iy (k, t;
in(h) = infln) 17 (TR (i) + P ),
s (k, 1;
i) = stk +17 (PEEL) ) + ) )
(4.70)
and so on.
Solving Eq. (4.70), we now successively obtain
ito(k, 1) = V21?5 (k), (4.71)
. T T
iy (k,t) = \/;sé(k — )+ \/;85(k+u), (4.72)

N 1 /= 1 /= ” 1 /=
iy (k,t) = Fz<— 3 \/;tzsé(k —w+ 3 \/;l‘28|k| ok — ) — 3 \/;tzgé(kJr,u)
1 |,
—1/=t7elk|*S(k
Sk ) )

(4.73)

and so on.
Then, by applying the inverse Fourier transform of Eqs. (4.71)—(4.73), we have
up(x, 1) = m,
i (x, ) = & cos (),
1
(i, 1) = 2 eh(—1 + ) cos(w),

1
uz(x, 1) = ﬁtzah(fl + 1) (12 — (=124 )7+ £hp*) cos(ux),
and so on.

In this manner, the other components of the homotopy series can be easily
obtained by which u(x, ) can be evaluated in a series form as
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u(x, 1) = up(x, £) + oy (x, 1) +up(x, ) + - - -
1
=51 <24n+ s<24 + 12202 + h)(—1 + 1) + 1 (—1 +,u“)2) cos(,ux)) + e

(4.74)

The After-Treatment Technique

Padé approximation may be used to enable us in order to increase the radius of
convergence of the series. This method can be used for analytic continuation of a
series for extending the radius of convergence. A Padé approximant is the ratio of
two polynomials constructed from the coefficients of the Maclaurin series expan-
sion of a function. Given a function f(r) expanded in a Maclaurin series
() = >°,2 cat", we can use the coefficients of the series to represent the function
by a ratio of two polynomials denoted by [L/M] and called the Padé approximant,
ie.,

[A%] B 51;((?) ’

where P (1) is a polynomial of degree at most L and Qy(z) is a polynomial of
degree at most M. The polynomials P, (7) and Oy (¢) have no common factors. Such
rational fractions are known to have remarkable properties of analytic continuation.
Even though the series has a finite region of convergence, we can obtain the limit of
the function as t — oo if L = M.

In case of Example 4.4, u(x, ) can be evaluated in a series form as

(4.75)

w(x, 1) = % (24n + 8(24 F12PRQ2 ) (— 1+ ) + R (—1 + ;ﬂ)2) cos(,ux)) .
(4.76)

Putting x=0.05,h=—-1,6=0.01,u= % anda =2 and applying Padé
approximant [5/5] to Eq. (4.76), we obtain

3.15158 — 0.066294 2 +0.00072717 £
i > (4.77)

0.05,1) =
3 1) ( 1 —0.021828 2 4+ 0.00021501 #

The 7-Curve and Numerical Simulations for MHAM-FT Method and
Discussions

As pointed out by Liao [58] in general, by means of the so-called h-curve, it is
straightforward to choose a proper value of 7 which ensures that the solution series
is convergent.
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To investigate the influence of % on the solution series, we plot the so-called 7-
curve of partial derivatives of u(x,t) at (0,0) obtained from the sixth-order
MHAM-FT solutions as shown in Fig. 4.7. In this way, it is found that our series
converges when i = —1.

In this present numerical experiment, Eq. (4.66) obtained by MHAM-FT has
been used to draw the graphs as shown in Fig. 4.8 for oo = 1.75. The numerical
solutions of Riesz fractional SGE in Eq. (4.1) have been shown in Fig. 4.8 with the
help of third-order approximation for the homotopy series solution of u(x, t), when
h=-1.

In this present analysis, Eq. (4.74) obtained by MHAM-FT has been used to
draw the graphs as shown in Fig. 4.9 for fractional-order value o« = 1.75. The
numerical solutions of fractional SGE Eq. (4.1) have been shown in Fig. 4.9 with
the help of sixth-order approximation for the homotopy series solution of u(x,?),
when i1 = —1.

In order to examine the numerical results obtained by the proposed method, both
Examples 4.3 and 4.4 have been solved by a numerical method involving
Chebyshev polynomial. The comparison of the approximate solutions for fractional
SGE Eq. (4.1) given in Examples 4.3 and 4.4 has been exhibited in Tables 4.1 and
4.4 which are constructed using the results obtained by MHAM and Chebyshev
polynomial at different values of x and ¢ taking o = 1.75and 1.5, respectively.
Similarly, Tables 4.2 and 4.5 show the comparison of absolute errors for classical
SGE given in Examples 4.3 and 4.4, respectively. To show the accuracy of the
proposed MHAM over Chebyshev polynomials, L, and L, error norms for classical
order SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and
4.6, respectively. Agreement between present numerical results obtained by
MHAM with Chebyshev polynomials and exact solutions appear very satisfactory
through illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The following Fig. 4.10
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Fig. 4.7 Th-curve for partial derivatives of u(x, ) at (0, 0) for the sixth-order MHAM-FT solution
when o = 2
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Fig. 49 Numerical results for u(x,7) obtained by MHAM-FT for a ¢ =0.001, b ¢ =0.05,
ce=01,andde=1.0

demonstrates a graphical comparison of the numerical solutions for u(0.05,1)
obtained by MHAM-FT and Padé approximation with regard to the exact solution
for Example 4.3.



148 4 Numerical Solutions of Riesz Fractional Partial Differential ...

Table 4.1 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example
4.3 at various points of x and ¢ taking « = 1.75and 1.5 with /i = —1

x o=175 a=15
t=0.01 t=0.02 t=0.01 t=0.02
UChebyshev UMHAM UChebyshev UMHAM UChebyshev UMHAM UChebyshev UMHAM

0.01 | 0.033828 | 0.039996 | 0.0600056 | 0.079986 | 0.034480 |0.039996 |0.059515 | 0.079986
0.02 | 0.018271 |0.039991 | 0.0571674 | 0.079974 |0.033566 |0.039991 |0.062218 | 0.079974
0.03 | 0.010936 |0.039981 |0.0562336 |0.079954 |0.033364 |0.039981 |0.064389 | 0.079954
0.04 | 0.009624 |0.039966 | 0.0566734 |0.079926 | 0.033664 | 0.039966 |0.066099 | 0.079926
0.05 |0.012513 |0.039948 | 0.0580476 |0.079890 | 0.034294 |0.039948 |0.067413 | 0.079890
0.06 | 0.018109 |0.039926 | 0.0599977 |0.079846 |0.035114 |0.039926 |0.068388 | 0.079846
0.07 |0.025213 | 0.039901 | 0.0622362 |0.079794 |0.036014 | 0.039901 | 0.069075 | 0.079794
0.08 |0.032879 | 0.039871 | 0.0645376 | 0.079734 |0.036907 |0.039871 |0.069521 | 0.079735
0.09 | 0.040384 | 0.039837 | 0.0667305 | 0.079667 |0.037728 | 0.039837 |0.069766 | 0.079667
0.1 0.047194 | 0.039799 | 0.0686896 | 0.079592 | 0.038433 | 0.039799 | 0.069845 | 0.079592

Table 4.2 Comparison of absolute errors obtained by modified homotopy analysis method and
Chebyshev polynomial of second kind for SGE equation given in Example 4.3 at various points of
x and ¢ taking o =2 and h = —1

X 4 |uExact - uChebyshev| |#Exact — UmuaMm]
0.02 0.02 1.45347E-5 2.55671E-9
0.04 0.02 1.46767E-5 2.54906E-9
0.06 0.02 1.48475E—5 2.53636E-9
0.08 0.02 1.50368E—5 2.51869E-9
0.1 0.02 1.52361E-5 2.49619E-9
0.02 0.04 5.26987E-5 8.17448E—-8
0.04 0.04 5.32093E-5 8.15001E—8
0.06 0.04 5.38216E-5 8.10941E-8
0.08 0.04 5.45030E-5 8.05296E—-8
0.1 0.04 5.52250E-5 7.98104E—-8
0.02 0.06 1.07843E—5 6.19865E—7
0.04 0.06 1.08860E—4 6.18011E—-7
0.06 0.06 1.10091E—4 6.14935E—7
0.08 0.06 1.11471E-4 6.10656E—7
0.1 0.06 1.12943E—4 6.05206E—7
0.02 0.08 1.75050E—4 2.60691E—6
0.04 0.08 1.76623E—-4 2.59912E-6
0.06 0.08 1.78561E—4 2.58619E—6
0.08 0.08 1.80758E—4 2.56821E—6
0.1 0.08 1.83120E—4 2.54531E-6
0.02 0.1 2.50768E—4 7.93538E—6
0.04 0.1 2.52867E—4 7.91169E—6

(continued)
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Table 4.2 (continued)

149

X t UExact — UChebyshev |uExact - MMHAM|
0.06 0.1 2.55516E—4 7.87237E-6
0.08 0.1 2.58561E—4 7.81770E—6
0.1 0.1 2.61864E—4 7.74804E—6

Table 4.3 L, and L, error norm for SGE Eq. (4.1) given in Example 4.3 at various points of
x and ¢ taking o =2

t MHAM Chebyshev polynomial

Ly Ly Ly Ly
0.02 5.6606E—9 2.55671E-9 3.32469E-5 1.52361E-5
0.04 1.80985E—7 8.17448E—8 1.20522E-4 5.52250E-5
0.06 1.37240E—-6 6.19865E—7 2.46541E—4 1.12943E—4
0.08 5.77184E—-6 2.60691E—6 3.99911E—4 1.83120E—4
0.10 1.75695E-5 7.93538E—-6 5.72312E-4 2.61864E—4

Table 4.4 Comparison of approximate solutions obtained by modified homotopy analysis
method and Chebyshev polynomial of second kind for fractional SGE Eq. (4.1) given in Example

4.4 at various points of x and ¢ taking « = 1.75and 1.5 with h = —1

X o=1.75 a=15

t=0.01 t=0.02 t=0.01 t=0.02

UChebyshev UMHAM UChebyshev UMHAM UChebyshev UMHAM UChebyshev UMHAM
0.10 | 3.13459 3.151570 | 3.08713 3.1515800 | 3.15003 3.151567 3.14319 3.15156847
0.15 3.15900 3.151536 | 3.18638 3.1515373 3.16211 3.151540 | 3.19226 3.15153726
0.20 |3.16542 3.15149 3.20162 3.1514930 | 3.16066 3.151492 3.18787 3.15149362
0.25 3.15980 3.15144 3.18315 3.1514377 3.15390 3.151438 3.16158 3.15143760
0.30 | 3.15161 3.15137 3.15421 3.1513693 3.14879 3.15136 3.14129 3.15136928
0.35 3.14675 3.15129 3.13604 3.1512888 3.14823 3.15128 3.13897 3.15128874
040 |3.14623 3.15120 3.13282 3.1511961 3.15131 3.15119 3.15122 3.15119609
0.45 3.14781 3.15109 3.13733 3.1510915 3.15506 3.15108 3.16632 3.15109143
0.50 | 3.14867 3.15097 3.14015 3.1509749 | 3.15662 3.150970 | 3.17283 3.15097489

Table 4.5 Absolute errors obtained by modified homotopy analysis method and Chebyshev
polynomial of second kind for classical SGE equation given in Example 4.4 at various points of
x and ¢ taking i = —1

X t UChebyshev — UMHAM
0.2 0.2 5.09463E-5
0.4 0.2 8.84127E-5
0.6 0.2 1.48843E—4
0.8 0.2 2.20924E-4

(continued)
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Table 4.5 (continued)

X t UChebyshev — UMHAM
1.0 0.2 2.85454E—-4
0.2 0.4 2.00397E-5
0.4 0.4 1.11716E—4
0.6 0.4 3.30001E—4
0.8 0.4 5.79195E—4
1.0 0.4 8.02329E—4
0.2 0.6 4.93420E—4
0.4 0.6 2.19299E—4
0.6 0.6 2.24080E—4
0.8 0.6 7.26968E—4
1.0 0.6 1.19255E—4
0.2 0.8 1.56021E-3
0.4 0.8 1.09038E-3
0.6 0.8 3.68090E—4
0.8 0.8 4.64603E—4
1.0 0.8 1.30778E-3
0.2 1.0 3.30232E-3
0.4 1.0 2.56352E-3
0.6 1.0 1.50743E-3
0.8 1.0 2.41294E-4
1.0 1.0 1.22502E-3

Table 4.6 L, and L., error norm obtained by MHAM and Chebyshev polynomial with regard to
HAM for SGE Egq. (4.1) given in Example 4.4 at various points of x and 7 taking ¢ = 1 and &« = 2

t MHAM Chebyshev polynomial

Ly Ly Ly Lo
0.02 3.61832E-6 1.62617E—-6 3.16274E-6 1.98279E-6
0.04 1.44585E-5 6.49802E—-6 2.02068E-5 9.70659E—6
0.06 3.24763E-5 1.45956E—5 4.76627E-5 2.21017E-5
0.08 5.75978E-5 2.58855E-5 8.09011E-5 3.87676E-5
0.10 8.97196E-5 5.92957E-5 1.30016E—4 5.85008E—5
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Fig. 4.10 Graphical comparison of the numerical solutions #(0.03, 7) obtained by MHAM-FT and
Padé approximation with regard to the exact solution for Example 4.3

4.5 Conclusion

In the present chapter, shifted Griinwald approximation has been used in order to
discretize the Riesz fractional diffusion equation. This equation has been solved by
explicit finite difference method. The numerical solution of time and space Riesz
fractional Fokker—Planck equation has been obtained from the discretization by
fractional centered difference approximation of the Riesz space fractional deriva-
tive. The implicit finite difference method has been applied in order to solve the
Riesz fractional Fokker—Planck equation. The above numerical schemes are quite
accurate and efficient, and the numerical results demonstrated here exhibit the pretty
good agreement with the exact solutions.

Moreover, in this chapter, a new semi-numerical technique MHAM-FT method
has been proposed to obtain the approximate solution of nonlocal fractional SGE.
The fractional SGE with nonlocal Riesz derivative operator has been first time
solved by MHAM-FT method in order to justify the applicability of the proposed
method. The approximate solutions obtained by MHAM-FT provide us with a
convenient way to control the convergence of approximate series solution and
solves the problem without any need for the discretization of the variables. To
control the convergence of the solution, we can choose the proper values of 7; here
we choose i = —1. In order to examine the numerical results obtained by the
proposed method, both Examples 4.3 and 4.4 have been solved by a numerical
method involving Chebyshev polynomial. To show the accuracy of the proposed
MHAM over Chebyshev polynomials, L, and Ly, error norms for classical order
SGE given in Examples 4.3 and 4.4 have been presented in Tables 4.3 and 4.6,
respectively. Agreement between present numerical results obtained by MHAM
with Chebyshev polynomials and exact solutions appears very satisfactory through



152 4 Numerical Solutions of Riesz Fractional Partial Differential ...

illustrations in Tables 4.1, 4.2, 4.3, 4.4, and 4.6. The proposed MHAM-FT method
is very simple and efficient for solving the nonlinear fractional sine-Gordon
equation with nonlocal Riesz derivative operator. Thus, the proposed MHAM-FT
method can be elegantly applied for solving other Riesz fractional differential
equations.
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Chapter 5 )
New Exact Solutions et
of Fractional-Order Partial Differential
Equations

5.1 Introduction

Fractional differential equations (FDEs) have been used nowadays frequently in
various applications for modeling anomalous diffusion, heat transfer, seismic wave
analysis, signal processing, sound wave propagation, and many other fractional
dynamical systems [1-6]. The FDEs are used in modeling many problems in
physics and engineering. The fractional derivatives introduced in physical models
can describe sound attenuation in complex media. When introduced into the con-
stitutive equations, they build a wave equation in which attenuation obeys a fre-
quency power law characteristic of many media [7].

The last few decades have witnessed rapid development in novel diagnostic and
therapeutic applications of ultrasound in biology and medicine. Nonlinear ultra-
sound modeling has become gradually important for accurate evaluation and sim-
ulation of ultrasound in a number of purposes. Ultrasound beams in the therapeutic
modalities are finite amplitude in nature. Accurate nonlinear ultrasound models and
their competent applications are required for accurate modeling and simulation of
those models of ultrasound applications. Additionally, accurate and efficient exact
solutions of nonlinear ultrasound models will significantly help us in order to
understand the complicated physical phenomena of ultrasound and the associated
bioeffects. The main motivation of this work is to develop the exact solutions of
fractional-order nonlinear acoustic wave equations.

The study of numerous approximations to the Burgers—Hopf equations in (5.1)
has a prominent history concerning the symbiotic interaction of mathematical
model and scientific computing to gain insight into the topic.

The propagation of focused and intense ultrasound beams is accompanied by
nonlinearity, diffraction, and absorption. For modeling of nonlinear propagation of
ultrasound beams in soft tissue, among others, the combined effects of nonlinearity,
absorption, and diffraction must be taken into consideration. The description of
large amplitude ultrasonic beams requires an accurate representation of
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nonlinearity, absorption, and diffraction. One of the extensively used nonlinear
models for the propagation of diffractive ultrasound in dissipative media is the
Khokhlov—Zabolotskaya—Kuznetsov (KZK) nonlinear acoustic wave equation [8,
9]. The Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation is a nonlinear beam
equation that has been used to model nonlinear wave propagation in therapeutic
ultrasound.

Recently, a considerable number of research works have been rendered by the
notable researchers to develop the solutions of fractional partial differential equa-
tions, fractional ordinary differential equations, and integral equations of physical
interest. The fractional differential equations can be described best in discontinuous
media, and the fractional order is equivalent to its fractional dimensions. Fractal
media which are complex appear in different fields of engineering and physics. In
this context, the local fractional calculus theory is very important for modeling
problems for fractal mathematics and engineering on Cantorian space in fractal
media. Several analytical and numerical methods have been proposed to attain exact
and approximate solutions of fractional differential equations [10-22].

With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space. The first integral method [23-27] can be
devised to establish the exact solutions for some time fractional differential equa-
tions. The present work focuses on the first time the applicability and efficacy of the
first integral method on fractional nonlinear acoustic wave equations. To the best
information of the author, the exact analytical solutions for the above nonlinear
fractional-order acoustic wave equations have been obtained first time ever in this
chapter.

In recent years, fractional calculus has played a very important role in various
applications for modeling anomalous diffusion, heat transfer, seismic wave analysis,
signal processing, control theory, image processing, and many other fractional
dynamical systems [1-6]. Fractional differential equations (FDEs) are the gener-
alization of classical differential equations of integer order. The FDEs are inherently
multidisciplinary with its application across diverse disciplines of applied science
and engineering. Recently, FDEs have attracted great interest due to their appli-
cations in various real physical problems. The descriptions of properties of several
physical phenomena are found to be best described by fractional differential
equations. For this purpose, a reliable and efficient technique is essential for the
solution of nonlinear fractional differential equations. In this connection, it is
worthwhile to mention the recent notable works on the solutions of fractional
differential equations, integral equations, and fractional partial differential equations
of physical interest. Several analytical and numerical methods have been employed
to develop approximate and exact solutions of fractional differential equations
[10, 12-14, 16, 17, 19-22, 28, 29].

The sound propagation in a fluid is determined by nonlinearity, diffraction,
absorption, and dispersion. For modeling of nonlinear sound propagation in fluid,
the combined effects of nonlinearity, absorption, dispersion, and diffraction should
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be taken into account. The description of sound propagation in fluid requires an
accurate representation of nonlinearity, dispersion, absorption, and diffraction.

The KdV-Khokhlov—Zabolotskaya—Kuznetsov (KdV-KZK) equation describes
all the basic physical mechanisms of sound propagation in fluids [30]. The
KdV-KZK equation for fluids has profound applications in aerodynamics, acous-
tics, and also its extension to solids has applications in biomedical engineering and
in nonlinear acoustical nondestructive testing.

Nonlinear FDEs can be transformed into integer-order nonlinear ordinary dif-
ferential equations via fractional complex transform with the help of modified
Riemann—Liouville fractional derivative and corresponding useful formulae. The
present methods [31-36] under study can be devised to develop the exact analytical
solutions for time fractional KdV-KZK equation. The main motivation of this work
is to develop the exact solutions of the fractional-order KdV-KZK equation. To the
best information of the author, the exact analytical solutions for the fractional
KdV-KZK equation have been reported first time ever in this chapter.

In recent decades, FDEs have attracted increasing attention as they are widely
used to describe various complex phenomena in many fields [1, 37-41], such as the
fluid dynamics, acoustic dissipation, geophysics, relaxation, creep, viscoelasticity,
rheology, chaos, control theory, economics, signal and image processing, systems
identification, biology, and other areas. Most of the classical mechanic techniques
have been used in studies of conservative systems, but most of the processes
observed in the physical real world are nonconservative. If the Lagrangian of a
conservative system is constructed using fractional derivatives, the resulting
equations of motion can be nonconservative. In view of the fact that most physical
phenomena may be considered as nonconservative, they can be described using
fractional-order differential equations. Therefore, in many cases, the real physical
processes could be modeled in a reliable manner using fractional-order differential
equations rather than integer-order equations [39].

In particular, the fractional derivative is useful in describing the memory and
hereditary properties of materials and processes. The fractional differential equa-
tions can be described best in discontinuous media, and the fractional order is
equivalent to its fractional dimensions. Fractal media which are complex appear in
different fields of engineering and physics. In this context, the local fractional
calculus theory is very important for modeling problems for fractal mathematics
and engineering on Cantorian space in fractal media. Among the investigations for
fractional differential equations, finding numerical and exact solutions to fractional
differential equations is a prior matter of concern. Many efficient methods have
been proposed so far to obtain numerical solutions and exact solutions of fractional
differential equations. Most nonlinear physical phenomena that appear in many
areas of scientific fields, such as plasma physics, solid state physics, fluid dynamics,
optical fibers, mathematical biology, and chemical kinetics, can be best modeled by
nonlinear fractional partial differential equations.
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With the help of fractional complex transform via the local fractional derivatives,
fractional differential equations can be converted into integer-order ordinary dif-
ferential equations. The fractional complex transform is used to change fractal
time-space to continuous time-space.

In this chapter, we present the traveling wave solutions of the fractional (2 + 1)-
dimensional Davey—Stewartson equation and doubly periodic solutions of new
integrable Davey—Stewartson-type equation. We employ the mixed dn-sn method
[42] approach via fractional complex transform in order to obtain exact solutions to
the fractional (2 + 1)-dimensional Davey—Stewartson equation and the new inte-
grable Davey—-Stewartson-type equation.

5.2 Outline of the Present Study

In this chapter, new exact solutions of fractional nonlinear acoustic wave equations
have been devised. The traveling periodic wave solutions of fractional Burgers—
Hopf equation and Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation have
obtained by the first integral method. Nonlinear ultrasound modeling is found to
have an increasing number of applications in both medical and industrial areas
where due to high-pressure amplitudes the effects of nonlinear propagation are no
longer negligible. Taking nonlinear effects into account, the ultrasound beam
analysis makes more accurate in these applications. The Burgers—Hopf equation is
one of the extensively studied models in mathematical physics. In addition, the
KZK parabolic nonlinear wave equation is one of the most widely employed
nonlinear models for the propagation of 3D diffraction sound beams in dissipative
media. In the present chapter, these nonlinear equations have solved by the first
integral method. As a result, new exact analytical solutions have been obtained first
time ever for these fractional-order acoustic wave equations. The obtained results
are presented graphically to demonstrate the efficiency of this proposed method.

Also in this chapter, new exact solutions of time fractional KdV-Khokhlov—
Zabolotskaya—Kuznetsov (KdV-KZK) equation have been established by classical
Kudryashov method and modified Kudryashov method, respectively. In this pur-
pose, modified Riemann-Liouville derivative has been applied to convert nonlinear
time fractional KdV-KZK equation into the nonlinear ordinary differential equation.
In the present chapter, the classical Kudryashov method and modified Kudryashov
method both have been applied successively to compute the analytical solutions of
time fractional KdV-KZK equation. As a result, new exact solutions have been
obtained first time ever involving symmetric Fibonacci function, hyperbolic func-
tion, and exponential function. The methods under consideration are reliable, effi-
cient and can be used as an alternative to establish new exact solutions of different
types of fractional differential equations arising in mathematical physics. The
obtained results are exhibited graphically in order to demonstrate the efficiency and
applicability of these proposed methods for solving nonlinear time fractional
KdV-KZK equation.
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Moreover, the Jacobi elliptic function method, viz. mixed dn-sn method, has
been presented in this chapter for finding the traveling wave solutions of the
Davey-Stewartson equations. As a result, some solitary wave solutions and doubly
periodic solutions are obtained in terms of Jacobi elliptic functions. Furthermore,
solitary wave solutions are obtained as simple limits of doubly periodic functions.
These solutions can be useful to explain some physical phenomena, viz. evolution
of a three-dimensional wave packet on the water of finite depth. The proposed
Jacobi elliptic function method is efficient, powerful and can be used in order to
establish more newly exact solutions for other kinds of nonlinear fractional partial
differential equations arising in mathematical physics.

5.2.1 Time Fractional Nonlinear Acoustic Wave Equations

Let us consider the time fractional Burgers—Hopf equation [43]
0;p = yDy"p + D’ (5.1)

and the (3 + 1)-dimensional time fractional Khokhlov—Zabolotskaya—Kuznetsov
(KZK) equation [44—46]

5 C .
a.D'p = 70 A, p+yD¥p + BD¥p? (5.2)

where O0<a <1, y= %, and f§ = ﬁ Here, p is the acoustic pressure, z is the
direction of propagation, T =1t — " is the retarded time variable, c( is the small
signal speed of sound, D is the diffusivity parameter, and p, is the ambient fluid
density.

The first term on the right-hand side of Eq. (5.2) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and

nonlinearity is described in the third term. The coefficient of nonlinearity Z? is
defined by § = 1 + B/2A, where B/A is the nonlinearity parameter of the medium.
The transverse Laplacian can be written in Cartesian coordinates as
’p  Pp
Ap=——+—— 53
1p 8)(2 + ayz ( )
The Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation is an augmented type

of Burgers’ equation. In addition to absorption and nonlinearity, it is also involved
with diffraction. This last term allows the KZK equation to describe
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three-dimensional directional nonlinear sound beams; the form generated through
the ultrasonic transducer. The nonlinear parabolic KZK wave equation describes the
effects of diffraction, absorption, and nonlinearity.

5.2.2 Time Fractional KdV-Khokhlov-Zabolotskaya—
Kuznetsov Equation

Let us consider the (3 + 1)-dimensional time fractional KdV-KZK equation
9.D%p = %Am +AIDYp +ADYp? — D (54)

where O<a<1,A, = ﬁ, and A, = ﬁ Here, p is the acoustic pressure, z is the
oFo 0%0

direction of sound propagation, T =7 — = is the retarded time variable, co is the
small signal speed of sound, ¢ is the parameter of nonlinearity, b is the diffusivity
parameter, p, is the ambient fluid density, and y is the adiabatic index defined by
y = ¢, /cy, where ¢, and c, are the specific heats at constant pressure and constant
volume.

The first term on the right-hand side of Eq. (5.4) represents diffraction. The
second term accounts for thermoviscous attenuation as with Burgers’ equation and
nonlinearity is described in the third term. In comparison to KdV-Burgers equation,
the KdV-KZK equation has only one extra term. The diffusivity parameter b is
defined by b = {+4#/3, where { and 5 are the bulk and shear viscosity. The
transverse Laplacian can be written in Cartesian coordinates as

Pp  Op
Alp=—+— 5.5
1p 6x2 + 8y2 ( )
The KdV-KZK equation is an augmented form of the KdV-Burgers equation. In
addition to absorption, dispersion, and nonlinearity, it also accounts for diffraction.
The nonlinear parabolic KdV-KZK equation describes the combined effects of
diffraction, absorption, dispersion, and nonlinearity.

5.2.3 Time Fractional (2 + 1)-Dimensional
Davey-Stewartson Equations

Davey—Stewartson (DS) equations have been used for various applications in fluid
dynamics. It was proposed initially for the evolution of weakly nonlinear pockets of
water waves in the finite depth by Davey and Stewartson [47].
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Time Fractional (2 + 1)-Dimensional Davey—Stewartson Equation (Type I)

Let us consider the fractional (2 + 1)-dimensional Davey—Stewartson equation [48]
v 23 2y 2n _

iD{q+a(D"q+ Dy q) +blq|™q — Aqr =0, (5.6)

Dﬁﬁr+D§7’r+5D§f3(|q|2”) —o0, (5.7)

where 0<o, 8,7 <1, g = q(x,y,1), and r = r(x,y,t). Also, a, b, J, and ¢ are all
constant coefficients. The exponent 7 is the power law parameter. It is necessary to
have n > 0. In Egs. (5.6) and (5.7), ¢(x,y,t) is a complex-valued function which
stands for wave amplitude, while r(x, y, f) is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49-51].

Time Fractional (2 + 1)-Dimensional New Integrable Davey—Stewartson-Type
Equation (Type II)

Let us consider the fractional (2 + 1)-dimensional new integrable Davey—Stewartson-
type equation

DY+ LiY+¥Y O+ YWy =0,
Loy = Ls|¥[, (5.8)
Do = D};X+MD";1’(|‘P|2), p=7Fl, 0<o f,y<1
where the linear differential operators are given by
Ly = (%5¢)p¥ — aDlD; - D2,

Lo = (24) DY + aDD} + DY

no
_ 862(a—1) \ 128 2 B .,
Ly= =} (B +a+ 2N DY & (a+ 25)DlD; + D,

(

where W = W(¢&, 4, 1) is complex, while ® = ®(&, 5, 1), x = x(&,n, 1) are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko-Dubrovsky (KD) equation [53].

5.3 Algorithm of the First Integral Method
with Fractional Complex Transform

In this section, we deal with the explicit solutions of Egs. (5.1) and (5.2) by using the
first integral method [54]. The main steps of this method are described as follows:
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Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and ¢, is given by

P(u, vy, Uy, Uy, Uy, Uy, ut,Df‘u,Df“u,D?“u, 0.Dfu,...)=0,0<0<1 (5.9)

where u = u(x,y,z,t) is an unknown function, P is a polynomial in u and its
various partial derivatives in which the highest order derivatives and nonlinear
terms are involved.

Step 2: By using the fractional complex transform [55-58]:

o

u(ey,z,0) = @), E=betmythet oo

(5.10)

where [, m, k, and A are constants.
By using the chain rule [55, 58], we have
Dlu = oD},
Diu = ou:DE,
Dju = ayu:DJ¢,
Dlu = o.u:D?E,
where o, 0y, 0, and o, are the fractal indexes [57, 58], without loss of generality
we can take 0, = 0, = 0, = 0, = Kk, where « is a constant.

Thus, the FPDE (5.9) is transformed to the following ordinary differential
equation (ODE) for u(x,y,z,t) = ®(¢):

P(®, D 720" 20" 1, PO m®  m*d" ... kd",...) =0, (5.11)

where prime denotes the derivative with respect to &.

Step 3: We suppose that Eq. (5.11) has a solution in the form

(<) = X(¢) (5.12)

and introduce a new independent variable Y (&) = ®:(&), which leads to a system of
ODE:s of the form

Ty, (5.13)
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In general, it is very difficult to solve a two-dimensional autonomous planar
system of ODEs, such as Eq. (5.13).

Step 4: By using the qualitative theory of differential equations [59], if we can find
the integrals to Eq. (5.13) under the same conditions, then the general solutions to
Eq. (5.13) can be derived directly. With the aid of the division theorem for two
variables in the complex domain C which is based on Hilbert’s Nullstellensatz
theorem [60], one first integral to Eq. (5.13) can be obtained. This first integral can
reduce Eq. (5.11) to a first-order integrable ordinary differential equation. Then by
solving this equation directly, the exact solution to Eq. (5.9) is obtained.

Now, let us recall the division theorem.

Theorem 5.1 (Division theorem)

Let Q(x,y) and R(x,y) are polynomials in C|[x,y]], and Q(x,y) is irreducible in
C[[x,y]]. If R(x,y) vanishes at all zero points of Q(x,y), then there exists a poly-
nomial H(x,y) in C[[x,y]] such that

R(x,y) = Q(x,y)H(x, y). (5.14)

5.4 Algorithm of the Kudryashov Methods Applied
with Fractional Complex Transform

In this section, an algorithm has been presented for the analytical solutions of
Eq. (5.4) by using both the classical Kudryashov method and modified Kudryashov
method [31, 34, 35]. The main steps of this method are described as follows:

Step 1: Suppose that a nonlinear FPDE, say in four independent variables x, y, z,
and ¢, is given by

P(u, Uy, Uy, Uy, Uyy, Uz, ul,D?‘u,D?“‘u,D?“‘u7 0.Du,...)=0,0<a<l (5.15)

where D?*u, D**u and D>*u are modified Riemann-Liouville derivatives of u, where
u = u(x,y,z,t) is an unknown function, P is a polynomial in &, and its various
partial derivatives in which the highest order derivatives and nonlinear terms are
involved.

Step 2: By using the fractional complex transform [55, 56]:

At*

u(x,y,z,t) = U(&) &=lx+my+kz+ I(a+1)

(5.16)

where [, m, k, and / are constants.
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By using the chain rule [55, 58], we have

Dfu = o,ueD}E,

Diu = oueDYE,

Dju = ayu:DJ¢,

Dlu = o.u:D}¢E,
where o, o, gy, and o, are the fractal indexes [57, 58], without loss of generality
we can take 0, = 0, = 0, = 0, = Kk, where « is a constant.

Thus, the FPDE (5.15) is reduced to the following nonlinear ordinary differential
equation (ODE) for u(x,y,z,t) = U(&):

P(U, AU 20", 220" U PU" mU mPU" .. kAU ) = 0. (5.17)

Step 3: We assume that the exact solution of Eq. (5.17) can be expressed in the
following form

N
U =Y a0'(9), (5.18)
i=0
where a; (i =0,1,2,...,N) are constants to be determined later, such that ay # 0,
while Q(¢) has the following form
I. Classical Kudryashov method
() = (5.19)
YT T exp(d) '
This function Q(¢) satisfies the first-order differential equation
0:(¢) = 0(&)(Q(¢) - 1). (5.20)
II. Modified Kudryashov method
09 = (521)
INEY S '

This function satisfies the first-order differential equation

0:(¢) = Q(9)(Q(S) — 1) Ina. (5.22)
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Step 4: To determine the dominant term with the highest order of singularity, we
substitute

U=¢&P, (5.23)

to all terms of Eq. (5.17). Then, the degrees of all terms of Eq. (5.17) are compared,
and consequently two or more terms with the lowest degree are chosen. The
maximum value of p is the pole of Eq. (5.17), and it is equal to N. This method can
be employed when N is integer. If N is noninteger, the equation under study needs
to be transformed, and then, the above procedure to be repeated.

Step 5: The necessary number of derivatives of the function U(&) with respect to &
can be calculated using the computer algebra systems of any mathematical
software.

Step 6: Substituting the derivatives of function U(&) along with Eq. (5.18) in
Eq. (5.17) in case of classical Kudryashov method or substituting the derivatives of
function U(&) along with Eq. (5.18) in Eq. (5.17) in case of modified Kudryashov
method, Eq. (5.17) becomes the following form

OS] =0, (5.24)

where ®[Q(&)] is a polynomial in Q(&). Then, after collecting all terms with the
same powers of Q(¢) and equating every coefficient of this polynomial to zero yield
a set of algebraic equations for ¢;(i = 0,1,2,..., N) and /.

Step 7: Solving the algebraic equations system thus obtained in step 6 and sub-
sequently substituting these values of the constants a;(i = 0, 1, 2,..., N) and 4, we
can obtain the explicit exact solutions of Eq. (5.4) instantly. The obtained solutions
may involve in the symmetric hyperbolic Fibonacci functions [61, 62]. The sym-
metric Fibonacci sine, cosine, tangent, and cotangent functions are, respectively,
defined as follows:

a—a”* a+a”*
sFs(x) = ——, cFs(x) = ———
) V5 2 V3

X =X a* —X
tan Fs(x) = u, cot Fs(x) = L.
a*+a* a*—a*

5.5 Algorithm of the Mixed Dn-Sn Method
with Fractional Complex Transform

In this present analysis, we deal with the determination of explicit solutions of
fractional (2 + 1)-dimensional Davey—Stewartson equation by using the mixed
dn-sn method. The main steps of this method are described as follows:
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Step 1: Suppose that coupled nonlinear FPDEs, say in three independent variables
X, y, and ¢, is given by

F(u, v, e, v, Uy, vy, Uy, vy, in‘u,va,Dfﬁu,Diﬂv,D}%}’u,Di}'v, .)=0,0<0,8,7<1
(5.25a)

G(u, v, uy, vy, Uy, Vy, Uy, v,,Dfu,Df‘v,Dﬁ%,Dﬁ%,Dﬁ""u,Dﬁ’v, ..)=0,0<a,p,7<1
(5.25b)

where u = u(x,y,7) and v = v(x,y,7) are unknown functions, F and G are poly-
nomials in u, v, and its various partial derivatives in which the highest order
derivatives and nonlinear terms are involved.

Step 2: We use the fractional complex transform [55-58]:

u(x,y,t) = u(é), v(x,y,1) =v(&),

01x" 02y" 03t* &P &y’ &t

TTO+p) Ty T aa M Tty TTU+a)

0 CT(1+p)
(5.26)

where 0., 0, 03, &, &, and &5 are real constants to be determined later.
By using the chain rule [55, 58], we have

o, o
Dfu = oD},

o s
Diu = owusDC,

o oz
Dju = oyu:Dyc,

where o;, 0y, and o, are the fractal indexes [57, 58], without loss of generality we
can take o, = 0, = g, = K, where k is a constant.

Using fractional complex transform Eq. (5.26), the FPDE (5.25) can be con-
verted to couple nonlinear ordinary differential equations (ODEs) involving ®(¢) =
u(x,y, 1) and W(&) = v(x,y,7). Then eliminating W(¢) between the resultant cou-
pled ODEg, the following ODE for ®(¢) is obtained

F(®,0,0', 030", 030" &, 0", @, ...) =0, (5.27)

where prime denotes the derivative with respect to &.

Step 3: Let us assume that the exact solution of Eq. (5.27) is to be defined in the
polynomial ¢(¢) of the following form:
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O(E) =3 (¢)+ /12— $(&) S (&), (5.28)
=0

i i=0

where ¢(&) satisfies the following elliptic equation:

b = /(€ = $)(¢” — (1 — m)). (5.29)
The solutions of Eq. (5.29) are given by
$(8) = kdn(kE|m),
$(8) = kT~ mnd(kE|m). (5.30)

where dn(k&|m) and nd(k&|m) = g7 are the Jacobi elliptic functions with

modulus m (0<m<1).
If ¢(&) = kdn(k&|m), then Eq. (5.28) becomes

N N—1
O(&) = cik'dn' (k&[m) + ky/msn(k&|m) >~ dik'dn (k&|m),
i=0 i=0

while if ¢(&) = kv/'1 — mnd(k&|m), then Eq. (5.28) becomes

N N—-1
O(&) = ekl (1 — m)Pnd (k&|m) + ky/med (ké|m) > dik' (1 — m)nd’ (k&|m),
i=0 i=0

where cd(ké|m) = cn((ké|m)/dn(ké|m) and cn is the Jacobi cnoidal function. If
di=0,i=0,1,2,...,N — 1, then Eq. (5.28) constitutes the dn (or nd) expansions.

Step 4: According to the proposed method, we substitute ®(¢) = ¢ in all terms of
Eq. (5.27) for determining the highest order singularity. Then, the degree of all
terms of Eq. (5.27) has been taken into the study, and consequently, the two or
more terms of lower degree are chosen. The maximum value of p is known as the
pole and it is denoted as “N.” If “N” is an integer, then the method only can be
implemented, and otherwise if “N” is a noninteger, the above Eq. (5.27) may be
transferred and the above procedure is to be repeated.

Step 5: Substituting Eq. (5.28) into Eq. (5.27) yields the following algebraic
equation

P(p)+1/ K — 4*Q(¢) = 0, (5.31)
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where P(¢) and Q(¢) are the polynomials in ¢(&). Setting the coefficients of the
various powers of ¢ in P(¢) and Q(¢) to zero will yield a system of algebraic
equations in the unknowns c;, d;, k, and m. Solving this system, we can determine
the value of these unknowns. Therefore, we can obtain several classes of exact
solutions involving the Jacobi elliptic functions sn, dn, nd, and cd functions.

The Jacobi elliptic functions sn(ké|m), cn(kélm), and dn(k&|m) are double
periodic and have the following properties:

sn?(k&|m) + cn* (k&)m) = 1,
dn® (k&|m) + msn* (k&|jm) = 1.

Especially when m — 1, the Jacobi elliptic functions degenerate to the hyper-
bolic functions, i.e.,

sn(ké|1) — tanh(k¢),
en(kE|1) — sec h(k&),
dn(k&|1) — sec h(k¢),

and when m — 0, the Jacobi elliptic functions degenerate to the trigonometric
functions, i.e.,

sn(k&)0) — sin(k&),
cn(kE|0) — cos(ké),
dn(kEJ0) — 1.

Further explanations in detail about the Jacobi elliptic functions can be found
in [63].

5.6 Implementation of the First Integral Method for Time
Fractional Nonlinear Acoustic Wave Equations

In this section, the new exact analytical solutions of time fractional nonlinear
acoustic wave equations have been obtained first time ever using the first integral
method.

5.6.1 The Burgers—Hopf Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.1):
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At

N CE] (5.32)

p(z,7) = ®(&), &= kz+

where k and A are constants.
By applying the fractional complex transform (5.32), Eq. (5.1) can be trans-
formed to the following nonlinear ODE:

KD/ (&) = 720" (&) + 2BO(E)(£). (5.33)

Using Egs. (5.12), (5.13), and (5.33) can be written as the following
two-dimensional autonomous system

dXx(¢)
i =Y(J), (5.34)
avE) k. 2P
& 2y Y(¢) ),yX(é)Y(i)'

According to the first integral method, we assume that X (&) and Y(&) are the
nontrivial solutions of Eq. (5.34) and

(X, 1) = Y ai(x)y
i=0

is an irreducible polynomial in the complex domain C[X, Y] such that

QIX(&), Y(&)] = Y ai(X(&)Y (&) =0, (5.35)

i=0
where «;(X(¢)), i=0,1,2,...,m are polynomials in X and a,(X)#0.
Equation (5.35) is called the first integral to Eq. (5.34). Applying the division

theorem, there exists a polynomial g(X)+/a(X)Y in the complex domain C[X, Y]
such that

do 00dXx 00dY n :
—=——+4+ ——=(gX)+h(X)Y (X)Y'. 5.36
G ~axa: " avaz ~ B0 HAOND alx) (536)

Let us suppose that m = 1 in Eq. (5.35), and then by equating the coefficients of
Y, i=0,1 on both sides of Eq. (5.36), we have

Y ap(X)g(X) =0 (5.37)
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Y- do(X) +ar(X) (% ) — a0 e (539
Y% i (X) = a; (X)h(X) (5.39)

Since, a;(X), i = 0,1 are polynomials in X, from Eq. (5.39) we infer that a;(X)
is a constant and h(X) = 0. For simplicity, we take a;(X) = 1. Then balancing the
degrees of g(X) and ao(X) in Eq. (5.38), we conclude that deg(g(X)) =1 only.
Now suppose that

A
g(X) = b1X + by, ap(X) = 72)(2 +A X +Ao, (b1 #0,A; #0) (5.40)

where by, by, Az, A1, and Ag are all constants to be determined. Using Eq. (5.38),
we find that

k
bo:Al_‘_/lTy’
2B
b =A, ——.
1 2 P

Next, substituting ao(X) and g(X) in Eq. (5.37) and consequently equating the
coefficients of X?, i = 0, 1,2, 3 to zero, we obtain the following system of nonlinear
algebraic equations:

X% Ay <A1 + ;;y) = (5.41)
X' Ay (A2 - i—f) + A4 <A1 + %) =0, (5.42)
X% A (A2 - i—f) + % (A1 + %) =0, (5.43)
X3 % <A2 — i-{j) =0. (5.44)

Solving the above system of Egs. (5.41)-(5.44) simultaneously, we get the
following nontrivial solution

k 2
Ag=0, A = A2:—ﬁ7
Ay

—— (5.45)
izy
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Using Egs. (5.45) into Eq. (5.35), we obtain

Y(&) = —%XZ + ;LI;«/X' (5.46)

Combining Eq. (5.46) with the system given by Eq. (5.34), the exact solution to
Eq. (5.33) can be obtained as

B k
PA+ cosh(% - kC1> - sinh(% - kCl)

p(z,7) = X(Q) : (5.47)

where C; is an arbitrary constant.

5.6.2 The Khokhlov-Zabolotskaya—Kuznetsov Equation

First, we introduce the following fractional complex transform in Eq. (5.2):

At*

Pry.57) = ®(&), &= betmy ket peomy

(5.48)

where [, m, k, and / are constants.
By applying the fractional complex transform (5.48), Eq. (5.2) can be transferred
to the following nonlinear ODE:

kIO (€) = T (P4 m? )0 () 420" (£) + 227 BO(E)P (&) + @' (6)). (5.49)
Then integrating Eq. (5.49) once, we obtain

G+ KA (&) = T (B +m))0 (&) +92°0" (&) + 2P@HO),  (5:50)

where Eo = )¢, is an integration constant.
Using Eqgs. (5.12), (5.13), and (5.50) can be written as the following
two-dimensional autonomous system

i = 1(0), (5.51)
POty Kvig -2y -2y
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According to the first integral method, we suppose that X (&) and Y (&) are the
nontrivial solutions of Eq. (5.51) and

0(X.¥) = Y a()Y’

m
i=0
is an irreducible polynomial in the complex domain C[X, Y] such that

QIX(&). Y(&)] = Y _ai(X(9))¥ (&) =0, (5:52)

i=0
where «;(X(&)), i=0,1,2,...,m are polynomials in X and a,(X)#0.
Equation (5.52) is called the first integral to Eq. (5.51). Applying the division

theorem, there exists a polynomial g(X)+/(X)Y in the complex domain C[X, Y]
such that

d9 00dx 00dY n .
—=—— 4+ ——=(gX)+h(X)Y (XY 5.53
T~ axa: * avaz ~ GO0 HIOND a) (5:53)
Let us suppose that m = 1 in Eq. (5.52), and then by equating the coefficients of
Y, i = 0,1 on both sides of Eq. (5.53), we have
Y0: a1(X)E = an(X)g(X), (5.54)

_@(lz—i—mZ) k28
2 2y Py Ay

(5.55)
Y2 a(X) = a (X)h(X), (5.56)

Since a;(X), i = 0, 1 are polynomials in X, from Eq. (5.56) we infer that a; (X) is
a constant and i(X) = 0. For simplicity, we take a;(X) = 1. Then balancing the
degrees of ap(X) and g(X), Eq. (5.55) implies that deg(g(X)) < deg(ao(X)), and
thus from Eq. (5.55), we infer that deg(g(X)) = 0 or 1. If deg(g(X)) = 0, suppose
that g(X) = A, then from Eq. (5.55), we find

co@im) k26 (5.57)

aoX) =4+ 2y Py Ay
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Solving Eq. (5.57), we have

RBymd)  k
ol tm)y *yilxip (5.58)
2 i3y iy Ay

ap(X) = AX +
where B is an arbitrary constant.
Next, replacing ao(X), a;(X), and g(X) in Eq. (5.54) and consequently equating
the coefficients of X’, i =0, 1,2 to zero, we obtain the following system of non-
linear algebraic equations:

X" AB= ¢, (5.59)
P +m?) k
x'earg oEAm) kL, 5.60
B
X?:2A=0 5.61
Ay ( )

Solving the above system of Egs. (5.59)-(5.61) simultaneously, we get
A=0. (5.62)
Using Egs. (5.62) into Eq. (5.52), we obtain

co (P +m?) k -
Y)=—F——75—X+ X —-—X"—B. 5.63
0= -3 x - L (563

Combining Eq. (5.63) with the system given by Eq. (5.51), the exact solution to
Eq. (5.50) can be obtained as

-1

p(x,y,z,r) :X(i) :4)L2ﬁ

(60(12 +m?) — 2kA+ /i tan (4\/{37’ = 2/137)C1)>>,
7

(5.64)

where n = —c}(P +m?)? + 4cok (1P +m?) — 422 (k2 — 4BBy2®) and C, is an
arbitrary constant.

The established solutions (5.63) and (5.64) have been checked by putting them
into the original Egs. (5.1) and (5.2). Thus, the new exact solutions (5.63) and
(5.64) of fractional Burgers—Hopf and KZK equations, respectively, have been first
time obtained in this present work.
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5.6.3 Numerical Results and Discussions for Nonlinear
Fractional Acoustic Wave Equations

In this present numerical experiment, two exact solutions of Eqs. (5.1) and (5.2)
have been used to draw the graphs as shown in Figs. 5.1, 5.2, 5.3, and 5.4 for
different fractional-order values of .

(b)

12
1.0
0.8
0.6
0.4
0.2

80 20 40 60 80

Fig. 5.1 a The periodic traveling wave solution for p(z, 1) appears in Eq. (5.47) of Case I,
b corresponding solution for p(z, 7), when 7 =0

(b)

12
1.0
0.8
0.6

a~__/ 02

~ g z

| 20 40 60 80

Fig. 5.2 a The periodic traveling wave solution for p(z,7) appears in Eq. (5.47) of Case II,
b corresponding solution for p(z,t), when 7 =3
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(b)

p
1.4

12
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0.8
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: i 0.2

L

o 0 20 40 60 80

Fig. 5.3 a The periodic traveling wave solution for p(x, y, z, 7) obtained in Eq. (5.64) of Case III,
b corresponding solution for p(x,y,z,7), when T =0

(b)
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1.4

12
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) 0.4
ol Y 0.2

«" 4
i 0 20 40 60 80

Fig. 5.4 a The periodic traveling wave solution for p(x, y, z, ) obtained in Eq. (5.64) of Case IV,
b corresponding solution for p(x,y,z,7), when 7 =4

Numerical Simulations for Fractional Burgers—Hopf Equation

Case I: For o = 0.5 (Fractional order)

Case II: For o = 0.95 (Fractional order)

Numerical Simulations for Fractional KZK Equation
Case III: For o = 0.5 (Fractional order)
Case IV: For o = 0.95 (Fractional order)

In the present numerical simulation, the traveling wave 3-D solutions surfaces and
corresponding 2-D solution graphs have been drawn for the obtained exact solu-
tions of Egs. (5.1) and (5.2) in case of fractional-order time derivative. It can be
observed that in all the above cases, the obtained exact solutions represent the
kink-type traveling wave solutions with regard to various fractional-order solutions.
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5.7 Exact Solutions of Time Fractional KdV-KZK
Equation

In the present section, the new exact analytical solutions of time fractional
KdV-KZK equation have been obtained first time ever using the Kudryashov
method and modified Kudryashov method, respectively.

5.7.1 Kudryashov Method for Time Fractional
KdV-KZK Equation

In the present analysis, we introduce the following fractional complex transform in
Eq. (5.4):

At

= y:l k _
px,y,z,1) =U(E), E=Ix+my+kz+ CEE

(5.65)
where k and A are constants.

By applying the fractional complex transform (5.65), Eq. (5.4) can be trans-
formed to the following nonlinear ODE:

€o

k)ngé = 2

(P +m?)Use + A 2P Use + 24077 [UU: + (Ue)’] = 92" Uz (5.66)
Integrating Eq. (5.66) with respect to £ once, we have

Cy + kAU (&) = C—Z" (P +mA)U' (&) + A 2U (&) + 282U (E)U' (&) — p2*U" (&),
(5.67)

where C) is the integration constant.

The dominant terms with highest order of singularity are y2*U" (&) and
2A4,72U(E)U'(&). Thus, the pole order of Eq. (5.67) is N = 2.

Therefore, we sought for a solution in the form

U(¢) = ap+a10(¢) + a20(¢)? (5.68)

where ag, a;, and a, are constants to be determined later.

Substituting the derivatives of function U(&) with respect to ¢ and taking into
account ansatz (5.68) in Eq. (5.67), we obtain a system of algebraic equations in the
following form
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o' — %alco(l2 +m*)Ina+ajkilna — 2apa1A22° Ina
+aiA 23 (Ina)* +api*(lna)®* =0

0% %alco(l2 + m2) Ina — azco(l2 —|—m2) Ina — aikAlna+2akA1na
+2apa A2  Ina — ZafAziz Ina — 4apaA2* Ina — 3a,A,7° (In a)2
+4a,A, 23 (Ina)* — Ta1y92*(Ina)® + 8arp2*(Ina)® = 0

Q® : arco(P +m*)Ina — 2arkAIna + Za%Agxlz Ina+ 4aparAr ) Ina
— 6a1a2A272 Ina + 2a1A, 23 (Ina)* — 10A,1a,7° (Ina)?
+ 124,92 (Ina)’ — 384,724 (Ina)® = 0

0 : 6a1aA2 )% Ina — 4a§A2i2 Ina-+ 6a2A113(ln a)2
— 6a;92*(Ina)’ + 54a,7)* (Ina)® = 0

Q° : 4d2A,/% Ina — 24ayy)* (Ina)® = 0

Solving this system, we obtain the following family of solutions

Case I:

B 12A% + 2504, ky? + 625¢o (1> +m?)y?

0= 1004257 ’
a) = O,
642
= 254,
--5

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

P(x,y,Z, T) = U(é)
1257%(2kA; + Sco(P2 +m?)y) + 6A} sec h?(5) (1 + sinh(¢))
100434y ’
(5.69)

where ¢ = Ix+my+kz+ ﬁ and / = —%.
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Case II:
_ 12A% 42504, ky2—625¢ (P + m?)y?
o = 10042427 ’
1A
A= " 25ay
_ 64
B2 = 358,
—4
)\. —_— Sy

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solution of Eq. (5.4)

125¢%(2kA; — 5¢0(P + m?)y) — 6Asech® (5) (1 — sinh(¢&))
B 100A%A,y ’
(5.70)

p(x7yyzvf) - U(é)

where ¢ = Ix+my+kz+ andi:%.

A
T'(a+1)

5.7.2 Modified Kudryashov Method for Time Fractional
KdV-KZK Equation

Following the same preceding argument, Eq. (5.67) is to be acquired. Then sub-
stituting the derivatives of function U(¢) with respect to ¢ into Eq. (5.67) and the
ansatz given by Eq. (5.68) into the resulting Eq. (5.67), we obtain a system of
algebraic equations in the following form

0': —laico(P+m*)Ina+akilna — 2aparA 2 na+a A3 (Ina)? + ayp2t(ina)® = 0,

0* : Jaico(P +m*) Ina — axeo(P +m?) Ina — ajkAlna+ 2akiIna+ 2aparAr ) Ina — 2a3A;7 Ina
—4apaA 22 In a — 3a1 A1 (Ina)’ + daA 3 (Ina)? — Tayyp2t (Ina)® + 8ayyi*(Ina)® = 0,

0% : arco(P 4+ m?) Ina — 2azklIna + 234> Ina + 4aparAy > Ina — 6a1a242> Ina + 2a,4,2° (In @)’
—10A,a,73(Ina)* 4 12a;p2* (Ina)® — 38a,72* (Ina)® = 0,

0% : 61424272 Ina — 4a2A27% Ina + 6a,A, 73 (Ina)® — 6arp2* (Ina)® + 54ary2* (Ina)® = 0,

05 : 43A;2  Ina — 24ary)* (Ina)® = 0.

Solving this system we obtain the following family of solutions
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Case I:
1241+ 2504,ky* Ina + 625¢o (1 + m?)7* (Ina)’®
ap = —
0 100424, ’
ay = 07
6A?
a fr—
27 254y
A
A=—1.
Sylna

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)

2y 2
1 1 — tan Fs(s

pl(xayaz7‘c):_72 12 1—J

100A7A2y ) (5.71)
A} + 2504, ky* Ina + 625¢o (P +m?)y* (In aﬂ )

1 (1- coth(%))2

pZ(x,y,ZﬂE):—iz "’l1—--— =77
100A7Azy ) (5:72)

A* 4+ 250A1k7% Ina + 625¢o(1% +m?)7* (In a)z} ,

where ¢ = Ix+my+kz+ r( and A= -5 hw
Case II:

1241 +250Ak) Ina — 625¢o (P2 +m?)y* (Ina)®
= 100A%A,7 ’
1242
25457

6A2
25457’
— Al
~ 5ylna’

a) = —

a) =

Substituting the above parameter values in the ansatz given by Eq. (5.68), we
obtain the following solutions of Eq. (5.4)
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12(—1 — 2a° 4+ a®)A% +250(1 +a°)? A ky? Ina — 625(1 4 a*)co(2 + m?)y* (In a)?
100(1 + af)?A2A,y

pl(xayvsz) =

)

(5.73)

12(—1+2af + a®)A% +250(—1 +a®)?A1ky? Ina — 625(—1 + af)2co (B +m?)y* (Ina)?
100(—1 +af)*A2Ayy

Pz(xy}%Z,T) =

)

(5.74)

where & = Ix+my+kz+ % and A :SyAﬁm.

5.7.3 Numerical Results and Discussions

In this section, the numerical simulations of time fractional KdV-KZK equation
have been presented graphically. Here, the exact solutions (5.69) and (5.70)
obtained by classical Kudryashov method and also the exact solutions (5.71)—(5.74)
obtained by modified Kudryashov method have been used to draw the 3-D solution
graphs.

Numerical Simulations for the Solutions Obtained by Classical Kudryashov
Method

In the present analysis, Egs. (5.69) and (5.70) have been used for drawing the
solution graphs for time fractional KdV-KZK equation in case of both fractional
and classical orders (Figs. 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10).

Fig. 5.5 Solitary wave solutions for Eq. (5.69) at A} =10, A, =20,7y=05,k=1=m=0.5,
co=1,a when « =0.5 and b when o = 1
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Fig. 5.6 Solitary wave solutions for Eq. (5.70) at A} = 10, A, =20,y =05, k=1=m=0.5,
co=1,a when « = 0.5 and b when o = 1

Fig. 5.7 Solitary wave solutions for Eq. (5.71) at A} =10, A, =20,y=05,k=1=m=0.5,
co=1,a=10a when o« = 0.25 and b when o = 1

(b)

Fig. 5.8 Solitary wave solutions for Eq. (5.72) at Ay =10, A, =20,y =05, k=1=m=0.5,
co=1,a=10a when « = 1 and b when o« = 0.5
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(b) AT

Fig. 5.9 Solitary wave solutions for Eq. (5.73) at A} =10, A, =20, 7y=05,k=1=m=0.5,
co=1,a=10 a when « = 0.25 and b when o = 1

@ — (b)

Fig. 5.10 Solitary wave solutions for Eq. (5.74) at Ay = Ay =y=k=I=m=co =1, a = 10,
a when o = 1 and b when o = 0.75

Numerical Simulations for the Solutions Obtained by the Modified
Kudryashov Method

In the present analysis, Eqgs. (5.71)-(5.74) have been used for drawing the solution
graphs for time fractional KdV-KZK equation in case of both fractional and clas-
sical orders.

In the present numerical simulations, the solitary wave solutions for Egs. (5.69)—
(5.74) have been demonstrated in 3-D graphs. From the above figures, it may be
observed that the solution surfaces obtained by classical Kudryashov for Eq. (5.69)
are anti-kink solitary waves. On the other hand, the solution surfaces obtained by
classical Kudryashov for Eq. (5.70) show the kink solitary waves. Similarly, the
solution surfaces obtained by modified Kudryashov for Egs. (5.71) and (5.73) show
the anti-kink and kink solitary waves, respectively. However, in case of the solution
surfaces obtained by modified Kudryashov for Egs. (5.72) and (5.74), single soliton
solitary waves of different shapes have been observed.
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5.7.4 Physical Significance for the Solution of KdV-KZK
Equation

The KdV-KZK equation covers all the four basic physical mechanisms of nonlinear
acoustics, viz. diffraction, nonlinearity, dissipation, and dispersion. The solution of
the KdV-KZK equation describes a shock wave as a transition between two con-
stant velocity values. This transition can undergo oscillations due to the dispersion.
The obtained results are related to the physical phenomenon in Cantorian
time-space. These results enrich the properties of the genuinely nonlinear phe-
nomenon. To the best of the author information, the obtained solutions of this work
have not been reported earlier in the open literature. The reported results have a
potential application in observing the structure of KdV-KZK equation from
micro-physical to macro-physical behavior of substance in the real world.

5.8 Implementation of the Jacobi Elliptic Function
Method

In this section, the new exact analytical solutions of fractional (2 + 1)-dimensional
Davey-Stewartson equation and new integrable Davey—Stewartson-type equation
have been obtained using the mixed dn-sn method.

5.8.1 Exact Solutions of Fractional (2 + 1)-Dimensional
Davey-Stewartson Equation

Let us consider the fractional (2 + 1)-dimensional Davey—Stewartson equation [48]
iD}q+a(D}'q+ D}’q) + blg|"'q — iqr =0, (5.75)
DY¥r+DYr+ oD (Iq|2”) =0, (5.76)

where 0 <o, f,7<1, g = q(x,y,t), and r = r(x,y,1). Also, a, b, 2, and 0 are all
constant coefficients. The exponent # is the power law parameter. It is necessary to
have n > 0. In Egs. (5.75) and (5.76), g(x,y, t) is a complex-valued function which
stands for wave amplitude, while r(x, y, t) is a real-valued function which stands for
mean flow. This system of equations is completely integrable and is often used to
describe the long-time evolution of a two-dimensional wave packet [49-51].

We first transform the fractional (2 + 1)-dimensional Davey—Stewartson
Egs. (5.75) and (5.76) to a system of nonlinear ordinary differential equations in
order to derive its exact solutions.
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By applying the following fractional complex transform

q(xvy’t) =" (6)7 I’(X,y,l‘) = V(f),

&P &y’ &t

a“dfzr(uﬁ) Tty TTU+a)

91xﬁ 92))"" €3 t*

0= T1+p)  T(l+y)  T(l+a)

Equations (5.75) and (5.76) can be reduced to the following couple nonlinear
ODEs:

—(05 + a0} +al3)u + (a&; + a&)ug: +bu ' — Juv =0, (5.77)
6%1/55 + f%vcjg + 56% (uzn)ﬁcf: 0, (5.78)

where &5 has been set to —2a&,0; — 2a&,0,. Equation (5.78) is then integrated term
by term twice with respect to ¢ where integration constants are considered zero.
Thus, we obtain
5 2. 2n
NS (5.79)
G+&

Substituting Eq. (5.79) into Eq. (5.77) yields

) 2 2n+1
(03 + a? + al3)u + (al* + a&3)ug: + b ' + ﬂv% =0. (5.80)
1 +&
Using the transformation
u(&) = (8),
Equation (5.80) further reduces to
— (03 + a0} + a03)n*®” + (a] +a&3) (1 — n)®
s&not (5.81)

0

+(af?  +al)n®:; + bn’*®* + 4 =
( 1 2) & f%-i—é%

By balancing the terms ® ®;; and ®* in Eq. (5.81), the value of N can be

determined, which is N =1 in this problem.
Therefore, the solution of Eq. (5.81) can be written in the following ansatz as

(&) = co+c1p(&) +do\ /K2 — ¢ (&), (5.82)
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where ¢, ¢;, and dy are constants to be determined later and ¢(&) satisfies
Eq. (5.29).

Now substituting Eq. (5.82) along with Eq. (5.29) into Eq. (5.81) and then

equating each coefficient of (j)i(é), i =0,1,2,... to zero, we can get a set of algebraic
equations for ¢y, ¢y, dy, 03, and m as follows:

— (a&] +a&) (=K (=1 +m) (& + &)ef + K (=1 +m)n(&] + &)(c] +dp)
+ 12 (07 + 03) (2 + K*d}))
+12(=03(E + &) (g + Kdg) + (208 +b(E + &)
(c§ +6k*c3da +k*dy)) = 0
— ncoer (a(&F + &) (2n(07 + 03) + (=2 +m) (& + &)
= 2n(=05(&} + &) +2(40& +b(&] + &) (c5 +3k2dg))) = 0
— (a&} +a&3) (2K°n(&] + &)dg +n* (07 + 03) (¢ + d5)
+I(E+E)(=24m))e; — (=1 +m)d)))
—(05(& + &) (e] — df) — 2(40E +b(E + &) (Beg (] — df)
— KPdi(-3c2 +d})) =0
— 2ncoer (a(E + &) = 2n(208 +b(E + E)) (3 = 3d2)) =0
—a(1+n)(& + &) (c} — d) +n*(20& +b(& + &))(cf — 6¢1dy +d3) =0
ncodo(—a(&t + &) (2n(0 + 03) + (=1 +m)(& + &)
+2n(=05(E} + &) +2(20& +b(&] + &) (c5 + K2d3))) = 0
crdo(a(& + &) (=20 (07 + 03) = 26 (=1 +m) (& + &)
+En(E + &) + 20 (—05(E + &)
+2(208] +b(&] + &) (Bey +Kdy))) = 0
— 2ncodo(a(&} + &)* = 2n(AE +b(E + &) (3c} — d3)) =0
—2cidg(a(l+n)(& + &) =20 (L0 +b(E + &))(c] —dg)) =0
(5.83)
Solving the above algebraic Eqgs. (5.83), we have the set of coefficients for the
nontrivial solutions of Eq. (5.81) as given below:

Case 1:

ivayT+n(&+8)
—bn2& — n23)E7 — b2
_a(P0;+ 0?0, — K& — K2E)

- - , (5.84)

C():O,Cl:— 76110:0,1’1’!:1,93
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where &; = —2a&,0, — 2a&,0, and k is the free parameter.

Substituting Eqgs. (5.84) into Eq. (5.28) and using special solutions (5.30) of
Eq. (5.29), we obtain
iayTEa(E + &)k see h(kE)

Vb - n2628 — n

®(¢) =

which yields the following solitary wave solutions of Egs. (5.75) and (5.76):

1

n

L iavTEn(E + &)k sec h(kE)

u(x,y, 1) = O(&) = : (5.85a)
Vb - 2608 —
2082 | 2 2
v(x,y,1) = _all +n35§1(5‘2+ éé)k Se(;h2 (kS) (5.85b)
(bn2&7 +n20AE] +bn2 &)
Case 2:
. T2 2
o= 0. = VIHGHEG) o,
Vb8 - n2628 —
- AR PR, 559
n
where &; = —2a&,0, — 2a&,0; and k is the free parameter.

Substituting Eqgs. (5.86) into Eq. (5.28) and using special solutions (5.30) of
Eq. (5.29), we obtain

_ivay/TF (& + Bk sec h(k?)
Vb - 2608 — 2

®(<)

which yields the following solitary wave solutions of Egs. (5.75) and (5.76):
1

iv/ay/1 1+ &)k sec h(k
u(x, y,1) = O(E) = i/av1+n(G; + &)k sec (k) (5.87a)
Vb8 — 2818 — 2

_a(l+m)dEY (& + &)k sec I (k)

5.87b
(bn2& + n25).82 + bn2&3) (5.870)

v(x,y,1) =



5.8 Implementation of the Jacobi Elliptic Function Method 187

5.8.2 Exact Solutions of the Fractional (2 + 1)-Dimensional
New Integrable Davey-Stewartson-Type Equation

Let us consider the fractional (2 + 1)-dimensional new integrable Davey—Stewartson-
type equation

iD"Y + LY+ D+ Wy =0,
Loy = L3P, (5.88)
Do = Dl’}x+uD}’,’(|‘1’lz), =7 1, 0<a,f,y<1

where the linear differential operators are given by

b — N
L= ( 1 - )D%/f—aD{ED,; - DY

S n’

b2+a2 28 By 25
2= (T)Dcf +abD:Dy + Dy,

1 82a—1) \ 252 -
L=+ (0 +ad+ 4~ \p¥ s (a+ —=2 —|Dlp! +D¥,
’ 4( (a—27—p2) ¢ (@—27 —p2) < n

where ¥ = W(¢, 7, 1) is complex while ® = ®(&,n, 1), x = (&, n,71) are real and
a, b are real parameters. The above equation in integer order was devised firstly by
Maccari [52] from the Konopelchenko-Dubrovsky (KD) equation [53].

In the present analysis, the Jacobi elliptic function method has been used to
investigate for new types of doubly periodic exact solutions in terms of Jacobi
elliptic functions.

According to the algorithm discussed in Sect. 5.5, let us consider the following
fractional complex transform

W(En,7) = P(X)e", ©(E,n,7) = OX), 1(&n,7) = 2(X),

k & I PR 0

X = + + 7

l“(1+[f) F(1+y) F(1+oc)
0, 021’ 037*

- TTayy Tt

BT (5.89)

where k, [, 1, 01, 0>, and 05 are constants.
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By applying the fractional complex transform (5.89), Eq. (5.88) can be reduced
to the following couple nonlinear ODEs:

2, PYX)
KMy =7 + Mo (X) + P (X)D(X) +¥(X)7(X) = 0, (5.90)
d?y(X) d>¥?(X)
KM, —2 = PMy————2 5.91
2 dX2 3 dX2 ) ( 9 )
dd(X) dy(X) d¥?(X)
k =kl kl 5.92
ax ax T (592)
where 2 has been set to a(l0, + 0,) + 210, — M.
Here,
b2 2
My = —0; — (4761)0% +ab;0, + 057
b2 2
M, = —al — >+ (4761),
b2 2
My =al+ P+ (:‘ria),
2b? 1 8b%(a —1)
My=+4P+ |a+ ——— I+~ [P+ + —— 1.
’ ( (a—2)2—b2> 4( (a—2) — 12

Now, Egs. (5.92) and (5.91) are integrated once and twice term by term with
respect to X where integration constants are considered zero. Thus, we obtain

w2 (X
T

2(X)

O(X) = (z%ﬁ + uz) Y2 (X). (5.93)

Eliminating x(X), ®(X) from Egs. (5.90) and (5.93), we arrive at

d*¥(X) IM5 M3
—— S A MP(X) + (ol +
+Mo¥(X) + w THY

2
M=

)‘I’3(X) =0 (5.94)

2
By balancing the nonlinear term ¥* (X) and highest order derivative term d d“;;”

in Eq. (5.94), the value of N can be determined, which is N = 1 in this problem.
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Therefore, the solution of Eq. (5.94) can be written in the following ansatz as

W(X) = co+e1(X) +doy/p? — ¢*(X), (5.95)

where ¢y, c1, and dy are constants to be determined later, and ¢(X) satisfies the
elliptic equation:

WO _ o~ # 0@ 21— m)), (5.96)
whose solutions are given by
B(X) = pdn(pXim),
$(X) = pv/T = mnd (pXim), (597)

Now substituting Eq. (5.95) along with Eq. (5.96) into Eq. (5.94) and then
equating each coefficient of qi)i(X ),i=0,1,2,... to zero, we can get a set of algebraic
equations for ¢y, ¢y, dp, p, and m as follows:

co(MoM + (M5 + IM5 + IMap) (3 + 3pd3)) = 0,
c1(MoMy — K*(=2 4 m)M\Map? + 3(M5 + IM5 + IMa 1) (3 + p*d3)) = 0,
3(Ms + IM5 + IMap)co (3 — d2)) =0,

Cl(—2k2M1M2 + (M3 + M5 + le,u)(c% — 3d3)) =0,
do(MoM2 + k2M1M2p2 — kzliszz + 3M3C(2) + 3ZM3C% + 3lM2,uc(2)
+Msp*dg + IMspdg + IMypp*dg) = 0,
6(M3 + lM3 + le,u)chldo = 0,
do(—2K2M M), + (M + IM; + IMy1) (363 — d2)) = 0.

(5.98)

Solving the above algebraic Eq. (5.98), we have the set of coefficients for the
nontrivial traveling wave solutions of Eq. (5.94) as given below:

Case 1:

k\/2M M,

VM, + I+ 1)M;’
My +2M,k*p?
- M, k2p?
kp\/2M, M,
Y (X) = — ——PVTE2 (pX|m),

VM, 4 (1+1)M3

M
@00 = (14 + ) ¥ 30

C():O,Cl = —
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M;
I (X) :ELP%I(X)?
. kp\/leMz\/ 1—m
luM, + (1+ 1)M5
M
0a0) = (157 + ) ¥ 00)

M,
:ETQ(X)-

lP]Q(X) = nd(pX|m),

212(X)

Case 2:
k\/2M M,

VM, + (1+ )M

Mo+ 2Mk*p?

o M, k2p?
kp\/ZMle

ViuMy 4 (1+1)M;3

C():O,Cl =

d() :0,m

le](X) = dn(pX|m),

o kp\/ZMlMQ\/ 1—m
l/le + (l+ 1)M3

Yo (X) nd(pX|m),

M
D (X) = <lﬁ3 +#Z>T%2(X)
2
M;
%22 (X) :Ewgz(x)-

Case 3:
K/’
20, + 20+ )M
k/M M, _ 2My + M k*p?
T, 20 OMs 2

co=0,c, =

dy =
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kp/ MM
Wi (X) = — Y2 dn(pX|m)
V20uM, +2(1+ 1)M;
MM
— pyv/msn(pX|m) VMM :
V=20uMy — 2(1+ 1)Ms;
M
®3(X) = (11\/13 +H1>T§1(X)7
2
M3
Z31(X) :Elpgl(x)v
kp/ MMy 1 —m
Wi (X) = — — V2 dn(pX|m)
V2iuMs +2(1+ 1)Ms

k/M M,

—p\/l — (1 — m)nd?(pX|m

) V=2uMy = 2(1+ 1)M5”

M
D (X) = (lﬁz +ul>‘P§2(X),
M;
132(X) :qugz(x)
Case 4:
k/M M,
co=0,c; = )
’ LT 20, + 20+ 1)M;
do = — k M1M2 m— 2M() +M1k2p2
O /2, — 2+ )M M2
= n m) — )
“ V20 + (1+ 2)Ms /—20uM; — 21+ 1)M;
M
Oy (X) = (lMS +MI>T4211(X)7
2
Ms
1a1(X) Eq]il(x)a
kp/M My 1 —m k/M M.
Yo (X) = DV 12 nd(pX|m) 172

2UuMy + (1 2)M;

/=2, = 2(1+ DM

191
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Case 5:
kMM,
V20uMy +2(1+ 1)M5

C():O,Cl =

d k M1M2 2M0 +Mlk2p2
T/ —2luM; — 2(1 1 1)Ms 2M, K22

kp/M\ M. MM
_ PVEIR2  an(pX|m) + /MM, :
V20uM, +2(1+ 1)M; V=20uMy —2(1+ 1)M;

Y5 (X) =

M
%@)Qi+@ﬁﬂx

M;
1s1(X) = ﬁzlpgl(x)v

kp/M i M>\/1 —m
Yoy (X) = — PV nd(pX|m) +

/2, + 201+ )M

k/M\ M,
V=2luMy = 2(1+ 1)M;’

M-
%Mbci+@%ﬂx

i ).

st(X)
Case 6:
ky/M M,
V20uMy +2(1+ )M

co=0,c =

d k M1M2 ZM() +M1k2p2
= ,m=
O /=20, — 2(1 1 1)M; M2

kp M1M2 k\/Mle
= dn(pX|m) + )
V20, +2(1+ 1) M V=2luMs —2(1+ 1)M;

Wi (X)
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M
Per (X) = (zﬁj +ul> ¥, (X),

M3
261 (X) = Elpél(x)v

kpv M M>\/1 — kMM
P 13 m nd(pX|m)+ 1M :
V=20uMy = 2(1+ 1)M;

Yo (X) =
@) = g, - 2+ Dy

5.9 Conclusion

In this chapter, several traveling wave exact solutions of nonlinear fractional
acoustic wave equations, namely the time fractional Burgers—Hopf and KZK
equations have been successfully obtained by the first integral method with the help
of fractional complex transform. The fractional complex transform can easily
convert a fractional differential equation into its equivalent ordinary differential
equation form. So, fractional complex transform has been efficiently used for
solving fractional differential equations. Here, the fractional complex transform has
been considered which is derived from the local fractional calculus defined on
fractals.

The first integral method has been successfully employed to solve nonlinear
fractional acoustic wave equations. The obtained solutions may be worthwhile for
an explanation of some physical phenomena accurately. The present analysis
indicates that the first integral method is effective and efficient for solving nonlinear
fractional acoustic wave equations. The performance of this method is reliable, and
it provides the exact traveling wave solutions. In this present analysis, the focused
method clearly avoids linearization, discretization, and unrealistic assumptions, and
therefore, it provides exact solutions efficiently and accurately.

Also, in this chapter, the new exact solutions of time fractional KdV-KZK
equation have been obtained by classical Kudryashov and modified Kudryashov
method, respectively, with the help of fractional complex transform. The fractional
complex transform is employed in order to convert a fractional differential equation
into its equivalent ordinary differential equation form. So, the fractional complex
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transform facilitates solving fractional differential equations. Two methods are
successfully applied to solve nonlinear time fractional KdV-KZK equation. The
new obtained exact solutions may be useful for the explanation of some physical
phenomena accurately. The present analysis indicates that the focused methods are
effective and efficient for analytically solving the time fractional KdV-KZK equa-
tion. It also demonstrates that performances of these methods are substantially
influential and absolutely reliable for finding new exact solutions in terms of
symmetric hyperbolic Fibonacci function solutions. In this present analysis, the
discussed methods clearly avoid linearization, discretization, and unrealistic
assumptions, and therefore, these methods provide exact solutions efficiently and
accurately. To the best information of the author, new exact analytical solutions of
the time fractional KdV-KZK equation are obtained for the first time in this respect.

The Jacobi elliptic function method has been also used to determine the exact
solutions of time fractional (2 + 1)-dimensional Davey—Stewartson equation and
new integrable Davey—Stewartson-type equation. In both problems, with the help of
fractional complex transform, the Davey—Stewartson system was first transformed
into a system of nonlinear ordinary differential equations, which were then solved to
obtain the exact solutions. Here also, the fractional complex transform has been
considered which is derived from the local fractional calculus defined on fractals.
The proposed method is more general than the dn-function method [64] and may be
applied to other nonlinear evolution equations. Several classes of traveling wave
solutions of the fractional Davey—Stewartson equation have been derived from the
solitary wave solutions in Jacobi elliptic functions. Using this proposed method,
some new solitary wave solutions and double-periodic solutions have been
obtained. This method can also be used for many other nonlinear evolution equa-
tions or coupled ones. To the best information of the author, these solitary wave
solutions of the fractional Davey—Stewartson equation are new exact solutions
which are not reported earlier. Being concise and powerful, this current method can
also be extended to solve many other fractional partial differential equations arising
in mathematical physics.
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Chapter 6 )
New Exact Traveling Wave Solutions e
of the Coupled Schrodinger—Boussinesq
Equations and Tzitzéica-Type Evolution
Equations

6.1 Introduction

In the recent years, the investigation of finding new exact solutions of nonlinear
partial differential equations (NLPDEs) plays an important role in the study of
nonlinear physical phenomena such as fluid mechanics, plasma physics, statistical
physics, quantum physics, solid state physics, optics, and so on [1, 2]. NLPDEs are
widely used to describe complex physical phenomena arising in the various fields
of science and engineering. Several methods for finding the exact solutions to
nonlinear equations in mathematical physics have been presented, such as the
inverse scattering method [3], Bécklund transformation [4, 5], the truncated
Painlevé expansion method [6, 7], Hirota’s bilinear method [8], tanh- function
method [9, 10], exp-function method [11], (G'/G)-expansion method [12, 13],
Jacobi elliptic function method [14—17], the first integral method [18-21], Riccati
equation rational expansion method [22], Kudryashov method [23, 24], modified
decomposition method [25, 26], and other methods [27-30].

It is commonly known that many problems in applied science and engineering
are described by nonlinear partial differential equations (NLPDEs). One of the most
significant advances of theoretical physics and nonlinear science has been the
development of methods to determine the exact solutions for NLPDEs. When a
NLPDE is analyzed, the main objective is the construction of the exact solutions for
the equation.

Many powerful methods have been presented, such as the inverse scattering
transform method [3] and the Hirota bilinear transform method [8] are known as
impressive methods to find solutions of exactly solvable NLPDEs. The truncated
Painlevé expansion method [6], Backlund transformation method [4], the homo-
geneous balance method [31], the tanh-function method [32-36], the modified
extended tanh-function method [10, 37], the exp-function method [38], the (G'/G)-
expansion method [12, 39], the auxiliary equation method [40], the extended
auxiliary equation method [41, 42], the Jacobi elliptic function method [14, 43], the
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simplest equation method [44], the extended simplest equation method [45], and the
Weierstrass elliptic function method [46] are useful in many applications to find the
exact solutions of NLPDE:s.

There are many physical phenomena around us that are best described by
nonlinear evolution equations. The Tzitzeica-type nonlinear evolution equations,
including Tzitzeica, Dodd—Bullough—Mikhailov (DBM), and Tzitzéica—Dodd—
Bullough (TDB) equations are a class of such equations which have gained sig-
nificant attention during the last few decades. The objective of this work is to find
the Jacobi elliptic function solutions, including the hyperbolic and trigonometric
solutions for the DBM and TDB equations using a new extended auxiliary equation
method. These two equations appear in problems varying from fluid flow to
quantum field theory. The great deals of efforts have been devoted to solve these
equations using a variety of methods that some of them are reviewed here. Abazari
[47] used the (G'/G)-expansion method to find more general exact solutions of the
Tzitzéica-type nonlinear evolution equations. Manafian and Lakestani [48] utilized
the improved tan(®(&)/2)-expansion method and gained new and more general
exact traveling wave solutions of the Tzitzéica-type nonlinear equations. In [49],
Hosseini et al. employed first the Painlevé transformation and Lie symmetry
method to convert the DBM and TDB equations into nonlinear ordinary differential
equations and then, a modified version of improved tan(®(&)/2)-expansion method
has been adopted to generate new exact solutions of the reduced equations. Wazwaz
[36] exerted the tanh method to generate solitons and periodic solutions of the
Tzitzéica-type nonlinear evolution equations, viz. DBM and TDB equations.
Hosseini et al. [50] used the modified Kudryashov method and acquired new exact
traveling wave solutions of the Tzitzéica-type equations.

6.2 Outline of the Present Study

In this present chapter, an improved algebraic method based on the generalized
Jacobi elliptic function method with symbolic computation is used to construct
more new exact solutions for coupled Schrodinger—Boussinesq equations. As a
result, several families of new generalized Jacobi double periodic elliptic function
wave solutions are obtained by using this method, some of them are degenerated to
solitary wave solutions in the limiting cases. The present generalized method is
efficient, powerful, straightforward, and concise, and it can be used in order to
establish more entirely new exact solutions for other kinds of nonlinear partial
differential equations arising in mathematical physics.

Also in this chapter, new types of Jacobi elliptic function solutions of Dodd—
Bullough—-Mikhailov (DBM) and Tzitzeica—Dodd-Bullough (TDB) equations have
been obtained using a new extended auxiliary equation method. A new family of
explicit traveling wave solutions is derived. The solitary wave solutions and peri-
odic solutions for these equations are formally derived from the Jacobi elliptic
function solutions. The proposed method has been efficiently applied to solve the
DBM and TDB equations.
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6.2.1 Coupled Schriodinger—Boussinesq Equations

The objective in this work is to use a generalized Jacobi elliptic function expansion
method to construct the new exact solutions of the coupled Schrédinger—
Boussinesq equations (CSBEs)

i, +upy+ou—uv =0, xRt >0, (6.1)
3 — Ve +3(V7)  + e = <|u|2)  x€ER >0, (6.2)

where the complex-valued function u(x,¢) represents the short-wave amplitude,
v(x,t) represents the long-wave amplitude, and o and f are real parameters.
Equations (6.1) and (6.2) were considered as a model of the interactions between
short and intermediate long waves, and were originated in describing the dynamics
of Langmuir soliton formation, the interaction in plasma [51, 52], the diatomic
lattice system [53], etc.

6.2.2 Tzitzéica-Type Nonlinear Evolution Equations

A new extended auxiliary equation method is used to produce new exact traveling
wave solutions of Dodd-Bullough—Mikhailov and Tzitzeica—Dodd—Bullough
equations

The Dodd-Bullough—-Mikhailov Equation

Let us consider the Dodd—Bullough—Mikhailov equation as follows
Uy +e"+e 2 =0. (6.3)
In a traveling wave variable & = kx + wt, Eq. (6.3) reads in the form
kof:: +el +e7% =0, (6.4)
where u(x, 1) = f ().

Using the Painlevé transformation v =e/ or f = Inv, the Dodd-Bullough—
Mikhailov Eq. (6.4) can be written as follows

kaowve: — ko(ve)* +v +1=0. (6.5)
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The Tzitzeica—Dodd-Bullough Equation

Now, we consider the Tzitzeica—Dodd—Bullough (TDB) equation as follows
Uy =e e, (6.6)

The traveling wave transformation ¢ = kx + ot reduces Eq. (6.6) to the following
ODE

kofee — e/ —e ¥ = 0, (6.7)

where u(x,t) = f(&).
Using the Painlevé transformation v = e~ or f = —Inv, the Tzitzeica-Dodd—
Bullough (6.7) can be written as follows

kawve: — ko(ve)® +v: +v* = 0. (6.8)

6.3 Algorithms for the Improved Generalized Jacobi
Elliptic Function Method and the Extended Auxiliary
Equation Method

In this section, algorithms for improved generalized Jacobi elliptic function method
and extended auxiliary equation method have been presented.

6.3.1 Algorithm for the Improved Generalized Jacobi
Elliptic Function Method

In this present analysis, the determination of exact solutions for coupled
Schrodinger—Boussinesq equations have been described using the proposed
method. The main steps of this present method are described as follows:

Step 1: Suppose that the coupled nonlinear NLPDEs in the class of coupled
Schrédinger—Boussinesq equations, say in two independent variables x, and ¢ are
given by

F(M, Vy Uy, Vy, iuh Viy Uxxy Vaxy Uxty Vaty - - ) = 07 (693)

Gty v, Uy, Vs Upy Vi Uy Viers Unty Vit - - -) = 0, (6.9b)
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where u = u(x, ) and v = v(x, t) are unknown functions, F and G are polynomials
in u, v and its various partial derivatives in which the highest order derivatives and
nonlinear terms are involved.

Step 2: We introduce the following traveling wave transformations:
u(x,r) = U(Qe™ ), v r) = v(9), (6.10)

& =x—2kt+1, (6.11)

where k, and ¢ are real constants to be determined later; and {, and #, are arbitrary
constants.

Using the above traveling wave transformations, the NLPDEs (6.9a and 6.9b)
can be transformed to couple nonlinear ordinary differential equations (ODEs)
involving U(¢) and V(&). Then, the resultant coupled ODEs are obtained

P(U, V, kU, kV, CU, CV, Ué, V@,kU@,kV@,CU@,CV@, Ug"é, Vég, .. ) = O, (612)
OU,V, kU, kV,cU,cV,Uz, Ve, kUg, kVe, Uz, cVe, Uge, Ve, ...) =0, (6.13)

where the suffix denotes the derivative with respect to &.

Step 3: Let us assume that the exact solutions of Egs. (6.12) and (6.13) are to be
defined in the polynomial ¢(&) of the following forms:

&) =ap+ Z ay ' (&) +biigp~ (5)+Cli¢i71(f)¢/(f)+d1i¢7i(5)¢l(f)],

(6.14)

_azo+Z i (€) + by 7 (&) + ey () (E) + b T ()¢ (9)],

(6.15)

where ¢(&) satisfies the following Jacobi elliptic equation:
(¢:(8) = pd*(&) +40° (&) + 1. (6.16)

where p, q, r, aw, ai, bi, ciy, dy (i=1,2,...,M), ax, ay, by, ¢z, dy
(j=1,2,...,N) are constants to be determined later.

Step 4: We determine the positive integers M, N in Egs. (6.14) and (6.15) by
balancing the highest order derivatives and the nonlinear terms in Eqs. (6.12) and
(6.13), respectively.
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Step 5: Substituting Egs. (6.14) and (6.15) along with Eq.(6.16) into Egs. (6.12)
and (6.13) and collecting all the coefficients of ¢/(¢) (I=0,1,2,...) and
¢"(E)P (&) (m=0,1,2,...), then equating these coefficients to zero, yield a set of
algebraic equations, which can be solved by using the Mathematica or Maple to find
the values of ayp, aii, bli» Cli, dli (l = 1,2, .. .,M), azp, ayj, bgj, C2js dgj
G=1,2,...,N), k, c.

Step 6: It may be referred to that Eq. (6.16) has families of Jacobi elliptic function
solutions as follows [54].

It may be mentioned that there are other Jacobi elliptic function solutions of
Eq. (6.16) which are excluded here for simplicity.

Step 7: Substituting the values of aio, ai;, bi;, c1i, dii (i =1,2,...,M), ax, azj, by,
¢, dyj (j=1,2,...,N), p, q, r as well as the solutions of Eq. (6.16) provided in
Step 6, into Egs. (6.14) and (6.15), we can obtain several classes of exact solutions
for CSBEs involving the Jacobi elliptic functions sn, cn, ns, nc, cs, and sc functions.

In Table 6.1, sné=sn(¢,m?), cné=cn(ém?), dné=dn(E,m?), nsé=
ns(&,m?), esé = es(&E,m?), ds¢& = ds(&,m?), sc& = sc(&,m?), sd& = sd(E, m*) are
the Jacobi elliptic functions with modulus m, 0 <m < 1.

The Jacobi elliptic functions sné, cné, and dné are double periodic and have the
following properties:

sn*é+cen*é =1,
dn®& +mPsn?é = 1.

In addition to these, these functions satisfy the followings:

(sné) = cnédné, (cné) = —snédné, (dné) = —mPsnéené,  (nsé) = —csédsé,
(cs&) = —nsédsé, (ds¢) = —nséesé,  (sc&) = ncédcé, (ncé) = scédcé,
(dcé) = (1 — m*)ncéscé,  (sd&) = ndécdé, (cd&) = (m* — 1)sdéndé,

(ndé) = m*cdEsdé.

Further explanations in details about the Jacobi elliptic functions can be found in
[55].

Tabl(.e 6.1 Jaf}Obl elliptic S. p q r ns
function solutions of 1o.
Eq. (6.16
4. (6.16) 1. m? —(1+m?) 1 sné
2. 1 -(1+m?) |m? nsé = (sné)”!
3. —m? 2m? — 1 1—m? |cené
4. 1—m? |2m®—1 —m? ncé = (cné)™"
5. 3 % i nsé & csé
1—m? m>+1 1—m? E d
6. - 2+ - neé + scé
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6.3.2 Algorithm for the New Extended Auxiliary Equation
Method

Let us consider the following nonlinear PDE
(D(uvu.hut;u)ﬁ)mutta"-) = 07 (617)

where u = u(x,t) is an unknown function, @ is a polynomial in u and its partial
derivatives in which the highest order derivatives and the nonlinear terms are
involved. The main steps of the new extended auxiliary equation method [56] can
be summarized as follows:

Step 1: The following traveling wave transformation

u(x, 1) = U(&), & = kx + wt, (6.18)

where k£ and w are constants, has been considered to reduce Eq. (6.17) to the
following nonlinear ordinary differential equation (ODE):

H(U, U, U",...)=0, (6.19)

where H is a polynomial in U(¢) and its total derivatives U’(&), U” (&), and so on.

Step 2: Let us assume that Eq. (6.19) has the formal solution
2N A
U => aF(f), (6.20)
i=0

where F(¢) satisfies the first-order ODE:

(F'(&))°= co + caF2(E) + cuF* (&) + c6FO (&), (6.21)

where ¢j(j =0,2,4,6) and «;(i=0,...,2N) are arbitrary constants to be
determined.

Step 3: By balancing the highest order nonlinear terms and the highest order
derivatives of U(¢) in Eq. (6.19), the balance number N of Eq. (6.20) can be
determined.

Step 4: Substituting Eq. (6.20) alongwith (6.21) into Eq. (6.19), collecting all the

coefficients of Fj(F’)l G=0,1,2,...)and (I = 0, 1), and set them to zero, leads to
a system of algebraic equations for ¢;j(j = 0,2,4,6), a;(i =0, ...,2N), k, and w.
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Step 5: The system of algebraic equations obtained in Step 4 is solved to find
¢i(j=0,2,4,6), a;(i=0,...,2N), k, and o.

Step 6: It is well familiar that Eq. (6.21) has the following solutions [56, 57]:

o 12
P =1 [——(1 . @(é))} , (6.22)

2 Ce

where the function ¢;(¢) (i=1,2,...,12) can be expressed through the Jacobi
elliptic function sn(&,m), cn(&,m), dn(&,m), and so on, where 0<m<1 is the
modulus of the Jacobi elliptic functions. When m approaches to 1 or 0, the Jacobi
elliptic functions degenerate to hyperbolic functions and trigonometric functions,
respectively. Further explanations in details about the Jacobi elliptic functions can
be found in Ref. [55].

The function ¢;(¢) in Eq. (6.22) has 12 forms as follows [41]:

Type I:
e (m*-1) c2(5m>—1) .
Ifco =57, 0= oo > €6 > 0, then ¢;(¢) in Eq. (6.22) takes the form
6
$1(8) = sn(Kk), $a(E) = ——, Kk = 2 (6.23)
1 = sn{K¢), 2 _mS}’l(Ké)’ K_Zm\/Eg .
Type II:
If o = Ci(;z_c;"z), cy = Ci(ls;”z), c6 > 0, then ¢,(¢) in Eq. (6.22) takes the form
z ;
95(8) = mon(xd), $a(8) = ——, 1= L (6.24)
= msn = =—— .
3 s P4\5 sn(rcf)’ 2 \/c_é
Type III:
If cg = % = 63(146’:7;':21), c6 <0, then ¢;(&) in Eq. (6.22) takes the form
6

V1 —m?sn(ké) _ C4y/—Co
dn(ké) T 2mcg

d5(S) = en(d), (&) = : (6.25)

Type IV:

cm? c2(5m*—4)
_ 4 !
If co = 32cz(m2-1) 0= 16¢6(m*—1)°

c6 <0, then ¢;(¢) in Eq. (6.22) takes the form

V1 —m?dn(k car/co(m? —
() = ) (o) = e =S (e6)




6.3 Algorithms for the Improved Generalized Jacobi Elliptic Function Method ... 207

Type V:
A3 2 (4m2—5 .
Ifco = 32L.§(1“_m2>, = 1§£:(m2j1))’ c6 > 0, then ¢;(¢) in Eq. (6.22) takes the form
Bo(E) = — tyo(e) = YL mdnee) | _aveell=m) 6oy
S T en(kE) T T U —m2)sn(kE) T 2c6(1 —m?) '
Type VI
2.3 2 2
If o = %, = C4<'1"6(,6+4>, c6 <0, then ¢,;(¢) in Eq. (6.22) takes the form
B V1—m? C4r/—C6
P11 (&) = dn(k<), d1a(&) = dn(kd) K= e (6.28)

Step 7: Substituting Eq. (6.22) together with Egs. (6.23-6.28) into Eq. (6.20),
some new types of Jacobian elliptic function solutions of Eq. (6.17) can be obtained
elegantly.

6.4 New Explicit Exact Solutions of Coupled
Schrodinger-Boussinesq Equations

In this present analysis, an investigation has been made in searching the new
generalized Jacobi elliptic function solutions for Egs. (6.1) and (6.2) by using the
proposed method discussed in Sect. 6.3.1. According to the technique discussed in
the Algorithm of Sect. 6.3.1, we adopt the ansatz solutions of Egs. (6.1) and (6.2)
in the following forms

u(x, 1) = U(x, 1) = U(&)elketertto), (6.29)

and
v(x, 1) = V(x,1) = V(§), (6.30)

respectively. Here, & = x — 2kt + 5, where k and ¢ are real constants to be eval-
uated later; and {, and 7, are arbitrary constants.

Now, plugging Egs. (6.29) and (6.30) into Eqgs. (6.1) and (6.2) and then, inte-
grating the second Eq. (6.2) of the coupled Schrédinger—Boussinesq equations
twice with respect to £, we have

Ug: — (K +c—a)U—UV =0, (6.31)

Vee — 12K°V —3V2 — BV + U* = 0, 6.32
44
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Balancing the highest derivative term Ugs with the nonlinear term UV in Eq. (6.31)
and the highest derivative term V¢ with the nonlinear term U? in Eq. (6.32) leads to
M = N = 2. Thus, the exact solutions of Egs. (6.1) and (6.2) have the following
forms:

2
U(¢) = ao+ Z [anid' (&) + b1~ (&) + e (&) (&) +duidp ' (8)¢'(&)],

(6.33)

2
V(&) =ax+ Z [axd? (&) + by 7 (&) + ey (E) (&) + oy (E) ¢ (8)].
(6.34)

Now, substituting Egs. (6.33) and (6.34) alongwith Eq. (6.16) into Egs. (6.31) and
(6.32), and then collecting all the coefficients of ¢'(¢) (I=0,1,2,...) and
¢" (&) (&) (m =0,1,2,...), then equating these coefficients to zero, yield a set of
over-determined algebraic equations for ayg, ay;, bii, ci;, di; (( = 1,2), ax, aj, baj,
C2j, dyj (j = 1,2), k, c. Using the Mathematica and the Wu'’s elimination methods,
the algebraic equations have been solved and thus, the following results have been
obtained.

Result 1:

4y
V4

ay = 0,a31 = 0,axn =2p,by; = 0,by =2r,c31 =0,c00 = 0,d; = 0,d, = 0;

Vag: + 8pr — —4q® — 8pr+12
(o _ VAC +8pr ﬂqandc_ q- — 8pr+ ocq+/3q.

2v3/4q 12¢

ay =0,a;; =0,a;2=0,b;; =0,b1 =0,c1 =0,c12=0,d; = —

ydip =05

Result 2:

4\/p-r
NZi
axy = 0,az1 = 0,a2 = 2p,by; = 0,byy = 2r,c31 = 0,¢0 = 0,d>1 = 0,dp =0;

\V/4q* +8pr — Bg _ —4q* — 8pr+12uq+ fq

k=Y—"—""Tandc
2V34 12¢

ajo = 0,a;1 =0,a;, =0,b;1 =0,b12 =0,c11 =0,c12p =0,dy; = ,dip = 0;
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Result 3:

4,/pr

Va

ax = 0,a1 = 0,a20 =2p, by = 0,b2 = 2r,c31 =0,c00 =0,dr; = 0,d, = 0;

\V4q* + 8pr — fq —4q* — 8pr+ 1209+ fq
k=—+————"andc= .
2v3,/q 12q

ajo = 0,a;1 =0,a12=0,b11 =0,b12 =0,c11 =0,¢c12 =0,dy; = ,dip = 0;

Result 4:

4. /pr
a0 =0,a11 =0,a12 =0,b11 =0,b12 =0,c11 =0,¢12 =0,dy1 = — \/_7d12 =0;

ax = 0,a31 = 0,a2 =2p,by; = 0,b2y = 2r,c21 = 0,¢20 = 0,da; = 0,d2; = 0;
\V4q*+8pr — g —4q? — 8pr+120q + fq
k=YX"=2 2 "Tandc= .
2V3./q 129

Substituting the results obtained above into Egs. (6.33) and (6.34) alongwith the
Jacobi elliptic function solutions provided in Table 6.1, we can obtain following
families of exact solutions to Egs. (6.1) and (6.2).

Set 1:

4./pr
a =0,a;; =0,a12 =0,by; =0,bp =0,c11 =0,c12 =0,dy; = — \/_70712 =05

ax = 0,a31 = 0,axn = 2p,by; = 0,b2 = 2r,c31 = 0,¢20 = 0,da; = 0,d2; = 0;

V44> +8pr — Pg

—4q4* -8 12
k=— andc = | Prt ocq—&—,Bq‘
2V3./q 12g

Case I If p= —m?, g=2m*> — 1, r = 1 —m? and ¢(&) = cné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

s (x.1) = D)k ervio) - VM — ) snddnd i,
2m2—1  eng
vi1(x, 1) = V(&) = —2m2cn2f—|—2(1 — mz)nczf7

) 1/2<m? <1,
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where

VA4 +24m* + B — 2m2(12 + B)

E=x—2kt+ny,k=— , and
o 23+ 6m2
A4 24m* + 120+ B — 2m2(12+ 120+ )
= 12+ 24m? '

Case IL If p =1 —m?, q=2m*> — 1, r = —m? and ¢(¢) = ncé, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

_4y/m*(m? — 1) scédc il
2m2—1  ncg
via(x,1) = V(&) = 2(1 = m*)nc*é — 2m*en’e,

M12(X, t) _ U(é)ei(kx+cl+(o) _ kx+ct+(o)’ 1/2<m2<1’

where

VAT 24m* + f = 2m2 (12 + f)

=x—2kt+1ny,k=— , and
¢ o 2v/—3 + 6m2

A4 24mt 120+ B — 2m2(12 + 120+ )
€= 212+ 24m? '

Case Il If p=14, g = 1’%’”2, r=>%and ¢(&) = nsé £ csé, then we get the fol-

lowing double periodic solutions

; 2 csédsé £ nsédsé . .
= i(kx+ct+ ) i(kx+ct+8o) .02 1/2
u13(x,t) U(é)e \/m nsi:l:csé € yJmm< / s
1 1 _
viz(x, 1) = V(&) = 5(nsé + csé)* + E(nsf +esé) 2
where
3+ 8m* 4 2m?(—4 —
f:X—Zkl+’707k:—\/ 8 1 2 (A1) ﬁ, and
23 — 6m?
3+8m* — 1200 — B+2m?(—4 + 120+ f)
c= .

—12+24m?

Case IV: If p = I’Tf"z, qg= ”2—’”2, r= 1’4—’”2 and ¢ (&) = ncé + scé, then we get the

following Jacobi elliptic function solutions
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V2(m? — 1)

uig(x,1) = U(&)elkrertt) — £ X2 geg elvtath) - g<m<1,

vm? 41

1 —m? cné T o1—m? cné -
vig(x, 1) = V(¢) = ) (1 :I:sné) + 2 (1 =+ snf) ’

where

V3+3mt —m2 (=24 ) — B

E=x—2kt+1ny,k=— ;and
o 2V3V1 1 m?
=3 =3m*+ 120+ f+m?(—2+ 120+ f)

CcC =

12(1 4 m?)

Case V: If p=m?, g = —(1+m?), r =1 and ¢(&) = sn&, then we get the fol-
lowing Jacobi elliptic function solutions

4m cnédné ailke a4 0p)
—m?>—1 sn

vis(x,1) = V(&) = 2mPsn® & 4 2ns?¢,

ms(x,1) = U(Ee!t i) = -

where

B VA4 +24m* + B —2m* (12 + B)

=x—2kt+ny, k= , and
‘ o 2v/—3 + 6m?

B _4+24m4+ 120+ — 2m2(12+ 120+ )

N —12+24m? '

Case VI: If p =1, g = — (1 +m?), r = m? and ¢(&) = sné, then we get the fol-
lowing Jacobi elliptic function solutions

dm  csédsé eilk+er+ )
Vom2 =1 nsé ’

vig(x,1) = V(&) = 2ns*¢ + 2m?sn*¢,

ue(x,1) = U(E)etrath) =

where

VA+24m* + B —2m2(12+ p)
2/ =3 + 6m?
4+24m* + 120+ B — 2m* (12 + 120+ B)
a —12 +24m?

and

E=x—2ki+ny, k=

CcC =
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Set 2:

4,/pr

Va

ax = 0,a1 = 0,a20 =2p, by = 0,b2 = 2r,c31 =0,c00 =0,dr; = 0,d, = 0;

\V4q* + 8pr — fq —4q* — 8pr+ 1209 + fq
k=+—————andc= .
2v3,/q 129

ajo = 0,a;1 =0,a12=0,b11 =0,b12 =0,c11 =0,¢c12 =0,dy; = ,dip = 0;

Case I: If p= —m?, g=2m?> — 1, r = 1 —m? and ¢(&) = cné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

4 2(m? -1 . .
_avm (m >Snédnée‘(kx+d+”), 1/2<m?<1,
2m2—1  cong

—2mPen®é +2(1 — m*)nc?é,

1421()6, t) — U(é)ei(loc+ct+fo> =

var(x, 1) = V(&)

where

VA+24m* + B —2m2(12+ B)

&=x—2kt+ny k= , and
o 2V =3+ 6m?
A4 24mt + 120+ B — 2m? (12 + 120+ i)
‘= —12+24m? '

Case IL If p=1—m?, q=2m> — 1, r = —m? and ¢(¢) = ncé, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

4+/m*(m? — 1) scédcé
2m*—1  ncg
v (x,1) = V(&) = 2(1 — m*)nc*é — 2mPen®é,

Uz (x,1) = U(&)elEHertl) — ellrta+) 1 /2 <m? <1,

where

V4 +24m* + B —2m2 (12 + B)
2V =3+ 6m? ’
4424m* + 120+ B — 2m* (12 + 120+ f)
B —12+24m?

E=x—2kt+ny, k= and
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Case I If p=14, g = 1*—5’”2, r=1%and (&) = nsé £ csé, then we get the fol-
lowing double periodic solutions

2 csédsé + nsédsi kx+c,+g0

) = U(&)elketertio) — _ m*<1/2
ups(x,1) = U(S)e a7 meiost /2,
1 1 _
vas(x, 1) = V(&) = E(nsé:l:csf) (nsf + csé) 2
where
31 8m +2md(—4+ f) —
Em gy k= VIS RCAEH
2¢/3 — 6m?

_ 3+48m" — 1200 — f+2m*(—4+ 120+ f)

B —12+24m? '
Case IV: If p = —, q= “”” r= “4—’”2 and ¢ (&) = ncé + scé, then we get the

following Jacobi elliptic functlon solutions

. \/§(m2 -1) : p
— U(&)eilkrtertio) — dege®teatlo) g cpm<t,
(9, T %€

— o 1 —m? eng P oi—m? eng N
vaa(x,1) = V(&) = ) <1isné> + 2 <1j:sné> ’

where

Uzq ()C, t)

V3+3mt —m2(=2+ ) — B
2V3V1+m?
=3 =3m* + 1204 f+m*(—2+ 120+ p)
12(1 +m?) '

E=x—2kt+ 1y, k =

, and

CcC =

Case V: If p=m?, g=—(1+m?), r=1 and ¢(&) = sné, then we get the
following double periodic solutions in terms of Jacobi elliptic functions

U(g)ei(kx+c't+évo) — 4m Cl/lfdl’lé kx+ct+go)
i —m2—1 sn¢
vas(x, 1) = V(&) = 2mPsn*E 4 2ns* ¢,

Uss (X7 Z) =
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where
Va4+4m* + B+ m?(16 + )
E=x—2kt+ny, k= , and
o 2V3V—1 — 2
_A+4Am* 4+ 120+ f+m? (16 + 120+ f)
‘= 12(1 + m?) '

Case VI If p =1, g = —(1 +m?), r = m? and ¢(&) = nsé, then we get the fol-
lowing double periodic solutions

: 4m csédsé . ;
£ = U(&eilkter+b) — _ i(kx +ct + o)
MQ@(.X,) (g)e m nsé € )
vas(x, 1) = V(&) = 2ns*E 4 2mPsn*¢,
where
4 +4m* 2(16
E—xmdtg g k= YA P64 F)
203V 1 —m?
C_4+4m4+12a+ﬂ+m2(16+12a+ﬂ)
N 12(1 +m?) ’

Similarly, as the established solutions for Set 1 and Set 2, we can construct
corresponding exact solutions to Eqgs. (6.1) and (6.2) for Set 3 and Set 4, which are
omitted here.

6.4.1 Numerical Simulations for the Solutions of Coupled
Schriodinger—Boussinesq Equations

In the present analysis, the first solutions of Case IV of Set 1 have been used for
drawing the solution graphs Figs. 6.1 and 6.2 for coupled Schrédinger—Boussinesq
equations.

Again, the solutions of Case V of Set 2 have been used for drawing the solution
graphs Figs. 6.3 and 6.4 for coupled Schrodinger—Boussinesq equations.

In the present numerical simulations, the double periodic wave solutions for the
first solutions of u14(x,7) and vi4(x,7) have been demonstrated in 3D graphs of
Figs. 6.1 and 6.2 with elliptic modulus m = 0.5. Also, the double periodic wave
solutions for u,s(x,f) and v,s(x,f) have been demonstrated in 3D graphs of
Figs. 6.3 and 6.4 with elliptic modulus m = 0.5.
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(a) (b) Ams;.g_oon}
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Fig. 6.1 a Double periodic wave solutions for the first solution of uy4(x,7) when o = 1, f = —1,

{o=0, & =0, and m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.005

@ flda (b) g
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Fig. 6.2 a Double periodic wave solutions for the first solution of vi4(x,7) when o = 1, f = —1,

{o=0, &, =0, and m = 0.5, and b the corresponding 2D solution graph when 7 = 0.01

(b) A 009)
)
'Y
20
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T -5 ) e 6
Fig. 6.3 a Double periodic wave solutions for ups(x,7) when oo = 1, f = —1, {, = 0, £, = 0, and

m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.005
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(b) . , .-\m:.:cx_t ol

I |
i
150(k

Fig. 6.4 a Double periodic wave solutions for vos(x,#) when o = 1, f = —1, {, =0, £, = 0, and
m = 0.5, and b the corresponding 2D solution graph when ¢ = 0.01

6.5 Implementation of New Extended Auxiliary
Equation Method to the Tzitzéica-Type Nonlinear
Evolution Equations

In the present section, the Jacobi elliptic function solutions, including the hyper-
bolic and trigonometric solutions for the DBM and TDB equations have been
obtained using a new extended auxiliary equation method.

6.5.1 New Exact Solutions of Dodd-Bullough—Mikhailov
(DBM) Equation

In this part, we apply the new extended auxiliary equation method to determine the
new exact solutions for Dodd-Bullough—Mikhailov Eq. (6.3).
Suppose the traveling wave solution of Eq. (6.5) can be expressed as

2N
Ue) =v(&) =Y arF'(9), (6.35)
i=0

where F(&) satisfies Eq. (6.21).
Balancing the highest order derivative term vv:: and the nonlinear term v* by
using homogenous principle the following result could be obtained

N+N+2=3N,
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yielding
N=2.
Therefore, the ansatz for the solution of Eq. (6.5) can be written as
U(¢) = ap+ a1 F(&) + ayF? (&) + a3 F? (&) + ayF*(¢), (6.36)

where F(&) satisfies

c 1/2
F(&) == [--“(m@(g))} Li=1,2,...,12. (6.37)

Co

By substituting (6.36) and (6.21) into Eq. (6.5), the coefficients of each power of
Fi,i=0,1,2... are collected, which are then set to zero. Thus, it leads to a system
of algebraic equations.

The derived system of algebraic equations has been solved by using mathe-
matical software, yielding the following results:

1/331/6 _ ~1/322/3
@ = 2'/°3 . 2'/°3 = _221/631/12\/a—4’
25/6 926 35/12 11 311/12 2
_ Vaz (96 x co+ 11 x co) P (4 « 22/331/3a4co+22/335/6a4c0)7
156 13
- 3\/531/4 _ 4\/533/4
N 24k '

(&)

1
Ce = %ai/z (4ﬁ31/4co + \/533/460) , @

where I = a/*\ /5.
Without loss of generality, let us assume a4 > 0 and ¢y > 0, and hence ¢ > 0.
Thus, ¢(¢) satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Egs. (6.23), (6.36), and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been deduced as follows

11,5
1 2 21334] L(4+\/§)
Un(8) = 3575 (3" = 37) = 2(2/312) {1 e an V43

R

2
11 5
2 21351, /L (4 +/3)
+ (2‘/631/12) 1+ sn 1 g

m

(6.38)
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Up(é) = 221“ (31/6 _ 32/3> _ 2(21/631/12)2 1+ _ 1

1
(S

+ (21/631/12>2 1+

(6.39)

where & = kx + Wt and [ = a4/4\/—

If m — 1, then sn (¢) — tanh (&), and we have the hyperbolic function solutions
of Eq. (6.5)

1 2 A I
Uis(&) = 22/3 (30 =37 - 2(21/631/12) <1 e (2};32541 §(4+ ﬂ)é))

2
15 1
I (21/631/12) (1 :I:tanh( 213%1] E(4+\/§)5>> ,

(6.40)

(€)= 35 (31 =3 = 2(2131) <1icOth<2—%3zi 113<4+\/§)~f)>
>
+(21/631/l2) <1j:coth< 2033 %(4+\/§)é>> :

(6.41)

Set 1I:
From Egs. (6.24), (6.36), and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been obtained as follows

1 2 I
Uni(§) = 555 (316 = 3) - 2(21/63112) <limsn(2%3%z §(4+x/§)5>>

2
2 1
+ (21/631/12> (1 + msn <2%3%l B(4+ \/§)5>> ’

(6.42)
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1 5 |
U22(£> = m(31/6 — 32/3) _ 2(21/631/12) 1+
sn(2H3i /5 (4+v3)2)
2
+(21/631/12)2 |4 1

s (2%3%1, [La+ \/5)6)
(6.43)

If m — 0, then sn(¢) — sin(¢), and we have the following trigonometric
function solutions of Eq. (6.5)

2
U (&) = == (310 — 32/3) — (21/631/12)

22/3

1 2 1 1
Una(&) = 75 (31/6_32/3)_2(21/631/12> <1:|:CSC<2123;4 E(4+\/§)5>>

2
2 1 1
+(21/631/12) <1icsc<2lz3zi LG V3)¢é ))

(6.44)

If m — 1, then we have the same hyperbolic function solutions (6.40) and
(6.41).

Set III:

From Egs. (6.27), (6.36) and (6.37), the Jacobi elliptic function solutions of
Eq. (6.5) have been derived as follows

1 2 1
Usi(6) = 5575 (310 = 3% —2(2/31/12) | 12

1155

en (28381, [y (4 V3)E)

+ (21/631/12)2 1+ !

(6.45)
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| an (24351, /15y (44 V3)2)

2
U32(£) :_(31/6_32/3) ) 21/631/12 1+ ~—
25 ( ) V1 —m?sn <21_3i_4l1 / 13(114”2) (4+ \/5)5)

+<21/631/12)2 1+

(6.46)

If m — 0, then dn(&) — 1, sn(&) — sin(&), cn(€) — cos(€), and hence, the
following trigonometric solutions of Eq. (6.5) have been obtained

Ux(é) = #(3‘/6 -3 - 2(2‘/63‘/‘2)2 <1 + sec (ﬁﬁzmé»
2
1/621/12)° u %F
+ (217531712) (1 see | 28380 [ (4 VE)E ) )
(6.47)

_ 1 1/6 _ 22/3\ _ 1/621/12 ? i %F
U34(§)—22/3(3 3%/3) 2(2 3 ) 1 £ csc| 2123%] 13(44’\/5)5
2 1 ’
+(2‘/631/12) (1:|:csc<2%32%l E(4+\/§)5>> :

It may be noted that the solution (6.44) is in agreement with the solution (6.48).

(6.48)

6.5.2 New Exact Solutions of Tzitzeica—Dodd—-Bullough
(TDB) Equation

Suppose the traveling wave solution of Eq. (6.8) can be expressed as

2N
V(&) =v(&) =) aFi(¢), (6.49)
i=0

where F(&) satisfies Eq. (6.21).
Balancing the highest order derivative term vvz: and the nonlinear term v* by
using homogenous principle the following result could be obtained
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N+N+2=4N,

yielding
N =1

Therefore, the ansatz for the solution of Eq. (6.8) can be written as

W(&) = ap+ a1 F(&) + arF* (&), (6.50)
where F(&) satisfies
c 1/2
F(&) :%{—é(liqﬁi(@)} Ci=1,2,...12. (6.51)

Substituting (6.50) and (6.21) into Eq. (6.8) and collecting the coefficients of
each power of F, i=0,1,2... and set them to zero, we obtain a system of
algebraic equations.

Solving this system of algebraic equations by using mathematical software, we
obtain the following result:

(44 5ap)axco (1+2ag)d3co aco —a} — a}

- 2a0(1+a0) 4= a%(l-ﬁ-do) °6

= y ) =
2a3(1+ ay) 2kasco

Without loss of generality, let us assume ay > 0, a; > 0 and ¢y > 0, and hence
ce > 0. Thus, ¢(&) satisfies only the functions (6.23), (6.24), and (6.27).

Set I:
From Egs. (6.23), (6.50), and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been derived.

(1+ 2ap) 1(1 4 2ap)?
g =qy——— |1+ —_— 6.52
(&) =ao 5 sn a1 +ao)é ) (6.52)
(1 +2a0) 1

“P]z(é) = day — 1+ 5 (653)

2 I(1+42a0)> &

MSPA N\ 2p2a2 (T + a0)®

where & = kx + ;ii;f’t and | = ayco.

If m — 1, then sn(¢) — tanh(¢), and we have the hyperbolic function solutions
of Eq. (6.8)
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(1+42ap) I(1 4+ 2ap)*
y —ay— 0 fanh | [ 2 6.54
13(¢) = ao 2 an 2a3(1+ ay) ’ ( )
(14 2ap) I(1 +2ag)*
y —aqp— "V feoth | [ T 6.55
14(€) = a0 2 €0 2a2(1 + ao) (6.55)

Set II:
From Egs. (6.24), (6.50) and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been obtained.

B (1+2a) I(1+2ap)’
Tzl(é) =dag — f 1+ msn m ; (656)
Wn() =ap - (14 240) 1+ ; . (6.57)

2
1 +2u0
sn 2a0 (I+ao) é

If m — 0, then sn(&) — sin(¢), and we have the following solutions of Eq. (6.8)

1

Ws(&) = —5 (6.58)

2
(14+2a0) [ 10 +2a)

V(&) =ap — ) m

(6.59)

If m — 1, then we can obtain the same hyperbolic function solutions (6.54) and
(6.55).

Set III:
From Egs. (6.27), (6.50), and (6.51), the following Jacobi elliptic function
solutions of Eq. (6.8) have been derived.

W31(&) =ap — )
2 (1 + 2a0)?
cn 2(17m2)a(2)(1+a0)é
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1(1+ 2a9)*
(1 +2610) 1t dn( 2<1m2)a§(1+ao)é>

2 2
V1-— m2sn( 72(1_1(,,11;;2200) ﬁ)

ag(1+ag

¥3(&) =ap — (6.61)

If m — 0, then dn(¢) — 1,sn(&) — sin(¢€), cn(&) — cos(€), and hence, the
following trigonometric solutions of Eq. (6.8) have been obtained

(1+2a) 1(1 4 2a)?
Wi(é) =ay————2 [ 1+ = 62
33(5) a 2 secC 2a(2)(1 +a0) , (6 6 )
(1 + 2a) I(1+2a)*
Wau(é)=ag————2 |1+ = .
34(6) do ) CSC 203(1 T ao) (6 63)

It may be noted that the solution (6.59) is in agreement with the solution (6.63).

6.5.3 Physical Interpretations of the Solutions

In the present analysis, three-dimensional and the corresponding two-dimensional
graphs of the obtained solutions to the nonlinear evolution equations, viz. Dodd—
Bullough—-Mikhailov (DBM) and Tzitzeica—Dodd-Bullough (TDB) equations have
been presented. To this aim, some special values of the parameters are selected.
Here, the physical significance of the obtained solutions of the above equations has
been discussed.

In Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12, the 3D solution graphs of
Ui (&), Uis(&), Uai (&), Usa(&), P11(€), ¥13(E), W21 (&), W34(&), respectively, have
been presented with appropriate selection of parameters. The three-dimensional

(b)

‘Mﬂi‘\‘ lll HWH th‘

(i
J| I Ji

Fig. 6.5 a 3D double periodic solution surface for v(x, #) appears in Eq. (6.38) as U;; () in Set 1,
when k =1,1=1, w =0.5, m = 0.3, b the corresponding 2D graph for v(x, #), when 7 = 1
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(b)

Wiz, 1)

Fig. 6.6 a 3D soliton solution surface of v(x, f) appears in Eq. (6.40) as U;3(¢) in Set 1, when
k=1,1=1, w=0.5 m=0.3, b the corresponding 2D graph for v(x, #), when t = 1

I i

Fig. 6.7 a 3D double periodic solution surface of v(x, #) appears in Eq. (6.42) as U; (&) in Set 2,
when k=1,1=1, ® = 0.5, m = 0.3, b the corresponding 2D graph for v(x, #), when 7 = 1

(b) -
Q-

Fig. 6.8 a 3D periodic solution surface of v(x, f) appears in Eq. (6.48) as U4 (&) in Set 3, when
k=1,1=0.5, w=0.5, m=0.3, b the corresponding 2D graph for v(x, #), when t = 1
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Fig. 6.9 a 3D double periodic solution surface of v(x, f) appears in Eq. (6.52) as ¥;;() in Set I,
whenk=1,1=1, ®w=0.5 m=0.3, aqy = 0.5, b the corresponding 2D graph for v(x, ), when
t=1

Fig. 6.10 a 3D soliton solution surface of v(x, ) appears in Eq. (6.54) as ¥13(&) in Set 1, when
k=1,1=1 v =0.5,ay=0.5 m=0.3, b the corresponding 2D graph for v(x, 7), when 7 = 1

Fig. 6.11 a 3D double periodic solution surface of v(x, 7) appears in Eq. (6.56) as ¥ (&) in
SetII, when k =1,/=1, w = 0.5, ay = 0.5, m = 0.3, b the corresponding 2D graph for v(x, 7),
when £ =1
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Fig. 6.12 a 3D periodic solution surface of v(x, f) appears in Eq. (6.63) as W34 (&) in Set ITI, when
k=1,1=0.1, » =0.5, ap = 0.5, m = 0.3, b the corresponding 2D graph for v(x, f), when ¢ = 1

graphs of Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 have been depicted when
—10<x <10, —10 <t < 10. To the best knowledge of information, these solutions
have not been reported earlier in the open literature.

In Figs. 6.5 and 6.7, the double periodic solutions for U;; and U,; of DBM
equation, have been displayed. Also, the double periodic solutions for ¥, and ¥5;
of TDB equation have been demonstrated in Figs. 6.9 and 6.11, respectively.
Figures 6.6 and 6.10 show the solutions for U3 and W3 representing the soliton
wave solutions of DBM and TDB equations, respectively. Furthermore, the peri-
odic traveling wave solutions for Uss and W34 of DBM and TDB equations have
been illustrated in Figs. 6.8 and 6.12, respectively.

6.6 Conclusion

In this chapter, an improved generalized Jacobi elliptic function method is suc-
cessfully employed for acquiring new exact solutions of the coupled Schrédinger—
Boussinesq equations. By using this present method, some new exact solutions of
the coupled Schrodinger—Boussinesq equations are found. More importantly, the
present method is more efficient and powerful to determine the new exact solutions
to CSBEs. This proposed method can also be utilized for numerous other nonlinear
evolution equations or coupled ones. To the best information of the author, these
double periodic wave solutions of the CSBEs are new exact solutions which are not
reported earlier. Being concise and powerful, this current method can also be
extended to solve many other NLPDEs arising in mathematical physics.
Moreover, in the present chapter, a new extended auxiliary equation method is
used to construct many new types of Jacobi elliptic function solutions of Dodd—
Bullough—-Mikhailov and Tzitzeica-Dodd—Bullough equations. Thus, as an
achievement, a family of new exact traveling wave solutions of Dodd—-Bullough—
Mikhailov and Tzitzeica—-Dodd-Bullough equations has been formally generated.
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It clearly manifests that the employed approach is useful and efficient to find the
various kinds of traveling wave solutions. Also, the physical interpretations of the
obtained results for Tzitzéica-type nonlinear evolution equations have been sur-
veyed as well. Therefore, the performance of the proposed method is effective and it
can be applied to study many other nonlinear evolution equations which frequently
arise in nonlinear optics, quantum theory, and other mathematical physics and
engineering problems.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhauser,

Boston (2005)

. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer-Verlag,

Berlin, Heidelberg (2009)

. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse

Scattering. Cambridge University Press, Cambridge (1991)

. Miura, M.R.: Bicklund transformation. Springer, Berlin (1978)
. Rogers, C., Shadwick, W.F.: Bicklund transformations and their applications. Academic

Press, New York (1982)

. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations.

J. Math. Phys. 24(1983), 522-526 (1983)

. Li, B., Chen, Y.: A truncated Painlevé expansion and exact analytical solutions for the

nonlinear Schrodinger equation with variable coefficients. Zeitschrift fiir Naturforschung A
60, 768-774 (2005)

. Hirota, R.: Exact solutions of the KdV equation for multiple collisions of solitons. Phys. Rev.

Lett. 27, 1192-1194 (1971)

. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl.

Math. Comput. 154, 713-723 (2004)

Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys.
Lett. A 277, 212-218 (2000)

He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos, Solitons
Fractals 30, 700-708 (2006)

Wang, M.L., Li, X., Zhang, J.: The (G /G)-expansion method and travel ling wave solutions
of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008)
Zayed, EM.E.: New traveling wave solutions for higher dimensional nonlinear evolution
equations using a generalized (G /G)-expansion method. J. Phys. A: Math. Theor. 42, 195202
(2009)

Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave
solutions of nonlinear wave equations. Phys. Lett. A 289, 69-74 (2001)

Lii, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos,
Solitons Fractals 24, 1373-1385 (2005)

Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and
abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long
wave equation. Chaos, Solitons Fractals 24, 745-757 (2005)

Huang, W., Liu, Y.: Jacobi elliptic function solutions of the Ablowitz-Ladik discrete
nonlinear Schrodinger system. Chaos, Solitons Fractals 40, 786-792 (2009)

Raslan, K.R.: The first integral method for solving some important nonlinear partial
differential equations. Nonlinear Dyn. 53, 281-286 (2008)



228

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

6 New Exact Traveling Wave Solutions of the Coupled ...

Abbasbandy, S., Shirzadi, A.: The first integral method for modified Benjamin—Bona—
Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1759-1764 (2010)

Jafari, H., Soltani, R., Khalique, C.M., Baleanu, D.: Exact solutions of two nonlinear partial
differential equations by using the first integral method. Bound. Value Probl. 2013, 117
(2013)

Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound.
Comput. Math. Appl. 71, 859-868 (2016)

Wang, Q., Chen, Y., Zhang, H.: A new Riccati equation rational expansion method and its
application to (2+1)-dimensional Burgers equation. Chaos, Soliton Fractals 25, 1019-1028
(2005)

Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations.
Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248-2253 (2012)

Ray, S.S.: New analytical exact solutions of time fractional KdV-KZK equation by
Kudryashov methods. Chin. Phys. B 25, 040204 (2016)

Saha Ray, S.: A numerical solution of the coupled Sine-Gordon equation using the modified
decomposition method. Appl. Math. Comput. 175(2), 1046-1054 (2006)

Ray, S.S.: An application of the modified decomposition method for the solution of the
coupled klein-gordon schrodinger equation. Commun. Nonlinear Sci. Numer. Simul. 13,
1311-1317 (2008)

Atangana, A.: Exact solution of the time-fractional groundwater flow equation within a leaky
aquifer equation. JVC/J. Vib. Control 22, 1749-1756 (2014)

Khan, Y., Faraz, N., Smarda, Z.: Difference kernel iterative method for linear and nonlinear
partial differential equations. Neural Comput. Appl. 27, 671-675 (2016)

Ghany, H.A., Elagan, S.K., Hyder, A.: Exact travelling wave solutions for stochastic
fractional Hirota-Satsuma coupled KdV equations. Chin. J. Phys. 53, 080705 (2015)

Choi, J.H., Kim, H.: Soliton solutions for the space-time nonlinear partial differential
equations with fractional-orders. Chin. J. Phys. 55, 556-565 (2017)

Fan, E., Hongging, Z.: A note on the homogeneous balance method. Phys. Lett. A 246, 403—
406 (1998)

Wazwaz, A.M.: Partial Differential Equations: methods and Applications. Balkema, Lisse,
The Netherlands (2002)

Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave
solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288-300 (1996)
Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650—
654 (1992)

Malfliet, W., Hereman, W.: The tanh-method: 1. exact solutions of nonlinear evolution and
wave equations. Phys. Scr. 54, 563-568 (1996)

Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the
Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations. Chaos, Solitons
Fractals 25, 55-63 (2005)

Seadawy, A.R., Dianchen, L., Mostafa, M.A.K.: Bifurcations of travelling wave solutions for
Dodd-Bullough-Mikhailov equation and coupled Higgs equation and their applications 55,
1310-1318 (2017)

Bekir, A., Boz, A.: Application of He’s exp-function method for nonlinear evolution
equations 58(11-12), 2286-2293 (2009)

Bekir, A., Aksoy, E.: Exact solutions of shallow water wave equations by using the (G /G)-
expansion method 22(3), 317-331 (2012)

Sirendaoreji, S.: A new auxiliary equation and exact travelling wave solutions of nonlinear
equations. Phys. Lett. A 356, 124-130 (2006)

Xu, G.: Extended auxiliary equation method and its applications to three generalized NLS
equations. Abstract and Applied Analysis, vol. 2014, 7, Article ID 541370

Seadawy, A.R.: Travelling-wave solutions of a weakly nonlinear two-dimensional
higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves.
Eur. Phys. J. Plus 132(1), Article number 29 (2017)



References 229

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

Fu, Z., Liu, S., Liu, S., Zhao, Q.: New Jacobi elliptic function expansion and new periodic
solutions of nonlinear wave equations. Phys. Lett. A 290, 72-76 (2001)

Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear
differential equations. Chaos, Solitons Fractals 24, 1217-1231 (2005)

Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear
differential equations. Appl. Math. Comput. 205, 396402 (2008)

Kudryashov, N.A.: Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys.
Lett. A 147, 287-291 (1990)

Abazari, R.: The (G /G)-expansion method for Tzitzéica Type nonlinear evolution equations.
Math. Comput. Model. 52, 1834-1845 (2010)

Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear
evolution equations arising in nonlinear optics. Opt. Quantum Electron 48, 116 (32 P) (2016)
Hosseini, K., Ayati, Z., Ansari, R.: New exact solutions of the Tzitzéica type equations arising
in nonlinear optics using a modified version of the improved (®(&)/2)-expansion method. Opt.
Quantum Electron 49, 273 (14 P) (2017)

Hosseini, K., Bekir, A., Kaplan, M.: New exact traveling wave solutions of the Tzitzéica type
nonlinear evolution equations arising in nonlinear optics. J. Mod. Opt. 64, 1688-1692 (2017)
Makhankov, V.G.: On stationary solutions of the Schrodinger equation with a self-consistent
potential satisfying Boussinesq’s equation. Phys. Lett. A 50, 42—44 (1974)

Zakharov, V.E.: Collapse of langmuir waves. Sov. Phys. JETP 35(5), 908-914 (1972)
Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62
(2), 370-378 (1979)

Ma, H., Zhang, Z.P., Deng, A.: A New periodic solution to Jacobi elliptic functions of MKdV
equation and BBM equation. Acta. Math. Appl. Sin. 28, 409-415 (2012). (in English)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York
(1965)

Zayed, EM.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications
to nonlinear Schrodinger-type equations. Optik 127, 9131-9151 (2016)

Zayed, EM.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for
finding the exact solutions for a class of nonlinear Schrodinger-type equations. Appl. Math.
Comput. 289, 111-131 (2016)



Chapter 7 )
New Techniques on Fractional Reduced e
Differential Transform Method

7.1 Introduction

The fractional differential equations appear more and more frequently in different
research areas and engineering applications. There is a long-standing interest in
extending the classical calculus to noninteger orders because fractional differential
equations are suitable models for many physical problems. Fractional calculus has
been used to model physical and engineering processes which are found to be best
described by fractional differential equations. In recent years, considerable interest
in fractional differential equations has been stimulated due to their numerous
applications in the areas of physics and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Lévy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1-8]. The solution of differential equations
of fractional order is much involved. Though many exact solutions for linear
fractional differential equation had been found, in general, there is a scarcity of
analytical method, available in the open literature, which yields an exact solution
for nonlinear fractional differential equations.

In the past decades, both mathematicians and physicists have devoted consid-
erable effort to the study of explicit and numerical solutions to nonlinear differential
equations of integer order. Many methods have been presented [9-19]. Our main
interest lies in determining an efficient and accurate method that provides an
effective procedure for explicit and numerical solutions of a wide and general class
of differential systems representing real physical problems. In this paper, we solve
fractional KdV equations by the modified fractional reduced differential transform
method (MFRDTM) which is presented with some modification of the reduced
differential transformation method [20-22]. In this new approach, the nonlinear
term is replaced by its Adomian polynomials. Thus, the nonlinear initial-value
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problem can be easily solved with less computational effort. The main advantage of
the method emphasizes the fact that it provides an explicit analytical approximate
solution and also numerical solution elegantly. The merits of the new method are as
follows: (1) no discretization required and (2) linearization or small perturbation
also not required. Thus, it reduces the amount of numerical computation consid-
erably. Application of this attractive new method may be taken into account for
further research.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering. Many important phenomena in
electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neu-
tron point kinetics model, anomalous diffusion, vibration and control, continuous
time random walk, Levy statistics, Brownian motion, signal and image processing,
relaxation, creep, chaos, fluid dynamics, and material science are well described by
differential equations of fractional order [1-7, 12, 23-26]. Fractional calculus has
been used to model physical and engineering processes that are found to be best
described by fractional differential equations. For that reason, we need a reliable
and efficient technique for the solution of fractional differential equations. An
immense effort has been expended over the last many years to find robust and
efficient numerical and analytical methods for solving such fractional differential
equations. In the present analysis, a new approximate numerical technique, coupled
fractional reduced differential transform method (CFRDTM), has been proposed
which is applicable for coupled fractional differential equations. The proposed
method is a very powerful solver for linear and nonlinear coupled fractional dif-
ferential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

In the field of engineering, physics, and other fields of applied sciences, many
phenomena can be obtained very successfully by models using mathematical tools
in the form of fractional calculus [1, 4, 12, 23-27]. In the past decades, the frac-
tional differential equations have been widely used in various fields of applied
science and engineering. Many important phenomena in electromagnetics, acous-
tics, viscoelasticity, electrochemistry, control theory, neutron point kinetics model,
anomalous diffusion, vibration and control, continuous time random walk, Lévy
statistics, Brownian motion, signal and image processing, relaxation, creep, chaos,
fluid dynamics, and material science are well described by differential equations of
fractional order. Fractional calculus has been used to model physical and engi-
neering processes that are found to be best described by fractional differential
equations. For that reason, we need a reliable and efficient technique for the solution
of fractional differential equations. An immense effort has been expended over the
last many years to find robust and efficient numerical and analytical methods for
solving such fractional differential equations. In the present analysis, a new
approximate numerical technique, coupled fractional reduced differential transform
method (CFRDTM), has been applied which is applicable for coupled fractional
differential equations. The new method is a very powerful solver for linear and
nonlinear coupled fractional differential equations. It is relatively a new approach to
provide the solution very efficiently and accurately.
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In the field of engineering, physics, chemistry, and other sciences, many phe-
nomena can be modeled very successfully by using mathematical tools in the form
of fractional calculus, e.g., anomalous transport in disordered systems, some per-
colations in porous media, and the diffusion of biological populations [1, 25-28].
Fractional calculus has been used to model physical and engineering systems that
are found to be more accurately described by fractional differential equations. Thus,
we need a reliable and competent technique for the solution of fractional differential
equations. In this paper, the predator—prey system [29] has been discussed in the
form of the fractional coupled reaction-diffusion equation. In the present analysis, a
new approximate numerical technique, coupled fractional reduced differential
transform method (CFRDTM), has been presented which is appropriate for coupled
fractional differential equations. The proposed method is an impressive solver for
linear and nonlinear coupled fractional differential equations. It is comparatively a
new approach to provide the solution very effectively and competently.

The significant advantage of the proposed method is the fact that it provides its
user with an analytical approximation, in many instances an exact solution, in a
rapidly convergent sequence with elegantly computed terms. This technique does
not involve any linearization, discretization, or small perturbations, and therefore it
reduces significantly the numerical computation. This method provides extraordi-
nary accuracy for the approximate solutions when compared to the exact solutions,
particularly in large-scale domain. It is not affected by computation round-off errors,
and hence one does not face the need for large computer memory and time. The
results reveal that the CFRDTM is very effective, convenient, and quite accurate to
the system of nonlinear equations.

Several analytical as well as numerical methods have been implemented by
various authors to solve fractional differential equations. Wei et al. [30] applied the
homotopy method to determine the unknown parameters of solute transport with
spatial fractional derivative advection-dispersion equation. Saha Ray and Gupta
proposed numerical schemes based on the Haar wavelet method for finding
numerical solutions of Burger—Huxley, Huxley, modified Burgers, and mKdV
equations [31, 32]. An approximate analytical solution of the time fractional
Cauchy reaction diffusion equation by using the fractional-order reduced differential
transform method (FRDTM) has been proposed by Shukla et al. [33].

Nonlinear partial differential equations are useful in describing various phe-
nomena. The solutions of the nonlinear evolution equations play an important role
in the field of nonlinear wave phenomena. The exact solutions facilitate the veri-
fication of numerical methods when they exist. These equations arise in various
areas of physics, mathematics, and engineering such as fluid dynamics, nonlinear
optics, plasma physics, nuclear physics, mathematical biology, Brusselator model
of the chemical reaction—diffusion, and many other areas.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
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numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

Nonlinear partial differential equations are useful in describing various phe-
nomena. These equations arise in various areas of physics, mathematics, and
engineering such as fluid dynamics, nonlinear optics, plasma physics, nuclear
physics, mathematical biology, Brusselator model of the chemical reaction—diffu-
sion, and many other areas. In fluid dynamics, the nonlinear evolution equations
show up in the context of shallow water waves. Some of the commonly studied
equations are the Korteweg—de Vries (KdV) equation, modified KdV equation,
Boussinesq equation, and Whitham—Broer—Kaup equation. In this paper, Whitham—
Broer—Kaup equations have been solved by a new novel method revealed by Saha
Ray [34, 35] and it is inherited from generalized Taylor’s series.

The investigation of the traveling wave solutions to nonlinear partial differential
equations (NLPDEs) plays an important role in the study of nonlinear physical
phenomena.

In the past decades, the fractional differential equations have been widely used in
various fields of applied science and engineering [1, 4, 23, 25, 27, 28, 34, 35].
Fractional calculus has been used to model physical and engineering processes that
are found to be best described by fractional differential equations. An immense
effort has been expended over the last many years to find robust and efficient
numerical and analytical methods for solving nonlinear fractional differential
equations [12]. In the present analysis, a new approximate analytic technique,
coupled fractional reduced differential transform method (CFRDTM) [34, 35], has
been proposed which is applicable for coupled fractional linear and nonlinear dif-
ferential equations. The proposed method originated from generalized Taylor’s
formula [36] is a very powerful solver for linear and nonlinear coupled fractional
differential equations. It is relatively a new approach to provide the solution very
efficiently and accurately.

7.2 Qutline of the Present Study

In this chapter, the modified fractional reduced differential transform method
(MFRDTM) has been proposed and it is implemented for solving fractional
Korteweg—de Vries (KdV) equations. The fractional derivatives are described in the
Caputo sense. The reduced differential transform method is modified to be easily
employed to solve wide kinds of nonlinear fractional differential equations. In this
new approach, the nonlinear term is replaced by its Adomian polynomials. Thus,
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the nonlinear initial-value problem can be easily solved with less computational
effort. In order to show the power and effectiveness of the present modified method
and to illustrate the pertinent features of the solutions, several fractional KdV
equations with different types of nonlinearities are considered. The results reveal
that the proposed method is very effective and simple for obtaining approximate
solutions of fractional KdV equations.

A very new technique, coupled fractional reduced differential transform, has
been implemented in this chapter to obtain the numerical approximate solution of
coupled time fractional KdV equations. The fractional derivatives are described in
the Caputo sense. By using the present method, we can solve many linear and
nonlinear coupled fractional differential equations. The obtained results are com-
pared with the exact solutions. Numerical solutions are presented graphically to
show the reliability and efficiency of the method.

Newly proposed coupled fractional reduced differential transform has been
implemented to obtain the soliton solutions of coupled time fractional modified
KdV equations. This new method has been revealed by the author. The fractional
derivatives are described in the Caputo sense. By using the present method, we can
solve many linear and nonlinear coupled fractional differential equations. The
results reveal that the proposed method is very effective and simple for obtaining
approximate solutions of fractional coupled modified KdV equations. Numerical
solutions are presented graphically to show the reliability and efficiency of the
method. Solutions obtained by this new method have been also compared with
Adomian decomposition method (ADM).

A relatively very new technique, viz. coupled fractional reduced differential
transform, has been executed to attain the approximate numerical solution of the
predator—prey dynamical system. The fractional derivatives are defined in the
Caputo sense. Utilizing the present method, we can solve many linear and nonlinear
coupled fractional differential equations. The results thus obtained are compared
with those of other available methods. Numerical solutions are also presented
graphically to show the simplicity and authenticity of the method for solving the
fractional predator—prey dynamical system.

Also in this chapter, fractional coupled Schrédinger—Korteweg—de Vries (or
Sch-KdV) equation with appropriate initial values has been solved by using a new
novel method. The fractional derivatives are described in the Caputo sense. By
using the present method, we can solve many linear and nonlinear coupled frac-
tional differential equations. Basically, the present method originated from gener-
alized Taylor’s formula [36]. The results reveal that the proposed method is very
effective and simple for obtaining approximate solutions of fractional coupled
Schrédinger—KdV equation. Numerical solutions are presented graphically to show
the reliability and efficiency of the method. The method does not need linearization,
weak nonlinearity assumptions, or perturbation theory. The convergence of the
method as applied to Sch—KdV is illustrated numerically as well as derived ana-
Iytically. Moreover, the derived results are compared with those obtained by the
Adomian decomposition method (ADM).
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The analytical approximate traveling wave solutions of Whitham—Broer—Kaup
(WBK) equations, which contain blow-up solutions and periodic solutions, have
been obtained by using the coupled fractional reduced differential transform method
[34, 35, 37-39]. By using this method, the solutions were calculated in the form of
a generalized Taylor’s series with easily computable components. The convergence
of the method as applied to the Whitham—Broer—Kaup equations is illustrated
numerically as well as analytically. By using the present method, we can solve
many linear and nonlinear coupled fractional differential equations. The results
justify that the proposed method is also very efficient, effective, and simple for
obtaining approximate solutions of fractional coupled modified Boussinesq and
fractional approximate long wave equations. Numerical solutions are presented
graphically to show the reliability and efficiency of the method. Moreover, the
results are compared with those obtained by the Adomian decomposition method
(ADM) and variational iteration method (VIM) revealing that the present method is
superior to others.

7.2.1 Fractional KdV Equation

The aim of this work is to directly apply the MFRDTM to determine the approx-
imate solution of the nonlinear fractional KdV equation with time fractional
derivative of the form

Diu+ ("), + W), =0, m>0, 1<n<3, >0, 0<a<]1 (7.1)

which is a generalization of the Korteweg—de Vries equation, denoted by K (m, n) for
the different values of m and n, respectively. These K(m,n) equations have the
property that for certain values of m and n, their solitary wave solutions have
compact support which is known as compactons [40]. Here, the fractional derivative
is considered in the Caputo sense [5, 6]. In the case of « = 1, fractional Eq. (1.1)
reduces to the classical nonlinear KdV equation [14, 16].

7.2.2 Time Fractional Coupled KdV Equations

For solving time fractional coupled KdV equations, two model equations have been
considered in the present chapter.

I. Consider the following time fractional coupled KdV equations [41]

3
Ou 6u@ —|—3v8v

D= 24" ov
o ox3 Ox Ox’

(7.2)
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v ov
Dy = —aa g (7.3)

where t > 0, O0<o, < 1.
II. Consider the following time fractional coupled KdV equations [42]

Dfu+ 6ui, — 6vvy + e = 0, (7.4)
va+3uvx—|—vxxx =0, (7.5)

where t > 0, 0<o, f < 1.

7.2.3 Time Fractional Coupled Modified KdV Equations

In this case, for solving time fractional coupled modified KdV equations, again two
model equations have been considered in the present chapter.

I. Consider the following time fractional coupled modified KdV equations [43]

3 2
18u_32@+38v 38(141/) Ou

D=3 = o taae 3 o (7.6)
v Ov Ou Ov Ov Ov
By, — 2 _a,2 T 277 il
D}y o 3y o 3 e 3u Ee +36x, (7.7)

where 1 > 0, 0<a, f < 1.
II. Consider the following time fractional coupled modified KdV equations [44]

1u ou  30% O(uv) Ou
=_ 3P — + = —— 43 3 —
20 T 200 ox | ox
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v v Ou Ov ov ov
By, — 2 7 2,7 T 277 327
Div 0x3 3v Ox 3 Ox Ox +3u Ox 3 Ox (7.9)

where t > 0, 0<o, f < 1.

7.2.4 Time Fractional Predator-Prey Dynamical System

In the present chapter, a system of two species competitive models with prey
population A and predator population B has been also studied. For prey population
A — 2A, at the rate a (a > 0) expresses the natural birthrate. Similarly, for predator
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population B — 2B, at the rate ¢ (¢ > 0) represents the natural death rate. The
interactive term between predator and prey population is A+ B — 2B, at rate
b (b > 0) where b denotes the competitive rate. According to the knowledge of
fractional calculus and biological population, the time fractional dynamics of a
predator—prey system can be described as

Pu OPu  Pu

e + 8_y2 +au—buv, u(x,y,0) = @(x,y), (7.10)
v Py v
W:@+W+bw*w, v(x,,0) = $(x,y), (7.11)

where t > 0,x,y € R,a,b,c > 0, u(x,y, t) denotes the prey population density, and
v(x,y,t) represents the predator population density. Here, ¢(x,y) and ¢(x,y) rep-
resent the initial conditions of the population system. The fractional derivatives are
considered in Caputo sense. Caputo fractional derivative is used because of its
advantage that it permits the initial and boundary conditions included in the for-
mulation of the problem. Here, u(x,y,?) and v(x,y,t) are analytic functions. The
physical interpretations of Egs. (7.10) and (7.11) indicate that the prey—predator
population system is analogous to the behavior of fractional-order model of
anomalous biological diffusion.

7.2.5 Fractional Coupled Schriodinger—-KdV Equation

Nonlinear phenomena play a crucial role in applied mathematics and physics.
Calculating exact and numerical solutions, in particular, traveling wave solutions,
of nonlinear equations in mathematical physics plays an important role in soliton
theory [9, 45]. The investigation of the traveling wave solutions to nonlinear partial
differential equations (NLPDESs) plays an important role in the study of nonlinear
physical phenomena. Multiple traveling wave solutions of nonlinear evolution
equations such as the coupled Schrédinger-KdV equation [46, 47] have been
obtained by Fan [48]. The coupled Schrodinger—-KdV equation is known to describe
various processes in dusty plasma, such as Langmuir, dust-acoustic wave, and
electromagnetic waves [48]. The model equation for the coupled fractional
Schrédinger—-KdV equation can be presented in the following form [48]

iDMu; = Uy, + uv
DPv, = —6w, — v + (Jul), (7.12)

where o, f (0<oa, $<1) are the orders of the Caputo fractional time derivatives,
respectively, i = v/—1 and ¢ > 0.
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Recently, Fan [48] applied the unified algebraic method and Kaya et al. [49]
applied Adomian’s decomposition method for computing solutions to a (classical)
integer-order Sch—KdV equation.

7.2.6 Fractional Whitham—Broer-Kaup, Modified
Boussinesq, and Approximate Long Wave Equations
in Shallow Water

In the present paper, coupled WBK equations introduced by Whitham, Broer, and
Kaup [50-52] have been considered. The equations describe the propagation of
shallow water waves with different dispersion relations. The fractional-order WBK
equations are as follows

D¥u+ uuy + vy +buy, =0, (7.13a)
DBy + (uv), + @ty — by, = 0, (7.13b)

where o, f (0<a, §<1) are the orders of the Caputo fractional time derivatives,
respectively, and ¢t > 0. In WBK equations (7.13a) and (7.13b), the field of hori-
zontal velocity is represented by u = u(x,7), v = v(x,) which is the height that
deviates from the equilibrium position of liquid, and the constants a, b are repre-
sented in different diffusion powers [53].

If a=1 and b =0, the following fractional coupled modified Boussinesq
equations (7.14a) and (7.14b)

ou Ov

Owv) u
By, — _ -
Dby o~ (7.14b)

where t > 0, 0<a, f <1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

If a =0 and b = 1/2, the following fractional coupled approximate long wave
equations (ALW) equations (7.15a) and (7.15b)

y ou v 10%u
Owv)  18%

42 (7.15b)
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where 1 > 0, 0<o, f <1, can be obtained as a special case of WBK equations
(7.13a) and (7.13b).

7.3 Fractional Reduced Differential Transform Methods

In this section, proposed modified fractional reduced differential transform method
(MFRDTM) and a newly developed technique, coupled fractional reduced differ-
ential transform method (CFRDTM), have been presented.

7.3.1 Modified Fractional Reduced Differential Transform
Method

Consider a function of two variables u(x,f) which can be represented as a product
of two single-variable functions, i.e., u(x,t) = f(x)g(¢). Based on the properties of
differential transform, the function u(x, ) can be represented as

u(x,t) = i U (x)1* (7.16)
k=0

where 7-dimensional spectrum function Uy (x) is the transformed function of u(x, 7).
The basic definitions and operations of MFRDTM are as follows:

Definition 1 If the function u(x, ) is analytic and differentiated continuously with
respect to time ¢ and space x in the domain of interest, then let

1

V) = oy (1) uten)] (7.17)

where (Df)k =D!-D?-D?...D? the k times differentiable Caputo fractional
derivative.

The differential inverse transform of Uy(x) is defined as follows:

o0

u(x, 1) = Z Uy (x)1**. (7.18)

Then combining Egs. (7.17) and (7.18), we can write

w(x, 1) = i <r(akl+1) [(Df‘)ku(x, z)} ,o) £, (7.19)

k=0
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Some basic properties of the reduced differential transform method are sum-
marized in Table 7.1.

To illustrate the basic concepts for the application of MFRDTM, consider the
following general nonlinear partial differential equation:

Lu(x, 1) + Ru(x,t) + Nu(x, 1) = g(x,1), (7.20)
with initial condition
u(x, O) :f(x)7

where L = D is an easily invertible linear operator, R is the remaining part of the
linear operator, Nu(x, ) is a nonlinear term, and g(x, ) is an inhomogeneous term.

We can look for the solution u(x,¢) of Eq. (7.20) in the form of the fractional
power series:

u(x,t) = Z Uy (x)1*, (7.21)

where #-dimensional spectrum function Uy (x) is the transformed function of u(x, ).
Now, let us write the nonlinear term

Nty = S AUs(), U (), ., Un()™ (1.22)

n=0

where A, is the appropriate Adomian’s polynomials [13, 17]. In this specific
nonlinearity, we use the general form of the formula for A, Adomian polynomials
as

_ 1 dl'l
T pld)

N (i A"U,-(x)ﬂ . (7.23)
i=0 =0

Table 7.1 Fundamental operations of MFRDTM

Properties | Function Transformed function
1 fOx, 1) = au(x,t) £ bv(x, 1) F(x) = aUi(x) £ bVi(x)
2 [ 1) = ulx, )v(x, 1) k
Fi(x) =3 Ui(x) Vi (x)
1=0
3 flot) = 250 Fy(x) = 5
4 f(x,t) = D™u(x,t), where « € R™ and Fi(x) = %Uum(x)

meN
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Now, applying Riemann—Liouville integral J* on both sides of Eq. (7.20), we
have

u(x, 1) = ®+J%(x,t) — J*Ru(x,1) — J*Nu(x,1), (7.24)
where from the initial condition ® = u(x,0) = f(x).

Substituting Eqgs. (7.21) and (7.22), for u(x,t) and N(u,t), respectively, in
Eq. (7.24) yields

i U ()% = f(x) +J* (i Gi (x)t“"> —J* <R (i Ux (x)t“k> )
—J (i Ar (x)t"‘k) ,

where g(x,1) = (3, Gk(x)r**), and Gy(x) is the transformed function of g(x, ).
After carrying out Riemann-Liouville integral J*, we obtain

o0

v o 6D (o + 1)
; U™ = f(x) + (kz_; Gelx) m)
%0 PEEDT (ke + 1)
- <R (Z Ur(x) WM))
S PEEDT (ak + 1)
- (ZW) m)

Finally, equating coefficients of like powers of #, we derive the following
recursive formula

Uo(x) = f(x),
and
I'(ok+1) I'(ok+ 1) )
U = Gi(x) = 2 R )
() = G FenT o) ( K ke D+ 1) (7.25)
[(ak+1) '
—A —— k>0.
S S TS
Using the known Up(x), all components U (x), U, (x), ..., Uy(x), ..., etc., are
determinable by using Eq. (7.25).
Substituting these Uy(x), U;(x), Uz(x), -, Uy(x),- - ,, etc., in Eq. (7.21), the

approximate solution can be obtained as
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ity (x,8) = Y Up(x)£™, (7.26)

m=0

where p is the order of approximate solution.
Therefore, the corresponding exact solution is given by

u(x, 1) = lim @, (x, 1) (7.27)

p—oo

7.3.2 Coupled Fractional Reduced Differential Transform
Method

In order to introduce coupled fractional reduced differential transform, two cases are
considered.

For functions with two independent variables

In this case, U(h,k — h) is considered as the coupled fractional reduced differential
transform of u(x, ¢). If the function u(x, ¢) is analytic and differentiated continuously
with respect to time ¢, then we define the fractional coupled reduced differential
transform of u(x, ) as

_ 1 (ha+ (k=h)p)
Uk =) = F e 1A D) {D, u(e,)]| (7.28)

whereas the inverse transform of U(h, k — h) is

ook
u(x,t) = > > U(h k= k)¢, (7.29)

k=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 7.1 Suppose that U(h,k —h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,t) and v(x, 1), respectively.

i, If u(x,t) = f(x,1) + g(x, 1), then U(h,k — h) = F(h,k — h) + G(h, k — h).
ii. If u(x, ) = af (x,t), where a € R, then U(h,k — h) = aF(h,k — h).
h k=h

iii. If f(x, 1) = u(x, 0)v(x, 1), then F(hk—h) =Y. > Uh—1L,s)V(l,k—h —s).
i=05=0
iv. If f(x, 1) = D'u(x,1), then
Flhk—p) = L Dot k= WB+1) gy

T(ho+ (k—h)p+1)
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v. If f(x,7) = DPv(x, 1), then

C(ho+ (k—h+1)p+1)
T(ho+ (k— h)B+1)

F(hk—h) = V(hk—h+1).

For functions with three independent variables

In this case, U(h,k — k) is considered as the coupled fractional reduced differential
transform of u(x,y, 7). If the function u(x,y,¢) is analytic and differentiated con-
tinuously with respect to time #, then we define the fractional coupled reduced
differential transform of u(x,y, ) as

1 ha+ (k—h) )
U(h,k — h) = [D< ol 7.30
( U o oyl ux )|, (7.30)
whereas the inverse transform of U(h,k — h) is
k
u(x,y,0) =Y Y Ulhk — Ry 0P, (7.31)

k=0 h=0

which is one of the solutions of coupled fractional differential equations.

Theorem 7.2 Suppose that U(h,k — h) and V(h,k — h) are coupled fractional
reduced differential transform of functions u(x,y,t) and v(x,y,t), respectively.

LI u(x,y,t) =f(x,y,t) £g(x,y,¢), then U(hk—h)=Fhk—h)£G
(h,k — h).
il. If u(x,y,t) = af (x,y,t), where a € R, then U(h,k — h) = aF (h,k — h).
i, If f(x,y,1) = u(x,y,0)v(x,y,1), then F(hk—h) =SS tU(h—1,s)
V(Lk—h—s).
iv. If f(x,y,1) = D'u(x,y,t), then

T((h+ 1o+ (k— h)p+1)
I'(ho+ (k—h)p+1)

F(hk—h) = U(h+ 1,k — h).

v. If fx,y,1) = D,ﬁv(x,y, t), then

(ho+ (k—h+1)B+1)
C(ho+ (k— h)p+1)

r
F(hk—h) = V(hk—h+1).
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7.4 Application of MFRDTM for the Solution
of Fractional KdV Equations

We consider the generalized fractional KdV equation of the form

Du+ ("), + "), =0, m>0,1<n<3 >0, 0<a<l (7.32)

XXX

with initial condition
u(x,0) = f(x). (7.33)

Applying MFRDTM to Eq. (7.32) and using basic properties of Table 7.1, we
can obtain

C(a(k+1)+1)

aAk (x) 83Ak (x)
I'(ak+1) +

Ox Ox3

Ups1(x) + =0,k>0 (7.34)

where Uy (x) is the transformed function of u(x, ¢), and the nonlinear terms %™ and
u" have been considered as Adomian polynomials > ;o Ax(Up(x), Ui (x), ...,
Ui(x)) and Y20 Ax(Uo(x), Ui (x), . . ., Ux(x)), respectively.

From the initial condition (7.33), we have

Uo(x) = f(x). (7.35)

Substituting (7.35) into (7.34), we obtain the values of U(x) successively.
Then, the approximate solution can be obtained as

ity (x,1) = Y Up(x)1™, (7.36)

where p is the order of approximate solution.

7.4.1 Numerical Solutions of Variant Types of Time
Fractional KdV Equations

In order to assess the advantages and the accuracy of the modified fractional
reduced differential transform method (MFRDTM) for solving nonlinear fractional
KdV equation, this method has been applied to solve the following four examples.
In the first two examples, we consider quasi-linear time fractional KdV equations,
while in the last two examples, we consider a nonlinear time fractional dispersive
K(2,2) equation. All the results are calculated by using the symbolic calculus
software Mathematica.
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Example 7.1
(a) (One-soliton solution)

Consider the following time fractional KdV equation

Dfu+ 6uiy + ty = 0,1 > 0,0<a < 1 (7.37)
with initial condition
u(x,0) = L sech? (f) (7.38)
2 2)° '

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

— k X 3 X
Uii1(x) = (rr(a—k—‘rl)l)) (6; Ui, (x) alg}g ) + g g);( )),k>0

(a(k+1)+
(7.39)
where Uy(x) is the transformed function of u(x, ).
From the initial condition (7.38), we have
Up(x) = lsech2 (f) (7.40)
R 2) '

Substituting (7.40) into (7.39), we obtain the values of U(x) for k = 1,2,3,...
successively.

Then, using Mathematica, the third-order approximate solution can be obtained
as

{) N 2*(—2 + cosh(x))sech* (%)  4¢*cosech®(x) sinh* (%)
2 4T (1 +22) r(l+a)

N £%((39 — 32 cosh(x) + cosh(2x)) (1 +e)” + 12(—2 + cosh(x))I'(1 + 2))sech® (2) tanh (3)
167 (1 +o)*I'(1 4 32) ’

1
u(x, 1) = 3 sech? (

(7.41)

If o = 1, the solution in Eq. (7.41), which becomes the single soliton solution, is
given by

1 X —t
) == h2<—). 7.42
u(x, 1) 5 sec 5 (7.42)

For special case o = 1, i.e., for classical integer order, the obtained results for the
exact solution (7.42) and the approximate solution in Eq. (7.41) obtained by
MFRDTM are shown in Figs. 7.1 and 7.2. It is very much graceful that the
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approximate solution obtained by the present method and the exact solution are
very much identical.

Figures 7.3, 7.4, 7.5, and 7.6 demonstrate the approximate solutions for
o =0.25, a =0.35, 2 = 0.5, and o = 0.75, respectively.

(b) (Two-soliton solution)
Consider the following time fractional KdV equation
Dfu+ 6uny + e = 0,1 > 0,0<0< 1 (7.43)
with initial condition
u(x,0) = 6sech’x. (7.44)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

— oL X 3 X
Vi) = (F(acgc(flﬁ)l)) (3 BA(;)E 42 $3( ))’k 20 (4

where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials Y~ Ax(Uo(x), U; (x), . . ., U(x)).
From the initial condition (7.44), we have

Uo(x) = 6sech’x. (7.46)

Substituting Eq. (7.46) into Eq. (7.45), we obtain the values of Uy(x) for k =
1,2,3,... successively.

Fig. 7.1 Exact solution
u(x,t) for Eq. (7.37)
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Fig. 7.2 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)

Fig. 7.3 Approximate
solution u(x, ¢) obtained by
MFRDTM for Eq. (7.37)
when o = 0.25

Then, using Mathematica, the second-order approximate solution can be
obtained as

12¢2*(—1064 + 183 cosh(2x) + 240 cosh(4x) + cosh(6x))sech®x
I'(1+2a)

12¢*sech’ (x)(25 sinh(x) + sinh(3x))

I'(l+a)

u(x, 1) = 6sech’x +

+0(£*%).

(7.47)
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Fig. 7.4 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.35

Fig. 7.5 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.5

Fig. 7.6 Approximate
solution u(x, t) obtained by
MFRDTM for Eq. (7.37)
when o = 0.75
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If « = 1, the solution in Eq. (7.47), which becomes the two-soliton solution, is
given by

_ 24(4cosh(x — 41)° + sinh(2x — 321)°)

(cosh(3x — 361) + 3 cosh(x — 287))* (7.48)

u(x, 1)

Figures 7.7, 7.8, and 7.9 exhibit the two-soliton approximate solutions of the
KdV equation (7.43) for « = 0.5, « = 0.75, and o = 1, respectively.

Example 7.2 Consider the following time fractional KdV equation
DYu—3(u?), + by = 0, > 0,0<a< 1 (7.49)
with initial condition
u(x,0) = 6x. (7.50)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

Uk+1(x)=< T (ak+ 1) )(38Ak(x)_83Uk(x))7k>0 .51

I(a(k+1)+1) Ox ox?

where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials » .~ Ax(Uo(x), Uy (x), . . ., U(x)).

wx.L)
10

Fig. 7.7 Two-soliton approximate solution u(x,f) of the KdV equation obtained by using
Eq. (7.47) for o = 0.5, t = 0.0006, and -6 <x<6
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Fig. 7.8 Two-soliton approximate solution u(x,7) of the KdV equation obtained by using
Eq. (7.47) for o = 0.75, t = 0.008, and —6 <x<6

\
I \
1 \
- 1
- \
7\ \
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/ J
/ 4 \\
F— 1 T " " hr L PR |
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Fig. 7.9 Two-soliton approximate solution u(x,7) of the KdV equation obtained by using
Eq. (7.47) foro=1,7=0.03, and —6<x<6
From the initial condition Eq. (7.50), we have
Up(x) = 6x.

(7.52)
Substituting (7.52) into (7.51), we obtain the values of Ui(x) fork =1,2,3,...
successively.

Then, using Mathematica, the fourth-order approximate solution can be obtained
as
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derx  15ssane 2799368 (b + by )T (1 +22)
T(l+2) T(+29) " T(1+32)

| 20155392A%(4T (1 + 2" T (1 1 22) + D(1 +22)° + 2T (1 + 2)[(1 4 32))
[(1 4 o)*T(1 4 20) (1 + 4a) '

u(x, 1) = 6x+

(7.53)

For the special case oo = 1, the solution in Eq. (7.53), which becomes the exact
solitary wave solution, is given by

u(x, 1) = 6x+2166x + 777612 x + 2799361 x + 10077696 x + - - -
_ 6x (7.54)
1 =36t

Example 7.3 Consider the following time fractional dispersive K(2,2) equation
Dru+ (), + (u?),, = 0,6>0,0<a<1, (7.55)

with initial condition
u(x,0) = x. (7.56)

After applying MFRDTM, according to Eq. (7.34), we can obtain the recursive
formula

~I(ak +1) ) (8Ak(x) N 63Uk(x)>7k20’ (7.57)

U, =

1 () (r(cx(k+ D+1))\ ox o3
where Uy (x) is the transformed function of u(x,), and the nonlinear term u? has
been considered as Adomian polynomials Y Ag(Up(x), U;(x), ..., Ur(x)).

k=0
From the initial condition (7.56), we have

Up(x) = x. (7.58)

Substituting (7.58) into (7.57), we obtain the values of Ui(x) fork =1,2,3,...
successively.
Then, using Mathematica, the fifth-order approximate solution can be obtained as

) —x— 2 82 _St3o‘x<—r(1ia)zJrﬁ)r‘(quZoc)
; F(1+a)  T(1+22) T(1+32)

32t4°‘x(4r(1 +0) T (1 +200) + T(1 4 20)> 4+ 20(1 + ) T(1 + 30())
T(1+0) T(1 +20)T(1 + 40)

+
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50 (1 +20)*(40(1 + o)* + T(1 +22))
3 641 x(2+ (1 + o) [ (1 + 3) )F(l +40)

(1 +20)°T(1 4 52)

Sy [ 20(1+22) (40 (1+ )’ T(1 +20) + T(1 +20) + 20(1 4+ ) T(1 4 3a))
64t O‘x( TP ) I'(1+4a)

(1 +20)°T(1 4 52)

_|_
(7.59)

For the special case oo = 1, the solution in Eq. (7.59), which becomes the exact
solitary wave solution, is given by
X

u(x, 1) = x — 2tx +42x — 88x + 16¢*x — 320x 4 -+ = e (7.60)

Example 7.4 Consider the following time fractional dispersive K(2,2) equation

Diu+ (), +(u*),, =0,1>0 0<a<l1 (7.61)
with initial condition
4
u(x,0) = ?Ccos2 (2) (7.62)

Taking modified fractional reduced differential transform, we can obtain the
same recursive formula as in Eq. (7.57).
From the initial condition (5.1.20), here in this case, we have

Uo(x) = S cos? (f) (7.63)

Substituting Eq. (7.63) into Eq. (7.57), we obtain the values of U(x) for k =
1,2,3,... successively.
Then, using Mathematica, the third-order approximate solution can be obtained as

(7.64)

4
u(x,t) = =ccos

) (x) Artsin(3)  Arcos(y)  *rP*sin(3)
3

4) T 30(1+a) 60(1+20) 12I(1+30)

For the special case oo = 1, the solution in Eq. (7.64), which becomes the exact
solitary wave solution, is given by

4 1 1
u(x, 1) = gccos2 G) + gczt sin (g) - Ec3t2 cos (g)

Loas. (X l 54 (x)
75 ¢t s1n(2)+576ctcos )t

(7.65)
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Using Taylor series into Eq. (7.65), we can find the closed-form solitary wave
solution with compact support, i.e., compacton solution

4c 2 (x—=ct
_ ?COS (T)’ |x — Ct| < 27'(:7
u(x, 1) { 0, otherwise.

7.4.2 Convergence Analysis and Error Estimate

Theorem 7.3 Suppose that, D**u(x,t) € C([0,L] x [0,T]) for k=0,1,2,...,
N +1, where 0<a <1, then

w(x, 1) =2 Up(x)e™.

m=0
Moreover, there exists a value &, where 0 < & <t so that the error term Ey(x,t)
has the form

DWW+ 1)“14()6, f)l<N+ 1a
T(N+ Dot 1)

|[En(x,1)| = Sup
1€[0,7]

Proof For 0<a<1,

J™D™ u(x, 1) — Jm+Dap(m+ l)“u(x, 1)
= J" (D" u(x,t) — J*"D* (D™ u(x,1)))
= J"*(D"™u(x,0)) using Eq. (2.3.2)
D™ u(x,0)
I'(mo+1)
= U,,(x)™, using Eq. (7.17);

Now, the Nth order approximation for u(x,7) is

N N

Um(x)lma _ Z (JmaD;mu(x, [) _ J(m+1)ocD(m+l)ocu(x’ l))
m=0 m=0

_ u(x, [) _ J(NJrl)ocl)(NJrl)au(x7 Z)
t
1 /D(N“)"‘u(x7 r)d

TN+ 05 ) (g0
0

=u(x,1) —
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t

DW Doy (x, f)/ dr
(t—1)

:M(X,t)_ F((N—l—l)oc) 1I-(N+ Do’
0

applying integral mean value theorem (7.66)

D(N+ l)ocu(x7 f)t(N+ 1o

=4 ) T T N Dot )

Therefore,

DW+ l)au(x’ 6)I(N+ 1)o
T(N+ Dot 1)

u(x,t) = ZN: Un(x)™ + (7.67)

m=0

Consequently, the error term

|En(x,1)] =

DW+1)a t(N-H)%
- ‘ u(x,¢) ’ (7.68)

u0) = > Un™| = s Dot )

m=0

This implies

DWW+ l)au(x’ é)t(NJr 1a
T((N+ Da+1)

|[En(x,1)| = Sup
1€[0,7]

(7.69)

As N — oo, |[Ey| — 0.
Hence, u(x, t) can be approximated as

o0 N
u(x 1) =Y Up(0)f™ 2" Up(x)e™.
m=0 m=0

with the error term given in Eq. (7.69).
7.5 Application of CFRDTM for the Solutions of Time
Fractional Coupled KdV Equations

In the present section, CFRDTM has been applied to determine the approximate
solutions for the coupled time fractional KdV equations.
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7.5.1 Numerical Solutions of Time Fractional Coupled KdV
Equations

In order to examine the efficiency and applicability of the proposed coupled frac-
tional reduced differential transform method (CFRDTM) for solving time fractional
coupled KdV equations, this method has been employed to solve the following two
examples.

Example 7.5 Consider the following time fractional coupled KdV equations [41]

Pu ou ov

Py ov
B, —
where t > 0, 0<a, f <1,
subject to the initial conditions
4 2
u(x,0) = &(C}C)Z, (7.70¢)
(1 + exp(cx))
4, 2
v(x, 0) = < exp(e) (7.70d)

(1+ exp(ex)””

The exact solutions of Egs. (7.70a) and (7.70b), for the special case where
o= f =1, are given by

vl f) = 4c? exp(c(x — 1))
u(x, 1) = v(x,1) (1 oxplet — D)) (7.71)

In order to assess the advantages and the accuracy of the CFRDTM, we consider
the (2 + 1)-dimensional time fractional coupled Burgers equations. Firstly, we
derive the recursive formula from Egs. (7.70a) and (7.70b). Now, U(h,k — h) and
V(h,k — h) are considered as the coupled fractional reduced differential transform
of u(x,t) and v(x,t), respectively, where u(x,?) and v(x,t) are the solutions of
coupled fractional differential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0)
are the given initial conditions. Without loss of generality, the following assump-
tions have taken

U(0,j)=0, j=1,2,3,...and V(,0) =0, i=1,2,3,....
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Applying CFRDTM to Eq. (7.70a), we obtain the following recursive formula

C((h+1)a+(k—h)p+1) o

Tt (= B+ 1) Ulh+ 1,k =) = == S U(hk ~ h)
h  k—=h b
- 6(12(; > Ulh—1,5)5 Ul k—h— s)>
h  k—=h
+3<lza‘ 3 V(h—1,5)5-V(Lk—h— s)>.
(7.72)
From the initial condition of Eq. (7.70c), we have
U(0,0) = u(x,0). (7.73)

In the same manner, we can obtain the following recursive formula from
Eq. (7.70b)

L(ho+(k—h+1)p+1) B A B
C(hoa+ (k—h)B+1) Vihk—h+1)= Ox3 Vihk=h)
h k—h
3(2 U(l,khs)V(hl,s)).
=0 5=0
(7.74)
From the initial condition of Eq. (7.70d), we have
V(0,0) = v(x,0) (7.75)

According to CFRDTM, using recursive Eq. (7.72) with initial condition
Eq. (7.73) and also using recursive scheme Eq. (7.74) with initial condition
Eq. (7.75) simultaneously, we obtain

_ 4¢” exp(ex) (=1 + exp(cx))
(1+ exp(ex))’T(1 + o)

U(1,0)

V(0,1) = 4¢3 exp(ex)(—1 + exp(cx))
7 (1+ exp(ex))’T(1+p)

B 96¢% exp(2¢x)(1 — 3exp(cx) + exp(2cx))
(1+ exp(cx))°T(1 + o+ )

l](l7 1) - ’
4c exp(ex)(1 — 14 exp(cx) + 18 exp(2cx) — 14 exp(3ex) + exp(4ex))

V(0,2) = (1+ exp(ex))°T(1+28)

)
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4c® exp(cx) (1 422 exp(cx) — 78 exp(2cx) + 22 exp(3cx) + exp(4ex))

v2.0 = (1+ exp(ex))°T(1+22)

48¢8 exp(2cx)(—1 + exp(cx))?
(1+ exp(cx))’T(1 4o+ f)

V(1,1) =

)

_96¢! €2 (—8 + 81e — 175e7 + 175¢3 — 81e% + 8¢5

U2,1) = (14e)°T(1 + 20+ p)

48C11 ZCx( 1+ ecx)(l 422er — 78620}5 4 2263cx 4 e4cx)

V1= (1+e%)°T(1 420+ f)

and so on.
The approximate solutions, obtained in the series form, are given by

© k
Uhk h (ha+ (k—h)p)
S all

=0 h

>~

U ]’l k— h (ho.+ (k—h) )

M»

0+

—1
4c%e +4
(1+e)”
4cBer(1+

0
k 1
e (=1 4e™)*
14e)’T(1 4 )
226" — 782 4 223  gher) 2
(1+e%)°T(1 4 24)

=
L"H

)

96162 (—8 + 81e — 17562 + 1756* — 81e* + g™ +F

(1+e)’T(1+ 20+ f)

k
ZV h k— h t(h9(+(k h)pB)
0 h=0

Mg

~
I

k
+ ZV h k— h (ho+ (k—h)pB)

1 h=0
4c%ex 4c%e™ (=14 e)th
S (1+e)’  (1+e)’T(1+p)
4c%e(1 — 14e® + 1862 — 14e3 4 e*e)2F
(1+ exp(cx))°T(1+2p)

Mg

~
Il

+

N 486’11 2CX( 1+ch)(1 +22e% — 78620x+2263cx+e4cx)12m+/3

(1+e)°T(1 42+ p)

(7.76)

(7.77)
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When o = 1 and f§ = 1, the solution in Eq. (7.76) becomes

4c%e n 4c%e(—1 +e™)t
(1+ e”‘)2 (1+ e“‘)3

u(x, t) =

7.78
ZCSecx(l — 4o +62m)t2 ( )
(14 eyt
When o = 1 and f§ = 1, the solution in Eq. (7.77) becomes
4 2 .cx 4 5 acx -1 ex\ g
v 1) = ce i e ( +Se)
(14+ew) (14e%)
28 (1 — 4e™ + &)t
(14ex)?

The solutions in Eqgs. (7.78) and (7.79) are exactly the same as the Taylor series
expansion of the exact solution

4cre 4c%e (—1 + ™)t

u(x,t) = v(x, 1) =

(1+e)? (1+er)’ (7.80)
268ecx(1 — et +626x)t2 :
(1+ex)*

In order to verify the efficiency and accuracy of the proposed method for the
time fractional coupled KdV equations, the graphs have been drawn in Figs. 7.10,
7.11, and 7.12. The numerical solutions for Eqs. (7.76) and (7.77) for the special
case where « =1 and f =1 are shown in Fig. 7.10. It can be observed from
Fig. 7.10 that the solutions obtained by the proposed method coincide with the
exact solution. Figure 7.11 shows the numerical solutions of Eqgs. (7.76) and (7.77)
when o = 1/3 and § = 1/5. Again, Fig. 7.12 cites the numerical solutions when
o =0.005 and # = 0.002. From Figs. 7.11 and 7.12, it can be observed that the
solutions for u(x, r) and v(x, t) bifurcate into waves as the time fractional derivatives
o and f decrease.

Example 7.6 Consider the following time fractional coupled KdV equations [42]
D¥u+ 6un, — 6vv, + . =0, (7.81a)
Dy 4 3uv, v = 0, (7.81b)

where ¢t > 0, 0<a, f <1, subject to the initial conditions



260 7 New Techniques on Fractional Reduced Differential ...

Fig. 7.10 Surfaces show (a)
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x,7), and ¢ the
exact solution of u(x,7) =
v(x,7) when oo =1 and f =1

u(x,0) = Jsech? (@) , (7.82)

) 5 (Vox
v(x,0) = 7§sech (T) (7.83)

First, we derive the recursive formula from Egs. (7.81a) and (7.81b). Now,
U(h,k —h) and V(h,k — h) are considered as the coupled fractional reduced dif-
ferential transform of u(x,7) and v(x,7), respectively, where u(x,¢) and v(x,) are
the solutions of coupled fractional differential equations. Here, U(0,0) = u(x, 0),



7.5 Application of CFRDTM for the Solutions of Time ... 261

Fig. 7.11 Surfaces show

a the numerical approximate
solution of u(x,r) and b the
numerical approximate
solution of v(x,7) when o =
1/3and f=1/5

Fig. 7.12 Surfaces show

a the numerical approximate
solution of u(x,#) and b the
numerical approximate
solution of v(x,f) when o« =
0.005 and f# = 0.002

(a)

AL
ZANS,
I AN
e\
-.Q‘.. LAY -A“ég’”’ oy,
-» O
L)
&L

(b)

(b)
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V(0,0) = v(x,0) are the given initial conditions. Without loss of generality, the
following assumptions have taken

U,j)=0, j=1,2,3,... and V(i,0)=0, i=1,2,3,...
Applying CFRDTM to Eq. (7.81a), we obtain the following recursive formula

T((h+ Do+ (k—h)B+1) - &
T(ha+ (k—h)+1) U(h—i—l,k—h),_%

—G(iiU —ls U(lk— h—s)>

U(h,k — h)

1=0 s=0
h k—h 9

+6 Vih—1s)=—V({,k—h—s
22 ( ewd )

(7.84)
From the initial condition of Eq. (7.82), we have
U(0,0) = u(x,0) (7.85)

In the same manner, we can obtain the following recursive formula from
Eq. (7.81b)

C(ho+ (k—h+1)B+1) 3 o
Tt 1) k=) =—55Vihk=h
h  k—h B
—3(12(;&0 U(l,k—h—s) axV(h—l,s)>
(7.86)
From the initial condition of Eq. (7.83), we have
V(0,0) = v(x,0) (7.87)

According to CFRDTM, using recursive Eq. (7.84) with initial condition
Eq. (7.85) and also using recursive scheme Eq. (7.86) with initial condition
Eq. (7.87) simultaneously, we obtain successively

73/?sech? (@‘) tanh (@)
I'(l+a) ’

4y/2)7cosech’ (x\/_> sinh* (\/2_ )
T(1+8) ’

U(1,0) =

V(0,1) =
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354 (—3 +2cosh (xx/Z) ) sech® (@)

viL1)=- 2T(1+o+p) ’
s (9 — l4cosh (xﬂ) + cosh (ZJC\/Z))sech6 (@")
vi0.2) = 8v2I'(1+28) :
24 =39 +22cosh(xv1) + cosh(2xv/Z) )sech® Vix
o LD et ()
96+/2*cosech® (xv/7 ) sinh® (Y2
v(1,1) = F(1+(a+[)3) (2)
and so on.

The approximate solutions, obtained in the series form, are given by

k
ZU hk — h) (ho+ (k—h)p)
h=0

Mz

u(x, 1) =

T
(=}

k
ZU h k— h (ho.+ (k—h)p)
1 h=1

= 0) +
%77 *sech? %) tanh( )
= Jsech? + (7.88)
rl+o

274 (—39 +22cosh (x\/z) + cosh (2x\/z) ) secht (@)

Nk

“‘? T

+ 8T (1 +2)
3074 (=3 + 2 cosh (xV7) )sech® ()
- 2T (1 +a+p) t

ook
v(x, 1) = ZZ V(h,k — h)fhot (=p)

bl
Il
=
Il
o

) L (Vix 4218 )3 cosech’ (xﬂ) sinh* (@)
= ——sech + TP
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N (9 — 14 cosh (xﬂ) + cosh <2xﬂ)> sech® (*/_“")

+
8v2I'(1+2p) (7.89)
96v/21*+F )*cosech® (x\/_) sinh® (\/_ )
C(1+a+p)
When o = 1 and f§ = 1, the solution in Eq. (7.88) becomes
u(x,t) = Jsech? (\/ZX> + 2°/%sech? (\/Zx) tanh (ﬂx>t
2 2 2
a af Vox\
+7 (—2 + cosh (xﬂ))sech (T)t (7.90)
M2 _(xVa - ([(3xVi s(Vix\ 5
+7<—1151Hh<7 +Slnh B sech T r+ -
When o = 1 and f = 1, the solution in Eq. (7.89) becomes
A Ax /
v(x,t) = 7 sech? (X/_T> +4v23cosech’ ()C\/Z) sinh* <@>t
af 4(Vix\ 2
N A ( 24 cosh(xﬁ))sech ( 3 )t (7.91)
4v2
M2 (— 11 sinh (@") + sinh (%)) sech’ (%) 3
24V2

The solutions in Eqgs. (7.90) and (7.91) are exactly the same as the Taylor series
expansions of the exact solutions

u(x,t) = Jsech? (M)
= Jsech® <\/2)ix> + 232sech? <\/2_ ) tanh <\/21X>t
(7.92)

+ %4 (—2 + cosh (x\/Z) ) sech* (@) P

M2 _(xVa - (3xVi s(Vix\ 4
+W —11sinh T +Slnh ) sech T r+ -
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v(x,1) = %sech2 (W)

= % sech? (@) +4v/2°*cosech? (x\ﬁ) sinh? <@) t

a4 (—2 + cosh (xx/j) ) sech? (@) 1
42
2 ( 11 smh(‘f ) + §1nh( ‘[) ) sech’ ("\2&) £
24V2

Again, in order to verify the efficiency and accuracy of the proposed method for
the time fractional coupled KdV equations, the graphs have been drawn in
Figs. 7.13, 7.14, and 7.15. The numerical solutions for Egs. (7.90) and (7.91) for
the special case where o = 1 and f§ = 1 are shown in Fig. 7.13. It can be observed
from Fig. 7.10 that the solutions obtained by the proposed method are exactly
identical with the exact solutions. Figure 7.14 shows the numerical solutions of
Egs. (7.88) and (7.89) when o = 0.4 and = 0.25. Again, Fig. 7.15 cites the
numerical solutions when o = 0.005 and f = 0.002. From Figs. 7.14 and 7.15, it
can be observed that the solutions for u(x, 7) and v(x, t) bifurcate into two waves as
the time fractional derivatives o and f§ decrease.

(7.93)

+

7.5.2  Soliton Solutions for Time Fractional Coupled
Modified KdV Equations

In the present section, CFRDTM has been successfully implemented to determine
the approximate solutions for the following coupled time fractional modified KdV
equations.

Example 7.7 Consider the following time fractional coupled modified KdV equa-
tions [43]

18%u 2 Ou . 30% O(uv) Ou

Diu= 35 7 o T 20x e 3 o Con (7.942)
Py Ov Ou dv ov ov

By, — 2 7 - 2 -

Div= 25— 3va = 3o L3 3 (7.94b)

where t > 0, 0<a, f <1, subject to the initial conditions
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(a)

(b) i e

(d)

Fig. 7.13 Surfaces show a the numerical approximate solution of u(x, ), b the exact solution of
u(x,t), ¢ the numerical approximate solution of v(x,7), and d the exact solution of v(x,f) when
a=1and f=1
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Fig. 7.14 Surfaces show

a the numerical approximate
solution of u(x,r) and b the
numerical approximate
solution of v(x,7) when o =
0.4 and f =0.25

(b)

Fig. 7.15 Surfaces show

a the numerical approximate
solution of u(x,#) and b the
numerical approximate
solution of v(x,f) when o =
0.005 and f# = 0.002

(b) AT

e g 3 ‘
LA, ‘~ N
0015 ol Q“;&:&»

&
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u(x,0) :% + tanh(x), (7.94c¢)

v(x,0) = 1+ tanh(x). (7.94d)

The exact solutions of Egs. (7.94a) and (7.94b), for the special case where
o = f =1, are given by

1
u(x,t) = 3 + tanh(x + ct), (7.95a)

v(x,1) = 1+ tanh(x+ ct). (7.95b)

In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled modified KdV equations. Firstly, we derive the recursive
formula from Egs. (7.94a), (7.94b). Now, U(h,k — h) and V(h,k — h) are con-
sidered as the coupled fractional reduced differential transform of u(x, 7) and v(x, 1),
respectively, where u(x,t) and v(x,t) are the solutions of coupled fractional dif-
ferential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial
conditions.

Without loss of generality, the following assumptions have been taken

U(0,j)=0, j=1,2,3,...and V(,0) =0, i=1,2,3,....

Applying CFRDTM to Eq. (7.94a), we obtain the following recursive formula

C((h+1a+(k—h)p+1) o1& B
Tl (k- mp1) AT lk=h=35500k=h)
30? %)
+ 353 V(hk—h) =35 Uhk—h)
o [ k=t
+3—= (Z Uh—1,s)V(,k—h— v))
N\ ==
h h=r k—h k—h—s
3(2 U(r,k—h—s—p)
r=0 =0 s=0 p=0
3]
XU(l,s)aU(h —r— l,p))
(7.96)
From the initial condition of Eq. (7.94c), we have
U(0,0) = u(x,0) (7.97)

In the same manner, we can obtain the following recursive formula from
Eq. (7.94b)
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T'(ho+(k—h+1)+1) B _3_3 2 )
Tt prD) k= ht D) =—55Vink=h)+35 Vihk—h)
h  k—h 9 ) )
—U(lLbk—h—s)=—V(h—1s)
<;;ax Ox
h  k—h 9
(ZZV” h—=s)o V(h—l,S)>
=0 s=0 Ox
h  h—r k—h k—h—s
(ZZ SN Ulrk—h—s—p)
r=0 (=0 s=0 p=0
13}
<0t 2 un - l,p))
(7.98)
From the initial condition of Eq. (7.94d), we have
V(0,0) = v(x,0) (7.99)

According to CFRDTM, using recursive Eq. (7.96) with initial condition
Eq. (7.97) and also using recursive scheme Eq. (7.98) with initial condition
Eq. (7.99) simultaneously, we obtain

~ sech’(x)
U(1,0) = — m,
sech? (x)
V(0,1) = — T+ 5
B 3sech?(x) tanh(x)
YO = p)
_sech’(x)(9 cosh(x) — 3 cosh(3x) + 32 sinh(x) — 4 sinh(3x))
v(0,2) = 8T(1+25) ’
_ 7sech?(x) tanh(x)
U(2,0) = — TRT(1420)
V1) = 3sech®(x)(—12 cosh(x) + 4 cosh(3x) — 43 sinh(x) + 5 sinh(3x))
(L1 = 32I(1 + o+ ) ’
and so on.

The approximate solutions, obtained in the series form, are given by
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k
Z U h k— h (ho+ (k—h) )
=0

0)+§:Zk:Uhk h) et (k=h)p)

0
NE

T
(=}
=

k=1 n=1 (7.100)
1 t*sech’(x)  7¢**sech?(x) tanh(x)
5 T anht) — I Ty 8T (1 +2)
31** Psech?(x) tanh(x)
Aar(14+o+p)

k
ZV h k — h (ho+ (k—h)B)
h=0

0
NgE

T
(=1

k

0)+iZth Rt (=)

k=1 h=0
t#sech? (x)
AT (14 )
n *Psech’ (x)(9 cosh(x) — 3 cosh(3x) + 32 sinh(x) — 4 sinh(3x))
8T (1 +2B)
3¢+ Psech’ (x)(—12 cosh(x) + 4 cosh(3x) — 43 sinh(x) + 5 sinh(3x))
+ +
32T (1+a+p)

= 1+ tanh(x) —

(7.101)
When o = 1 and f = 1, the solution in Eq. (7.100) becomes
1 tsech’ *sech’ (x) tanh
u(x, ) = : + tanh(x) — sec4 (x) t7sec (icg anh(x)
. (7.102)
_ Psech®(x)(=2 + cosh(2x)) N
192
When o = 1 and f = 1, the solution in Eq. (7.101) becomes
tsech’ *sech’ (x) tanh
v(x,1) = 1 + tanh(x) — sec4 (x) _ isec (fé) anh(x)
. (7.103)
Psech®(x)(—2 + cosh(2x)) N
192

The solutions in Egs. (7.102) and (7.103) are exactly the same as the Taylor
series expansions of the exact solutions
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1 t
u(x, t) = 3 + tanh(x - Z)

1 rsech?(x)  £*sech?(x) tanh(x)
- h(x) — _ 7.104
5+ tan (x) 2 G ( )
sech?(x)(—2 + cosh(2x)) n
192

t
v(x,t) = 1+ tanh (x - Z)

tsech’ 2sech?(x) tanh

1+ tanh(x) — sech”(x)  #“sech”(x) tanh(x) (7.105)
4 16

fsech*(x)(—2 + cosh(2x)) n

192

In order to explore the efficiency and accuracy of the proposed method for the
time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.16a—d. The numerical solutions for Egs. (7.102) and (7.103) for the special
case where oo = 1 and f§ = 1 are shown in Fig. 7.16a, b. It can be observed from
Fig. 7.16a—d that the solutions obtained by the proposed method coincide with the
exact solution. In this case, we see that the soliton solutions are kink types for both
u(x,t) and v(x,1).

Example 7.8 Consider the following time fractional coupled modified KdV equa-
tions [44]

L, 10%u ,0u 39 _O(uv) Ou
Dl =3~ ot 2ae T3y o (7.106a)

v v Oudv v v

va:—$—3va—3aa+3u2a—3a, (7.106b)

where ¢ > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = tanh(x), (7.106c¢)
v(x,0) = 1 — 2 tanh?(x). (7.106d)

The exact solutions of Egs. (7.106a) and (7.106b) obtained by Adomian
decomposition method, for the special case where o = f§ = 1, are given by

u(x,t) = tanh(x — 1), (7.107a)
v(x,1) = 1 — 2tanh*(x — ). (7.107b)

In order to assess the advantages and the accuracy of the CFRDTM for solving time
fractional coupled modified KdV equations, firstly we derive the recursive formula
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Fig. 7.16 Surfaces show (a) P
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1
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from Egs. (7.106a), (7.106b). Now, U(h, k — h) and V(h, k — h) are considered as the
coupled fractional reduced differential transform of u(x,#) and v(x, 1), respectively,
where u(x,¢) and v(x, ) are the solutions of coupled fractional differential equations.
Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial conditions.

Without loss of generality, the following assumptions have been taken

U(0,j) =0, j=1,23,...

and V(i,0) =0,

i=1,2.3,...

Applying CFRDTM to Eq. (7.106a), we obtain the following recursive formula

T((h+1)a+ (k—h)B+1)

T(ho+ (k — h)p+ 1)

Ulh+

+1,k—h) =

From the initial condition of Eq. (7.106c), we have

U(0,0) = u(x,0)

16
353 U(h,k —h)
307 3]
+ 550 Vnk—h)+3--Ulhk—h)
o [ kh
13- (Z Uh—1,8)V(l,k—h— v))
N\ ==
h  h—r k—h k—h—s
3(2 Ulryk—h—s—p)
r=0 =0 s=0 p=0
xU(l )QU(h— L,p)
7S 8){ r 7p
(7.108)
(7.109)

In the same manner, we can obtain the following recursive formula from

Eq. (7.106b)

C(ho+ (k — h+1)+1)
T(ho+ (k— h)p+ 1)

V(hk—h+1) =

i 9
hk—h)—=3=V(h,k—h
o Vk =) =35V (i k— )

»

—/

Ul k—h—s)%\/(h—l,s))

w
i
Sé’l@

»
=

V(lk— hs)gV(hl,s)>
X

> v

p=0

U(h—r—lp))

T
LS

k=h k s

U(r,k—h—s—p)

T
gt

s=0

‘!
Il
o
Il
o

N
(58
(

,s)

S’IQ3

(7.110)
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From the initial condition of Eq. (7.106d), we have

V(0,0) = v(x,0) (7.111)

According to CFRDTM, using recursive Eq. (7.108) with initial condition

Eq. (7.109) and also using recursive scheme Eq. (7.110) with initial condition
Eq. (7.111) simultaneously, we obtain

U(1,0) = — I{iclhijr(z
V(0,1) = ‘W
U(,1) = — 245;%:(2 tf};l;(x)
V(0,2) = WL - izcisg(ﬁz)ﬂ + cosh(4v))
U(2,0) = - ZBF cos}}((21x)ls;§;14(x) tanh(x)
V(1,1) = 485;0(*1“<+xitin;;<x> |

and so on.
The approximate solutions, obtained in the series form, are given by

k
Z U h k — h (ho.+ (k—h) )

"
NgE

k=0 h=0
ok
=U(0,0 +ZZUhk p)ph s (=h)
=1 =1 (7.112)
t°‘sech2 (x)  £2*(—23 + cosh(2x))sech*(x) tanh(x)
= tanh(x) — -
T(1+0) T(1+22)

241** Psech*(x) tanh(x)
I(1+o+p)
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V(h,k — )i+ k=1h)

M»

0=

k=0

>
I
o

V(h, k — )i+ (k=p)

M»

00+

k=1

>
i

0
4tPsech?(x) tanh(x) (7.113)
C(1+p)
n *Psech®(x)(21 — 26 cosh(2x) + cosh(4x))
I'(1+2p)
48¢*+ Fsech*(x) tanh? (x)
I'l4+a+p)

=1 — 2tanh?(x) +

When « = 1 and f§ = 1, the solution in Eq. (7.112) becomes

u(x, 1) = tanh(x) — rsech?(x) — r*sech?(x) tanh(x)
sech*(x)(—2 + cosh(2x)) (7.114)
- 3 +...

When o = 1 and f§ = 1, the solution in Eq. (7.113) becomes

v(x,7) = 1 — 2tanh?(x) 4 4rsech®(x) tanh(x) + 2*sech*(x)(—2 + cosh(2x))
2¢3sech’ (x)(—11 sinh(x) + sinh(3x)) N
3

(7.115)

The solutions in Eqgs. (7.114) and (7.115) are exactly the same as the Taylor
series expansions of the exact solutions

u(x,t) = tanh(x — )
= tanh(x) — sech?(x) — r*sech?(x) tanh(x)

o (7.116)
*sech®(x)(—2 + cosh(2x))
3 +
v(x,1) = 1 — 2tanh*(x — 1)
= 1 — 2 tanh?(x) + 4ssech?(x) tanh(x)
+ 2¢%sech® (x)(—2 + cosh(2x) (7.117)
23sech’ (x)(—11 sinh(x) + sinh(3x))
3 +

Again, in order to verify the efficiency and reliability of the proposed method for
the time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 7.17a—d. The numerical solutions for Eqs. (7.114) and (7.115) for the special
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case where oo = 1 and ff = 1 are shown in Fig. 7.17a—d. It can be observed from
Fig. 7.17a—d that the soliton solutions obtained by the proposed method are exactly
identical with the exact solutions. In this case, we see that the soliton solutions are
kink type for u(x,¢) and bell type for v(x,?).

Verification of Classical Integer-Order Solutions by ADM

In case of =1 and =1, to solve Egs. (7.106a) and (7.106b) by means of
Adomian decomposition method (ADM), we rewrite Egs. (7.106a) and (7.106b) in
an operator form

10%u 30% Ou
L= 55 ~ A0+ 353 +38(e) 4350, (7.118)
Ay Ov
Ly =25 =3C(v) = 3G(u,v) +3H(u,v) =3, (7.119)

where L, = at is the easﬂy invertible linear differential operator with its inverse
operator L7'(.) = [j(.)dt. Here, the functions A(u)=u?2, B(u,v) = d([,)’;v)
Clv) = vgv, G(u7 v) = g}’j g;’, and H(u,v) = u>2" are related to the nonlinear terms
and they can be expressed in terms of the Adomlan polynomials as follows:

A(u) = 3220 An, Bu,v) = 3250 By, C(v) = 32,50 Cu G(u,v) = 32,2 Gy, and
H(u,v) = > ", H,. In particular, for nonlinear operators A(u) and B(u,v), the
Adomian polynomials are defined by

1 a x,
Ap=—— (A S 2 , n>0
ntdi’ l <kz; ”k>1 )=0 "
- 1=
B—14 |p iz" S >0
n — 'din ukaz/“vk ) n-=
n =0 =0 1=0

The first few components of A(u), B(u,v), C(v), G(u,v), and H(u,v) are,
respectively, given by

2
Ao = uguoy,
A =ul 2
1| = Uglx + 2uply Uy,

2 2
An = ugy(2uouy + uy) + ughoy + 2upu Uy,
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Fig. 7.17 Surfaces show

a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(c)

(d)
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By = upvox + volox,
By = ugvix + vinoy + u1vor + volry,
By = ugvo, + vaugy + U1 Vix + Vil + Ua Vo, + Vollox,
.
Co = vovox,
C1 = voVix + ViVox,
Cy = viVix + Vovar + Vavoy,
.
Go = uoxvor,
G = upVix + Voltix,
Gy = upevix + voxltoy + toxVax,
.
2
Hy = ugvox,
2
H{ = ugvix + 2uouvox,
2 2
Hy = v (2uous + uy) + ugvax + 2uouy viy,
.

and so on, and the rest of the polynomials can be constructed in a similar manner.
Now, operating with L' on the both sides of Egs. (7.118) and (7.119), yields

15 39° 9
w(x, £) = u(x,0) + L7 (58_;; ~3A(u) + 58—;2} 4 3B(u,v) +38—Z), (7.120)

3

v(x,1) = v(x,0) + L " (—% —3C(v) —3G(u,v) +3H(u,v) — 3%) (7.121)

The ADM assumes that the two unknown functions u(x,¢) and v(x,#) can be
expressed by infinite series in the following forms
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u(x,t) = Zun(x, 1), (7.122)
n=0

v(x,t) = ivn(x, 1). (7.123)
n=0

Substituting Eqgs. (7.122) and (7.123) into Eqs. (7.120) and (7.121) yields

uo(x, 1) = u(x,0),

1 (10Pu,(x,1) 30%v,(x,1) Ouy(x, 1)
un+1(x,t):L[1(57—3%”—!—57—1—33”—1—3 ax )7 nZO
(7.124)
V()(X, t) = V()C, O)v
3
vw1u¢):Lﬁ(—g%%§2—3q,—ya+3Hn—3@%%i5, n>0.
(7.125)

Using known ug(x, ) and vy(x,7), all the remaining components u,(x,#) and
Va(x,1), n > 0 can be completely determined such that each term is determined by
using the previous term. From Egs. (7.124) and (7.125) with Egs. (7.106¢) and
(7.106d), we determine the individual components of the decomposition series as

uy = tanh(x),
vo = 1 — 2tanh?(x),
u; = —tsech’(x),
v1 = 4t sech?(x) tanh(x),

uy = —1* sech? (x) tanh(x),

vy = 26*(—2 + cosh(2x))sech*(x),

1
uz = _§f3(—2‘|‘ cosh(2x))sech* (x),

2
=3 £ sech’ (x)(—11 sinh(x) + sinh(3x)),
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and so on, and the other components of the decomposition series (7.122) and
(7.123) can be determined in a similar way.

Substituting these ug, uy,us,... and vg, vy, va, ... in Egs. (7.122) and (7.123),
respectively, gives the ADM solutions for u(x, ) and v(x,7) in a series form

u(x, 1) = tanh(x) — rsech?(x) — r*sech?(x) tanh(x)

1 (7.126)
- 313(—2 + cosh(2x))sech* (x) + - - -,
v(x,7) = 1 — 2tanh?(x) 4 4rsech®(x) tanh(x)
+ 272 (=2 4+ cosh(2x))sech*(x) (7.127)
2
+ §t3sech5(x)(—ll sinh(x) + sinh(3x)) + - -.
Using Taylor series, we obtain the closed-form solutions

u(x,) = tanh(x — 1), (7.128)
v(x,7) = 1 — 2 tanh®(x — 1). (7.129)

With initial conditions (7.106¢) and (7.106d), the solitary wave solutions of
Egs. (7.118) and (7.119) are of kink type for u(x,¢) and bell type for v(x, ) which
agree to some extent with the results constructed by Fan [44]. According to the
learned author Fan [44], the solitary wave solutions of Eqs. (7.118) and (7.119) are
kink type for u(x,f) = tanh(x+ %) and bell type for v(x,#) =3 — 2 tanh®(x + £),
where k = 1 and A = —1. There is definitely a mistake to be reckoned with and
should be taken into account for further study. Since using the same parameters
k=1 and 4 = —1, the solitary wave solutions of Egs. (7.118) and (7.119) have
been obtained as in Eqgs. (7.128) and (7.129).

In the present analysis, the two methods coupled fractional reduced differential
transform and Adomian decomposition method confirm the justification and cor-
rectness of the solutions obtained in Eqs. (7.128) and (7.129).

7.5.3 Approximate Solution for Fractional Predator-Prey
Equation

In order to assess the advantages and the accuracy of the CFRDTM, we consider
three cases with different initial conditions of the predator—prey system [54]. Firstly,
we derive the recursive formula obtained from predator—prey system of
Egs. (7.10)—~(7.11). Now, U(h,k — h) and V(h,k — h) are considered as the cou-
pled fractional reduced differential transform of u(x, y, ) and v(x, y, t), respectively,
where u(x,y,t) and v(x,y,t) are the solutions of coupled fractional differential
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equations. Here, U(0,0) = u(x,y,0), V(0,0) = v(x,y,0) are the given initial
conditions. Without loss of generality, the following assumptions have taken

U(,j)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....
Applying CFRDTM to Eq. (7.10), we obtain the following recursive formula

I((h+1)o+(k—h)p+1) 0? 0?

REESCEE Ulh+1,k = h) =55 Ulhk = h) + a—yzU(h,k—h)
+aU(h,k —h) —b<i§U(h—l,s)V(l,k—h—s)>,
=0 s=0
(7.130)

From the initial condition of Eq. (7.10), we have
U(0,0) = u(x,y,0). (7.131)

In the same manner, we can obtain the following recursive formula from
Eq. (7.11)

F(;l?hzik(;fz)lﬁ)ﬁ)l) V(b k—h+1) = %V(k,k R+ aa;V(hJc —n)
+b<zh:kzh Ul,k—h—s)V(h— l,s))
=0 s=0
—cV(hk—h).
(7.132)
From the initial condition of Eq. (7.11), we have
V(0,0) = v(x,,0). (7.133)

Applications and Results

Now, let us consider the three cases of the predator—prey system.
Case 1: Here, we consider the fractional predator—prey equation with constant
initial condition

u(x,y, 0) = Up, V(%)’a 0) =V (7134)

According to CFRDTM, using recursive scheme Eq. (7.130) with initial con-
dition Eq. (7.131) and also using recursive scheme Eq. (7.132) with initial condi-
tion Eq. (7.133) simultaneously, we obtain
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U[Oa 0} = u(x,y, 0) = Uo, V[Ov 0] = v(x,y, O) =0,

_up(a — bw) (bugvo — cvp)

U[1,0] m, V[0, 1] :W’
_ up(a — bvo)2
VRO TR
_ vole — bu)®
V02 ="Fiap)
_ buo(—cvo + buovo)
Ul = -,
_ bugvo(a — bvo)
__ ble=bu)’uov
U= =i 2p)
Vi1 = bug(c — bug)vo(—(a — 2bvo)T (1 + )T (14 B) + (—a+ bvo) (1 + o+ )
o C(1+a+28)T(1+a)T(14f) ’
U, 1] = bugvo(a — bv)((c — 2bug)T (1 + )T (1 4 B) + (¢ — bug)T'(1+ o+ f))

C(1+ 20+ B)T(1+a)T(1+ p) ’

o bbt()\/()(a — bV0)2

Vi21]= C(1+2a+p) "’
_up(a — by )

UBO = Fir
_ vole— bug)’

vio.3) = r(1+3p) °

and so on.
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The approximate solutions, obtained in the series form, are given by

ook
u(x,y, 1) = U(0,0) +ZZUhk R+ (=i)f)

=1 h=1

224

- up(a — bvo)t*  up(a — bvy)r* (7.135)
r'(l1+oa) (14 2a)
up(a — bv0)3t3°‘ B bug(—cvo + bugve)t*+F
(14 3a) IF(1+o+p)

ook
v(x,y, 1) = V(0,0)+ Y > V(hk — h)"* B

k=1 h=0
— o+ (bro() — CVQ)lﬁ broo((l — va)ll+/} (7 136)
r'(1+p) Ir(l4+a+p)
bugvo(a — bv0)212“+5
T(1+ 20+ f)

Figure 7.18 cites the numerical solutions for Eqs. (7.10)—(7.11) obtained by the
proposed CFRDTM method for the constant initial conditions u#y = 100, vy = 10,
a =0.05, b =0.03, and ¢ = 0.01. Figure 7.19 shows the time evolution of popu-
lation of u(x,y,t) and v(x,y,?) obtained from Egs. (5.2) to (5.3) for different values
of o and f. In the present numerical analysis, Table 7.2 shows the comparison of
the numerical solutions with the proposed method with homotopy perturbation
method and variational iteration method, when a = 0.05, b = 0.03, and ¢ = 0.01.
From Table 7.2, it is evidently clear that CFRDTM used in this paper has high
accuracy. The numerical results obtained in this proposed method coincide pre-
cisely with values obtained in the homotopy perturbation method.

Case 2: In this case, the initial conditions of Egs. (7.10)—(7.11) are given by
u(x,y,0) = e v(x,y,0) = e**. (7.137)
By using Egs. (7.130) to (7.133), we can successively obtain
U[0,0] = u(x,y,0) = ">, V[0,0] = v(x,y,0) = e,

DeXt+y +aex+y _ b62x+2y
I(1+a) ’

U[1,0] =

2ex+y _ Cex+)’+b62x+2y

I'(1+p) ’

v[0,1] =
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b+ (2 — ¢+ be*tY)

Ull,1] =

Cl+atp)
b 2(x+y) 9 _ betty
V[l,l]:—e ( a—+be )’
T(1+a+p)
ex+y(4 +a2 — 10be* Y +b2e2<x+}’) +a(4 _ 2b6x+y))
U[2,0] = |
I'(1+2x)
v[0,2] = & (4 + P 4 10be" P 4 b2 ) — 2c(2+ be* )
T '(1+2p) )
Uitg] — DA 100e T P - 26(2 4 bet )

L(1+o+p) ’

V[1,2] = (b*“ ) (—(a(—8 + ¢ — be" ) +2(—8 + ¢ + 9be*
— bee" T + b T(1+ o) T(1 4 p)
+(2+a—be")(2 - c+be"tY)
xT(14+a+p)/(T(1+a)[(1+ BT (1 +a+2p)),

eI (8+a® — 84be™ Y + 285720 ) — P33 4 g2 (6 — 3be™ ) 4 3a(4 — 10be" Y + peA )
I'(1+43a) ’

U[3,0] =

e V(8 — ¢ 4 84bet TV 4 280220+ + P33 HY) + 3¢2(2 4 het V) — 3c(4 + 10bet Y 4 22 HY)))

vio,3 = r(1+3p)

and so on.
The explicit approximate solution is

(zeery +aex+y _ b62x+2y)ta

u(ey.f) = e+

I'l+a)
L e+ @~ 10be T B2 a4 - 2be )
(1 +2a) ’
(7.138)
and
2eXtTY _ ceXtY 4 p 2x+2y tﬁ
e = ey O e )

(7.139)

bez(x+y)(_2 _ a+bex+y)ta+[)’
— + -,
C(14a+p)
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Fig. 7.18 Time evolution of the population for u(x,y, ) and v(x,y,t) obtained from Egs. (7.135)

0.2 04 0.6

and (7.136), when o =1, f =1
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Fig. 7.19 Time evolution of the population for u(x, y, ) and v(x, y,t) obtained from Egs. (7.135)

and (7.136) for different values of o and f

Table 7.2 Comparison of the numerical solutions of the proposed method with homotopy

Tone

perturbation method and variational iteration method

Numerical value
(u, v) by HPM

Numerical value
(u, v) by VIM

Numerical value
(u, v) by CFRDTM

(99.4831, 10.6146)
(99.1865, 10.9633)

(99. 4834, 10.6323)
(99.3065, 10. 8375)

(99.4831, 10.6146)
(99.1865, 10.9633)

(93.0910, 17.8514)
(90.5735, 20.5567)

(93. 3908, 17.7382)
(92.4584, 18.8198)

(93.0910, 17.8514)
(90.5735, 20.5567)

T a=p
0.02 1

0.9
0.2 1

0.9
0.3 1

0.9

(87.9348, 23.4430)
(83.7993, 27.7785)

(88. 9466, 22. 7237)
(87. 8005, 24.0532)

(87.9348, 23.4430)
(83.7993, 27.7785)
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Figures 7.20 and 7.21 cite the numerical approximate solutions for the predator—
prey system with the appropriate parameter. The obtained results of predator—prey
population system indicate that this model exhibits the same behavior observed in
the anomalous biological diffusion fractional model.

Figures 7.22 and 7.23 show the numerical solutions for prey population density
for different values of parameters a, b, i.e., the natural birthrate of prey population
and competitive rate between predator and prey populations. The results depicted in
graphs agree with the realistic data.

Case 3: In this case, we consider the initial condition of fractional predator—prey
Egs. (7.10)—(7.11)

U[0,0] = u(x,y,O) = \/x—y, V[07 0] = v(xvya 0) = ex+y’ (7'140)

N N S _ perty
2 A “"a\/ﬁ € \/E

Xy

r'(1+oa) ’

U[1,0] =
2eXty Ce.r+y+bex+y\/x—y
C(1+p) ’

be* ¥ /3y (2 — ¢ + by /xy)
I(1+oa+p) ’

V[0,1] =

Ull,1] =

—be* TV (y? +x%(1 — 4ay? + 4be* +2y?))
4()*T (1 + o+ p)

VL, 1] =

1
U[27O} = m\/x—y(—ISy4 — l6bex+yx3y4 +X2(2y2 — 8(a — bex+y)y4)
+x* (=15 + 16a°y* + 16p22 Yy

— 8be" Y (—1 42y +4y%) — 8ay* (1 +4be" %)),

e (A(=2+ ) (09)*7 + 407 (1) — b(y? — dxy? +x3(1 — dy +8(=2+c)y?)))
A(xy)*PT(1+2p)

v[0,2] =

)

and so on.
The solution becomes

K 2
(-~ eV by
I'l+a)

“(X7Yat):\/JC_Y+ +7 (7141)
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10 00

Fig. 7.20 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=054,a=0.7,b=0.03,¢=0.3, and t = 0.53

Fig. 7.21 Surface shows the numerical approximate solution of v(x,y,#) when o = 0.88,
p=054,a=07,b=0.03c=09,and 7= 0.6
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Fig. 7.22 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=054,a=05,b=0.03 c=03, and r = 0.53

Fig. 7.23 Surface shows the numerical approximate solution of u(x,y,f) when o = 0.88,
p=0.54,a=0.7,b=0.04 c=0.3, and r = 0.53
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and

(26" — ce™ TV 4 be" TV ay) 1P
C(1+p)

(—be* Y (y? + 22(1 — day? + 4be* HVy?) ) P

4(0)’ T (1 +a+ )

V(x7y7 t) =t +

(7.142)
+

+...,

7.5.4 Solutions for Time Fractional Coupled
Schriodinger-KdV Equation

In the present analysis, fractional coupled Schrodinger—KdV equations with
appropriate initial conditions have been solved by using the novel method, viz.
CFRDTM.

Example 7.9 Consider the following time fractional coupled Schrédinger—-KdV
equation

iDYu; = Uy + uv, (7.143a)
va, = —6VVy — Vyer + (\u\z)x, (7.143b)

where t > 0, 0<a, f <1, subject to the initial conditions

u(x,0) = 6v/2ePk>sech? (kx), (7.143c)
16k
v(x,0) = ’% — 6K tanh? (kx). (7.143d)

The exact solutions of Egs. (7.143a) and (7.143b), for the special case where
o = f =1, are given by [55]

u(x, 1) = 6v/2e™k*sech? (k¢), (7.144a)
1 2
v(x,1) = % — 6k* tanh? (k¢), (7.144b)

where

t 10kt
0= (% +pt— 3 +pX),f = x+2pt,

and p, k are arbitrary constants.
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In order to assess the advantages and the accuracy of the CFRDTM for solving
time fractional coupled Schrédinger—KdV equation, firstly we derive the recursive
formula from Egs. (7.143a), (7.143b). Now, U(h,k — h) and V(h,k — h) are con-
sidered as the coupled fractional reduced differential transform of u(x, ¢) and v(x, #),
respectively, where u(x, ) and v(x,7) are the solutions of coupled fractional dif-
ferential equations. Here, U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial
conditions. Without loss of generality, the following assumptions have taken

U(0,/)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....

Applying CFRDTM to Eq. (7.143a), we obtain the following recursive formula

C((h+ 1)+ (k—h)p+1) s
Uh+1,k—h U(h,k—h
Tt (k—mp+1) DU+ LEk=h) =—ig5U( )
hk=h
—iY > UMh—=1s)V(k—h—s).
=0 s=0
(7.145)
From the initial condition of Eq. (7.143c), we have
U(0,0) = u(x,0). (7.146)

In the same manner, we can obtain the following recursive formula from
Eq. (7.143b)

C(ha+ (k—h+1)B+1) h
Tt (k—mpr1) k= htD =5 <ZO
o3

x~
=

i

Ul,k—h—s)U (h—l,s)>

=~

V(i khs)axv(hl,s)>

=0 s=0
(;‘) 33 V(h,k — h)
(7.147)
From the initial condition of Eq. (7.143d), we have
V(0,0) = v(x,0). (7.148)

According to CFRDTM, using recursive equation (7.149) with initial condition
Eq. (7.146) and also using recursive scheme Eq. (7.147) with initial condition
Eq. (7.148) simultaneously, we obtain
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2/2k?sech? (kx)(—i cos(px) + sin(px))(p — 3p* + 10k> — 12ipk tanh(kx))
I'(l+a) ’

U[1,0] =

24pk3sech? (kx) tanh (kx)
C(1+p) ’

72+/2pk’sech® (kx) (—i cos(px) + sin(px)) sinh(2kx)
I(1+a+p) ’

V[0, 1] =

Ull,1] =

12pk* (=3(p + 48k?) — 2(p — 48k?) cosh(2kx) + p cosh(4kx))sech® (kx)

vio,2] = T(1+2p) ’

576pk®(—3 + 2 cosh(2kx))sech® (kx)
T(1+a+p) ’

V[1,1] =

and so on.
The approximate solutions, obtained in the series form, are given by

M(JC, t) — ZZ U(h,k, _ h)t(hoHr(kLh)ﬁ)

= U(0,0) + ZZUhk’ p)t WE)

=6V2 kzsechz(kx)e’px
727/ 2pk t*+ Psech® (kx) (—i cos(px) + sin(px)) sinh(2kx)
+
I'(l4+o+p)

(7.149)

oo K
_ ZZ V(K — )t @=0p

k'=0 h=0

V(0,0 +ZZth’ Yt W=mp) o
=1 h=0 (7.150)

24pk3tPsech? (kx) tanh (kx)
I'(1+p)
N 576pk®t*+F(—3 + 2 cosh(2kx))sech® (kx) N
I'(1+a+p)

16>
_r+ 6" tanh? (kx) +

When o =1 and § = 1, the solutions in Egs. (7.149) and (7.150) are exactly
same as the Taylor series expansions of the exact solutions
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u(x, 1) = 6v/2e™k*sech? (k¢), (7.151)
2
v(x,1) = ’# — 6k tanh? (k¢). (7.152)

In the present numerical experiment, Egs. (7.149) and (7.150) have been used to
draw the graphs as shown in Figs. 7.24, 7.25, 7.26, and 7.27, respectively. The
numerical solutions of the coupled Sch—KdV equation (7.143) have been shown in
Figs. 7.24,7.25, 7.26, and 7.27 with the help of third-order approximations for the
series solutions of u(x,¢) and v(x, ), respectively. In the present numerical com-
putation, we have assumed p = 0.05 and k£ = 0.05. Figure 7.28 confirms that exact
solution and approximate solutions coincide reasonably well with each other and
consequently there is a good agreement of results between these two solutions when
oo =1 and f = 1. Figures 7.24, 7.25, 7.26, 7.27, and 7.28 show one-soliton solu-
tions for coupled Sch-KdV equation (7.143). Table 7.3 explores the comparison
between CFRDTM and Adomian decomposition method (ADM) results for
Re(u(x, 1)) and v(x, ) when o = 1 and § = 1. It manifests that CFRDTM solutions
are in good agreement with ADM solutions cited in [49].

Figures 7.29, 7.30, and 7.31 exhibit the numerical solutions of the coupled Sch—
KdV equations (7.143) when o = 0.25 and f# = 0.75.

Example 7.10 Consider the time fractional coupled Schrédinger—-KdV equations
(7.143a)—(7.143b) with the following initial conditions

u(x,0) = tanh(x)e™, (7.153a)

11
v(x,0) = o 2 tanh?(x). (7.153b)

The exact solutions of Egs. (7.143a) and (7.143b), for the special case where
o= f =1, are given by

u(x, 1) = tanh(x + 2¢)e/* 1), (7.154a)
11 ,
v(x,1) = B~ 2 tanh(x + 2¢) (7.154b)

Proceeding in a similar manner, using Eqgs. (7.149) and (7.147), we can obtain

(cos(x) + isin(x))(24sech?(x) + 25i tanh(x))

UlL,0 = 12T°(1 +0) ’

8sech?(x) tanh(x)

ek (F T
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fomst

(c)

Fig. 7.24 a Approximate solution for Re(u(x,7)) when =1 and =1, b corresponding
solution for Re(u(x, 7)) when 7 = 1, and ¢ the exact solution for Re(u(x,7)) when o = 1 and § = 1

(a) (b) N
0003 // \\
/
. .
B g 23)] -_\w\\ N . ¢
\\\ -m/s L
%
J
(c)
Bl e2]]

Fig. 7.25 a Approximate solution for Im(u(x,7)) when « =1 and =1, b corresponding
solution for Im(u(x, 7)) when 7 = 1, and ¢ the exact solution for Im(u(x,#)) when o = 1 and f = 1
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(a)

Mbslugpre (2]

(c)

Abssanc (2]

Fig. 7.26 a Approximate solution for Abs(u(x,z)) when o =1 and ff =1, b corresponding
solution for Abs(u(x,z)) when ¢ =1, and ¢ the exact solution for Abs(u(x,7)) when o =1 and

p=1

Fig. 7.27 a Approximate solution for v(x,#) when & = 1 and § = 1, b corresponding solution for
v(x,7) when # = 1, and ¢ the exact solution for v(x,#) when « =1 and ff =1
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(a)
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0
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L L ”
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Fig. 7.28 a Exact and approximate solutions for Re(u(x,#)), b the exact and approximate
solutions for Im(u(x,?)), and ¢ the exact and approximate solutions for v(x, ) when ¢ = 1
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Fig. 7.29 a Approximate solution for Re(u(x,7)) when o =0.25 and = 0.75, and b corre-

sponding solution for Re(u(x,7)) when t = 1

(a)

Brfugony (2]

0005 |

n

Fig. 7.30 a Approximate solution for Im(u(x,7)) when oo =0.25 and = 0.75, and b corre-

sponding solution for Im(u(x, 7)) when r =1

(a) (b) -

-40 =0 ]

X

40

Fig. 7.31 a Approximate solution for v(x, ) when o = 0.25 and # = 0.75, and b corresponding

solution for v(x,#) when r = 1
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Fig. 7.32 a Approximate solution for Abs(u(x,r)) when « =1 and f=1, b corresponding
solution for Abs(u(x,#)) when ¢ = 0.2, and ¢ the exact solution for Abs(u(x,¢)) when o = 1 and
p=1
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Fig. 7.33 a Approximate solution for Re(u(x, 7)) when o = 1 and § = 1, b corresponding solution
for Re(u(x, 1)) when ¢ = 0.4, and ¢ the exact solution for Re(u(x,7)) when « =1 and f = 1

B 8isech®(x)(cos(x) + i sin(x)) tanh?(x)
ult 1= I(14+o0+p)

)

20(—2 + cosh(2x))sech?*(x)
I(1+2p) ’

v[0,2] =

isech*(x)e™(9408 + 192 cosh(2x) + 5858 sinh(2x) + 625i sinh(4x))
11521 (1 + 2)

U2,0] =

)

|42+ cosh(20)seah'y
VL1 = - T(1+o+f) ’

and so on.

The approximate solutions can be obtained by Eq. (7.29).

Figure 7.35 confirms that exact solution and approximate solutions coincide
reasonably well with each other and consequently there is a good agreement of
results between these two solutions when « =1 and f = 1.

Figures 7.32, 7.33, 7.34, 7.35, 7.37, 7.38, 7.39, and 7.40 exhibit the numerical
solutions of the coupled Sch—KdV equations (7.143a)—(7.143b) with initial con-
ditions (7.153a)—(7.153b) when =1, f =1 and « = 0.5, f = 0.5, respectively
(Fig. 7.36).
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Fig. 7.34 a Approximate solution for Im(u(x,7)) when o =1 and =1, b corresponding
solution for Im(u(x,#)) when 7 = 0.4, and ¢ the exact solution for Im(u(x,#)) when o =1 and

=1

Example 7.11 Consider the time fractional coupled Schrédinger—-KdV equations
(7.143a)—(7.143b) with the following initial conditions

u(x,0) = cos(x) +isin(x), (7.155a)
v(x,0) = % (7.155b)

The exact solutions of Egs. (7.143a) and (7.143b) with initial conditions (7.155),
for the special case when oo = f§ = 1, are given by

t . t
u(x, t) = cos(x—l— Z) +ts1n(x+ Z)’ (7.156a)
3
v(x, 1) = 1 (7.156b)

The Jacobi periodic solutions [56] to coupled Sch—KdV equations (7.143a) and
(7.143b) are given by
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(b)

u

=20 =10 ) 10 20

Fig. 7.35 a Approximate solution for v(x,#) when o = 1 and # = 1, b corresponding solution for
v(x,7) when t = 0.3, and ¢ the exact solution for Re(u(x,7)) when o =1 and f =1

[ 2 1
u(x, 1) = 2_m260dn<\/2_—mz£>’ (7.157a)

7 2 1
v(x, 1) Ry dn* (\/2__’"25) (7.157b)

where 0 = (x+ ﬁ) and ¢ = x+2t.
For m = 0, Eq. (7.157a-b) reduces to Eq. (7.156a-b).
Proceeding in a similar manner, using Eqs. (7.149) and (7.147), we can obtain

i(cos(x) +isin(x))

ulL, 0= ar(1+a)

v[0,1] =0,
Ul1,1] =0,

V[0,2] =0,
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Fig. 7.36 a Exact and approximate solutions for Re(u(x,#)) when 7= 0.4, b the exact and
approximate solutions for Im(u(x, #)) when 7 = 0.4, and ¢ the exact and approximate solutions for
v(x,t) when t = 0.3
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(b)
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ANNA

A
VYT

Fig. 7.37 a Approximate solution for Re(u(x, #)) when « = 0.5 and # = 0.5, and b corresponding

solution for Re(u(x,7)) when r = 0.4

(a)

B (28]

MANA

IRATA

Fig. 7.38 a Approximate solution for Im(u(x, 7)) when o = 0.5 and # = 0.5, and b corresponding

solution for Im(u(x,#)) when r = 0.4

-2

Fig. 7.39 a Approximate solution for Abs(u(x,#)) when « = 0.5 and = 0.5, and b correspond-

ing solution for Abs(u(x,f)) when r = 0.3
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Fig. 7.40 a Approximate solution for v(x,7) when o« =0.5 and = 0.5, and b corresponding
solution for v(x,t) when ¢ = 0.3
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Fig. 7.41 a Approximate solution for Re(u(x,7)) when « =1 and =1, b corresponding
solution for Re(u(x,7)) when ¢ = 0.4, and ¢ the exact solution for Re(u(x,7)) when o = 1 and

p=1

eix

ul2, 0] = - 16I°(1 +20)°

V[1,1] =0,
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Fig. 7.42 a Approximate solution for Im(u(x,7)) when « =1 and =1, b corresponding
solution for Im(u(x, 7)) when ¢ = 0.4, and ¢ the exact solution for Im(u(x,#)) when o = 1 and

p=1

—icos(x) + sin(x)
64I'(1+30) '

U[3,0] =

and so on.

The approximate solutions can be obtained by Eq. (7.29).

Figures 7.41 and 7.42 show the exact and approximate solutions for Re(u(x, 7))
and Im(u(x,#)) when o = 1 and § = 1, respectively. Since the obtained approxi-
mate solution v(x,7) is exact, it is not drawn.

Figure 7.43 confirms that exact solution and approximate solutions coincide
reasonably well with each other and consequently there is a good agreement of
results between these two solutions when « = 1 and f = 1.

Figures 7.44 and 7.45 exhibit the numerical solutions of the coupled Sch-KdV
equations (7.143a)-(7.143b) with initial conditions (7.155) when o« = 0.5 and
p=0.25.
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Fig. 7.43 a Exact and approximate solutions for Re(u(x,7)) when 7 = 0.4 and b the exact and
approximate solutions for Im(u(x,)) when t = 0.4

(a)

Relugppee (3]

Fig. 7.44 a Approximate solution for Re(u(x, #)) when « = 0.5 and f = 0.5, and b corresponding
solution for Re(u(x,t)) when r = 0.4
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(b)

Fig. 7.45 a Approximate solution for Im(u(x,#)) when o = 0.5 and # = 0.5, and b corresponding
solution for Im(u(x,#)) when r = 0.4

7.5.5 Traveling Wave Solutions for the Variant of Time
Fractional Coupled WBK Equations

In this section, the new proposed CFRDTM [34, 35] is very successfully employed
for obtaining approximate traveling wave solutions of fractional coupled Whitham—
Broer—Kaup (WBK) equations, fractional coupled modified Boussinesq equations,
and fractional approximate long wave equations. By using this proposed method,
the solutions were calculated in the form of a generalized Taylor’s series with easily
computable components. The obtained results justify that the proposed method is
also very efficient, effective, and simple for obtaining approximate solutions of
fractional coupled evolution equations.

Example 7.12 Consider the following time fractional coupled WBK equations
[57-59]

Diu = —u%—%— %, (7.158a)
phy — W) L, (7.158b)
Ox Ox3 ox?
where ¢ > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = 2 — 2Bk coth(k¢&), (7.158c¢)
v(x,0) = —2B(B + b)k*csch?(k¢), (7.158d)

where B = va+b?, £ =x+c, and ¢, k, A are arbitrary constants.
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The exact solutions [57, 60] of Egs. (7.158a) and (7.158b), for the special case
where o = f = 1, are given by

u(x,t) = 2 — 2Bk coth(k(¢ — Ar)), (7.159a)
v(x,7) = —2B(B+ b)k*csch? (k(& — J1)), (7.159b)

In order to assess the advantages and the accuracy of the proposed method,
CFRDTM has been applied for solving time fractional coupled WBK equations.
First, we derive the recursive formula from Eqgs. (7.158a) and (7.158b), respec-
tively. Now, U(h,k — h) and V(h,k — h) are considered as the coupled fractional
reduced differential transform of u(x, #) and v(x, t), respectively, where u(x,?) and
v(x,t) are the solutions of coupled fractional differential equations. Here,
U(0,0) = u(x,0), V(0,0) = v(x,0) are the given initial conditions.

Without loss of generality, the following assumptions have been taken

U(,j)=0, j=1,2,3,...and V(i,0) =0, i=1,2,3,....
Applying CFRDTM to Eq. (7.158a), we obtain the following recursive formula

C((h+ 1o+ (k—h)p+1) B h k—h 5
Tt (k= R+ 1) U(h—H,k—h)——(ZZU(h—l,s)aU(Lk—h—s))

=0 s=0

0 ?
— o Vk =) = bo s Uk~ ).
(7.160)
From the initial condition of Eq. (7.158c), we have
U(0,0) = u(x,0). (7.161)

In the same manner, we can obtain the following recursive formula from
Eq. (7.158b)

T(ho+ (k—h+1)B+1) N AR

T(ha+ (k—h)f+1) V(h7k_h+1)__a<;;U(l,k—h—S)V(h—l7s)
o 9

—agsUlhk—h)+bo 5 V(hk—h).

Ox?
(7.162)

From the initial condition of Eq. (7.158d), we have

V(0,0) = v(x,0). (7.163)



7.5 Application of CFRDTM for the Solutions of Time ... 309

According to CFRDTM, using recursive Eq. (7.160) with initial condition
Eq. (7.161) and also using recursive scheme Eq. (7.162) with initial condition
Eq. (7.163) simultaneously, we obtain

_ 2Bk*Jesch? (k&)
U(1,0) = = =R
a 3) 2
V(0,1) = _ A +b(b+B))/EI :(;gl(ké)csch (k&)
_ 4(a+b(b+B))k* /(2 + COSh(2kf))csch4(k§)

)= - 8k°A(—2b* (b + B) + a(—2b + 3B) + aB cosh(2k¢)) coth (k&) csch® (k&)

vl T(1+o+f) ’

)

and so on.
The approximate solutions, obtained in the series form, are given by

T
Mx

k
ZU h k — h (hot+ (k—h)B)
=0

ook
0)+ > U,k — h)+

k=1 h=1 (7.164)
B 2BKk?* Jcsch? (k&)t*
= ) — 2Bkcoth (k&) — N (e
4(a+b(b+ B))k*A(2 + cosh(2k&))esch® (k&) P N
I'(1+a+p)

~
Il

0 h

k
v(x,) =3 Y V(hk— k)00

h=0

NgE

T
(=)

v(0,0) +ZZth Bt (=mf) (7.165)
=1 h=0 ’

= —2B(b+ B)kzcschz(ki)
4(a+b(b+ B))k* 4 coth(k&)csch? (k&)
I'(1+p)

When o = 1 and § = 1, the solution in Eq. (7.164) becomes
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u(x,t) = A — 2Bk coth(k&) — 2Bk* Jcsch? (k&)

7.166
— 2Bk* 2% coth(k&)csch? (kE) + - - - ( )

When « = 1 and f§ = 1, the solution in Eq. (7.165) becomes

v(x,1) = —2B(B 4+ b)k*csch? (k(& — Jt))
= —2(B(b+ B)k*csch®(k&)) — 4(B(b + B)k> 1. coth(k&)csch? (k&))t
— 2(B(b+ B)k*2*(2 + cosh(2k¢))csch* (k&E))? — - --.
(7.167)

The solutions in Egs. (7.166) and (7.167) are exactly the same as the Taylor
series expansions of the exact solutions

u(x,t) = A — 2Bk coth(k(¢ — 1))
= ). — 2Bk coth(k&) — 2Bk? Jcsch? (k)¢ (7.168)
— 2Bk* % coth(k¢)csch? (k&) + - - -

v(x,1) = —2B(B+ b)k*csch? (k(& — Jt))
= —2(B(b+ B)k*csch®(k&)) — 4(B(b + B)k* 1. coth(k&)csch? (k&))t
—2(B(b+ B)k*2*(2 + cosh(2k¢))csch* (k&))? — - --
(7.169)

Example 7.13 Consider the following time fractional coupled modified Boussinesq
(MB) equations [57, 58, 60]

ou Ov

D'u=—u——— .1

u U B (7.170a)
owv) Fu

DPy = — = 1

Py R (7.170b)
where r > 0, 0<a, f§ <1, subject to the initial conditions

u(x,0) = A — 2k coth(k¢&), (7.170c)
v(x,0) = —2k*csch? (k&). (7.170d)

As already mentioned earlier, if a = 1 and b = 0, the above fractional coupled
modified Boussinesq equations (7.170a) and (7.170b) can be obtained as a special
case of WBK equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Egs. (7.170a) and (7.170b), for the special case
where o = f§ = 1, are given by
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u(x,t) = A — 2k coth(k(& — 1)), (7.171a)
v(x, 1) = —2k*csch? (k(& — r)). (7.171b)

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.170a), we obtain the following recursive formula

L((h+ 1o+ (k—h)B+1) h_ k—h B P )
[(ho+ (k—h)f+1) U(h+1,k—h) ;FOU Ls) 5 Uk —h—s)
0
— 5 Vb k—h).
(7.172)
From the initial condition of Eq. (7.170c), we have
U(0,0) = u(x,0). (7.173)

In the same manner, we can obtain the following recursive formula from
Eq. (7.170b)

C(ha+ (k—h+1)p+1) h k=h
T(ha+ (k—h)B+1) V(hk—h+1) ax<ZZUlk h—s)V (—l,s)>

=0 =0
(f? 33 U(h,k —h).
(7.174)
From the initial condition of Eq. (7.170d), we have
V(0,0) = v(x,0). (7.175)

According to CFRDTM, using recursive formulae (7.172) and (7.174) along
with initial conditions in Egs. (7.173) and (7.175) simultaneously, we obtain the
approximate solutions in the series forms as

k

ZZUhk h (ho+ (k—h)p)

k=0 h=

O)+§:zk:Uhk R+ (=)

=1 h=1 (7.176)

2 2 Ped
— . — 2kcoth(kg) — 2RAes RS )fc(sldjr (ak)i)

4k A(2 4 cosh(2kE))esch® (k&) F
F(1+a+p)
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k
ZV h k— h (hot+ (k—h)p)

0
Mz

k=0 h=0
00 k
k=1 h=0
4k3 ). coth(k h? (k&) P
_ oReschl(ke) — HAcoth(kSjesch (k)

L(1+p)

When oo = 1 and f§ = 1, the solutions in Egs. (7.176) and (7.177) are exactly the
same as the Taylor series expansions of the exact solutions

u(x,t) = 4 — 2kcoth(k(¢ — 2r)), (7.178)
v(x,1) = —2k*csch? (k(¢& — ). (7.179)

Example 7.14 Consider the following time fractional coupled approximate long
wave (ALW) equations [57, 58, 60]

o ou v 10%u
ouwv) 1%
va = —W + 5@7 (7180b)

where > 0, 0<a, f <1, subject to the initial conditions
u(x,0) = A — kcoth(k¢&), (7.180c)
v(x,0) = —k*csch?(k¢) (7.180d)

As already mentioned earlier, if a = 0 and b = 1/2, the above fractional coupled
ALW equations (7.180a) and (7.180b) can be obtained as a special case of WBK
equations (7.158a) and (7.158b).

The exact solutions [57, 60] of Egs. (7.180a) and (7.180b), for the special case
where o = f§ = 1, are given by

u(x,t) = A — kcoth(k(& — Ar)), (7.181a)
v(x,7) = —k*csch®(k(& — Jt)). (7.181b)

Proceeding in a similar manner as in Example 7.12, after applying CFRDTM to
Eq. (7.180a), we obtain the following recursive formula
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T((h+ Do+ (k—h)p+1) h kh a
T+ k—mpr1) L LE=h (;AOU Uk~ hs))
9 1 &
— gV k—h) =555 U(hk = h).
(7.182)

From the initial condition of Eq. (7.180c), we have
U(0,0) = u(x,0). (7.183)

In the same manner, we can obtain the following recursive formula from
Eq. (7.180b)

I'(ho+ (k—h+1)p+1) 9 h_ k—h
Mot (k= mp+1 kD ="5 (ZZU(lﬁk—h—s)V(h—zst

1=0 s=0
+ %aa_; V(h,k —h)
(7.184)
From the initial condition of Eq. (7.180d), we have
V(0,0) = v(x,0). (7.185)

According to CFRDTM, using recursive formulae (7.182) and (7.184) along
with initial condition Eqgs. (7.183) and (7.185) simultaneously, we obtain the
approximate solutions in the series forms as

k
ZU h k — h l(h%+ (k—h)p)
h=0

U(0,0) +ZZUhk Bt (=mf)

=1 h= (7.186)
kzmcschz(ké)

I'(l1+a)

2k*J(2 + cosh(2k&))csch* (k&) +F
B I'(l+a+p)

Mg

~
Il
<}

= A — kcoth(k&) —
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k
ZVh k— h (ho+ (k—h)p)

Mg

k=0 h=0
ook
=V(0,0)+ > > V(b k — hytt A (7.187)
k=1 h=0
2k3 ). coth (k&)csch? (k&)
— 12 2 _ _
= —k“csch” (k&) T+ p)

When oo = 1 and f§ = 1, the solutions in Egs. (7.186) and (7.187) are exactly the
same as the Taylor series expansions of the exact solutions

u(x,t) = A — kcoth(k(& — Jt)), (7.188)
v(x, 1) = —k*csch? (k(& — z)). (7.189)

Tables 7.4, 7.5, and 7.6 cite the comparison between CFRDTM, Adomian
decomposition method (ADM) and variational iteration method (VIM) results for
u(x,t) and v(x,r) of WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) when o = 1 and f§ = 1. It reveals that very good approximations
have been obtained.

The comparison results between the proposed method CFRDTM with the other
methods ADM and VIM presented in Tables 7.4, 7.5, and 7.6 demonstrate that the
proposed method is more accurate and better than ADM and VIM. Therefore, the
pertinent feature of the proposed method is that it provides more accurate solution
than the existing methods ADM and VIM. Hence, the proposed methodology leads
to high accuracy. Moreover, the present approximations show excellent accuracy
and sufficiently justify the superiority over other methods.

Figures 7.46, 7.47, and 7.48 explore the numerical approximate solutions
obtained by the present method and exact solutions of u(x,¢) and v(x, ) for WBK
equation (7.158), MB equation (7.170), and ALW equation (7.180) when « = 1 and
p=1.

Figures 7.49, 7.50, and 7.51 exhibit the numerical approximate solutions of
u(x,) and v(x,t) for WBK equation (7.158), MB equation (7.170), and ALW
equation (7.180) with regard to different values of « and f.

The comparison of approximate solutions u(x, 7) and v(x, t) with regard to exact
solutions for WBK equation (7.158), MB equation (7.170), and ALW equation
(7.180) has been shown in Figs. 7.52, 7.53, and 7.54 at time instance ¢ = 5 for
o=1and f=1.

7.5.6 Convergence and Error Analysis of CFRDTM

In the present section, the error analysis of CFRDTM has been carried out through
the following theorem.
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Fig. 7.46 Surfaces show

a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)

(d)
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Fig. 7.47 Surfaces show (a)
a the numerical approximate
solution of u(x, 1), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)

Approvimate Sobaion viz§03

-0.10
-5

(d)
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Fig. 7.48 Surfaces show

a the numerical approximate
solution of u(x,7), b the
numerical approximate
solution of v(x, ), ¢ the exact
solution of u(x,7), and d the
exact solution of v(x,r) when
a=1land f=1

(b)
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(a)

(b)

Fig. 7.49 Surfaces show a the numerical approximate solution of u(x,¢) and b the numerical
approximate solution of v(x,7) for WBK equations (7.158a) and (7.158b) when o = 1/8 and

B=1/4

Theorem 7.4 Let DYu = F(u,v,uty, Vy, tyy, Vir, Uxxs Vixxs - - =) and D,ﬁv =
H(uy vy thyy Viey Unxy Viers Unxy Viorrs - - -) be the general coupled fractional differential

equations, and let the Caputo derivatives D**u(x,t) and Dy (x, 1) be continuous
functions on [0,L] x [0,T], i.e.,

Du(x,1) € C([0,L] x [0, T]) and D*¥v(x,1) € C([0, L] x [0, T]),

fork=0,1,2,...,n+ 1, where 0<a, f <1, then the approximate solutions #(x, )
and ¥(x,7) of the preceding general coupled fractional differential equations are
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(b)

Approximate Sobation v(xid 5

=10
-5

Fig. 7.50 Surfaces show a the numerical approximate solution of u(x,¢) and b the numerical
approximate solution of v(x,#) for MB equations (7.170a) and (7.170b) when o = 1/4 and
p=0.88

k
(e, 1) 2> > Uh k= )™+ 0,
and

k
W, 1) 2> V(h k= )t R

where U(h,k —h) and V(h,k — h) are coupled fractional reduced differential
transforms of u(x,¢) and v(x, r), respectively.

Moreover, there exist values &;, &, where 0 < &, &, <t so that the error E,, (x, 1)
for the approximate solution i(x, #) has the form



7.5 Application of CFRDTM for the Solutions of Time ...

(a)

0.0

Approximate Sobation .2
-0.4

(b)

Approximate Sobation vwiz 805

-0.10
-5

323

Fig. 7.51 Surfaces show a the numerical approximate solution of u(x,#) and b the numerical
approximate solution of v(x,#) for ALW equations (7.180a) and (7.180b) when « = 1/2 and

B=1/2
DU Dby (x,04)
|Eq(x,0)[| =  Sup W()ﬁl) (DB
o<x<rltilz +
0<r<T
if &, & —0+.

Proof From Lemma 1 of Chap. 1, we have

m—1
DO =10 = 3 e O04), m-1<a<m
=0
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L1
-4 =2 2 'l * — =
eee Ly
=02k
-‘HM
-0.6'
-08L
(b) v
PRI 1 " " x _— approx

*ee Tapac

=05k

Fig. 7.52 Comparison of approximate solutions a u(x,7) and b v(x,f) with regard to exact
solutions of WBK equation (7.158) at time instance # = 5

The error term
E,(x,1) = u(x,t) — u(x, 1),

where

S
_ ZZ D" Py (x, 0) it k)
I

= i T(ha+ Bk — h) + 1) ’
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(a)

e

(b)

Fig. 7.53 Comparison of approximate solutions a u(x,7) and b v(x,r) with regard to exact
solutions of MB equation (7.170) at time instance ¢ = 5

and

n

zk: DMy (x, 0) at Blk—h)
s .

e e I'(ho+ Bk —h) +1)

Now, for O<a<1,
thx +/i(k—h)Dha+ﬂ(k—h)u(x7 l) _ J(h +1)a+ ﬁ(k—h)D(h-'r Do+ ﬁ(k—h)u(x, l)
— Jha+Blk=h) (Dhchrﬂ(kfh)u(x, 1) — J*D* (Dhowrﬁ(k—h)u(x’ t)))

_ Jhac+ [3(/<41)th>¢Jrﬂ(kfh)u(x7 0),

since 0 <o <1, using Eq. (1.14)
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(a)
. : A . i o
-4 =2 2 4 wppeos
®e 0 Layact
-0 M
0.2}
03}
-04l
(b) -
n L 1 L 1 L — Epprox

e e Voot

_4.._:..:..:.,. —
_o,msw

Fig. 7.54 Comparison of approximate solutions a u(x,z) and b v(x,r) with regard to exact
solutions of ALW equation (7.180) at time instance ¢ = 5

n k—h
_ D =1y (x, 0) (et Bk—h) (7.190)
T(ho+ Bk —h)+1)

The nth order approximation for u(x, ) is

k hot+ B(k—1)
~ D u(x,0) ho+ B(k—h)
t t
u(x,t) = g% I'(ha+ Pk —h)+1)

n k
_ Z <Jhx + B(k=h) pyhr+ /i(k—h)u(x’ 1) — J(h+ 1)+ Blk=h) py(h+ 1)+ [i(k—h)u(x7 t)) ’
k=0 h=0
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using Eq. (7.190)
— Z Jk/?Dkﬁu(x7 t) _ J(h+ 1)u+ﬁ(n7h)D(h+ l)ochlf(nfh)u(x7 t)
h=0

n—1 n
1)+ ;J (kDB DE+ DBy (. 7) — }Z%J(h+l)oc+ﬁ(n—h)D(h+l)m+/3(n—h)u<x’ 1)

(7.191)
Therefore, from Eq. (7.191), the error term becomes
E,,(X, t) = u(x, t) - ﬁ(x: t)
n n—1

J(h+1)1+/f(nfh)D(h+ l)1+/3(n7h)u(x’ t) _ Zj(k+1)/iD(k+ l>ﬁu(x, t)
=0

=
i
=}

=

n—1

(H— l)oH—ﬁ(n—i)D(H— 1>“+ﬁ("_i)u(x, l) J(H— )ﬁD i+1)p ()C, l)
i=0

I
T
(=}

=

(t+1 o+ f(n—i)— D<i+1)a+ﬁ("7i>u()€, T)d’L'

= I+ )Oﬂ+/3n—l)/

- im/ (0= )0 DI D0 Dy, e
=0 0

Whence applying integral mean value theorem yielding

n_ pli+a+pn—i) u(x, &) i+ )+ n—i)

— T+ Do+ B(n—i) + 1)

~ n—1 D(i+1)ﬁu(x’ &) (+1)p
—~T([i+1)p+1) ’

E,(x,t) =

where 0 < ¢&;, & <t
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This implies

E,(x,1) = u(x,t) — (x, 1)

n—1

DU+ Dot pn—i) ( él)
;F( i+ o+ Bn—i)+1)

+D"H u(x, &) At Dz _ Z l+1ﬁux52)t(l+l)ﬂ
T((n+ Dat1) I

i+1)p+1)
|: Dt+la¢+ﬁn i (.X él)

i+ Dot Bln—i) _ Di+Y ﬁu( &) (i+1)
C((i+1)o+pn—i)+1) r(i+0+1)
I e RV D<n+ (x 51) n+l)oc

r (n+1)<x+1)

(Hr 1o+ p(n—i)

=
._.

i=

(7.192)
Using generalized Taylor’s series formula, Eq. (7.192) becomes

B, ) = 1) — Do U5, s

R TR
_|_D—(C2) (n+1)p D (x él) n+1
L((n+1)p+1)

F((n+1)oc+1) ’

where 0<{;, {, < max {¢;, &} and &, & — 0+.
This implies

IEnll = lluCx, 1) — a(x, 1)
Sup

0<x<L
0<t<T

= Sup
0<x<L
0<t<T

Dn+l ﬁu( Cz) (n+1)[37 D(n+l)z
F((n+1)ﬁ+1)

u(x, &) fnt D

(n+1)o 3
+ D ) u(x7ql) t(n+l)o<
T((n+ Dat1)

Tt Dot 1) =

(+ DBy (x.0 .
Wﬂ”“)ﬁ since &;,& — 0+

(7.193)
As n — oo, from Eq. (7.193)

1Ex][ — 0.

Hence, u(x, ) can be approximated as

k=0 h=0

o0 k n k
=3 "N Uk —n) e EE NN (k= Ry =iy 1),

k=0 h=0

with the error term given in Eq. (7.193).
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Following a similar argument, we may also find the error ||E,,H =
[lv(x, ) — (x,1)|| for the approximate solution v(x, ¢). |

7.6 Conclusion

In this chapter, the MFRDTM has been proposed and it is directly applied to obtain
explicit and numerical solitary wave solutions of the fractional KdV like K (m, n)
equations with initial conditions. In this regard, the reduced differential transform
method is modified to be easily employed to solve wide kinds of nonlinear frac-
tional differential equations. In this new approach, the nonlinear term is replaced by
its Adomian polynomials. As a result, we obtain the approximate solutions of
fractional KdV equation with high accuracy. The obtained results demonstrate the
reliability of the proposed algorithm and its wider applicability to fractional non-
linear evolution equations. It also exhibits that the proposed method is a very
efficient and powerful technique in finding the solutions of the nonlinear fractional
differential equations. The main advantage of the method is the fact that it provides
an analytical approximate solution, in many cases an exact solution, in a rapidly
convergent series with elegantly computed terms. It requires less amount of com-
putational overhead in comparison with other numerical methods and consequently
introduces a significant improvement in solving fractional nonlinear equations over
existing methods available in the open literature.

A new approximate numerical technique, coupled fractional reduced differential
transform, has been proposed in this chapter for solving nonlinear fractional partial
differential equations. The proposed method is only well suited for coupled frac-
tional linear and nonlinear differential equations. In comparison with other ana-
Iytical methods, the present method is an efficient and simple tool to determine the
approximate solution of nonlinear coupled fractional partial differential equations.
The obtained results demonstrate the reliability of the proposed algorithm and its
applicability to nonlinear coupled fractional evolution equations. It also exhibits
that the proposed method is a very efficient and powerful technique in finding the
solutions of the nonlinear coupled time fractional differential equations. The main
advantage of the proposed method is that it requires less amount of computational
overhead in comparison with other numerical and analytical approximate methods
and consequently introduces a significant improvement in solving coupled frac-
tional nonlinear equations over existing methods available in the open literature.
The application of the proposed method for the solutions of time fractional coupled
KdV equations satisfactorily justifies its simplicity and efficiency.

In this chapter, new CFRDTM has been successfully implemented to obtain the
soliton solutions of coupled time fractional modified KdV equations. This new
method has been revealed by the author. The application of the proposed method
for the solutions of time fractional coupled modified KdV equations satisfactorily
justifies its simplicity and efficiency. Moreover, in case of integer-order coupled
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modified KdV equations, the obtained results have been verified by the Adomian
decomposition method. This investigation leads to the conclusion that soliton
solutions for integer-order coupled modified KdV equations have been wrongly
reported by the reverend author Fan [44].

Also in this chapter, the new approximate numerical technique CFRDTM [34,
35] has been proposed for solving nonlinear fractional partial differential equations
arising in predator—prey biological population dynamical system. The results thus
obtained validate the reliability of the proposed algorithm. It additionally displays
that the proposed process is an extraordinarily efficient and strong technique. The
main advantage of the proposed method is that it necessitates less amount of
computational effort. In a later study, it has been planned to use the proposed
process for the solution of the fractional epidemic model, coupled fractional neutron
diffusion equations with delayed neutrons, and other physical models with the
intention to show the efficiency and wide applicability of the newly proposed
method.

In view of the author [61], there is no difference between differential transform
method (DTM) and Taylor series method (TSM) both of which (normally) are
provided with an analytical continuation via a stepwise procedure, since it is
essential to transform the formal series into an approximate solution of the problem
(via analytical continuation). The author also wrote in [61] that one may then rightly
remember the approach as being “an extended Taylor series method.” Thus, the
DTM could, eventually, be named as the generalized Taylor series method
(GTSM). In the belief of the learned author, “DTM could deserve its name (as a
technique) when it extends the Taylor series method to new kinds of expansion
(different from a Taylor series expansion).” He, additionally, acknowledges that the
DTM has allowed an easy generalization of the Taylor series method to various
derivation procedures. “For example, fractional differential equations have been
considered using the DTM extended to the fractional derivative procedure via a
modified version of the Taylor series.” Despite the fact that there is a controversy in
the name of DTM, the author of [61] admits that major contribution of the DTM is
in the easy generalization of the Taylor series method to problems involving
fractional derivatives.

Furthermore, it may be stated that the Taylor series method is used invariably in
many mathematical analyses and derivations for the problems of applied science
and engineering. Taylor series method of order one is commonly known as the
Euler method. However, the Euler method has its independent existence. Like that,
DTM is also self-contained for at least in the application of fractional-order calculus
and has its own right for its existence.

Also, in this chapter, fractional coupled Schrodinger—Korteweg—de Vries
equations with appropriate initial values have been solved by using the novel
method, viz. CFRDTM. The applications of the proposed method for the solutions
of time fractional coupled Sch—KdV equations reasonably well justify its simplicity,
plausibility, and efficiency.

In this chapter, solutions of nonlinear coupled fractional partial differential
equations have been proposed by CFRDTM which is only well suited for coupled
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fractional linear and nonlinear differential equations. The present method is an
efficient and simple tool in comparison with other analytical methods. The obtained
results quite justify that the proposed method is very well suited and is an efficient
and powerful technique in finding the solutions of the nonlinear coupled time
fractional differential equations. One of the main advantages of the proposed
method is that it requires less amount of computational overhead and consequently
introduces a significant achievement in solving coupled fractional nonlinear
equations over existing methods available in the open literature. Furthermore, the
applications of the proposed method for the solutions of variant types of time
fractional coupled WBK equations satisfactorily justify its simplicity and efficiency.
The proposed method determines the analytical approximate solutions as well as
numerical solutions. This proposed method can be efficiently applied to coupled
fractional differential equations more accurately and easily than its comparable
methods ADM and VIM. So, this proposed method can be a better substitute than
its competitive methods ADM and VIM.
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Chapter 8 M)
A Novel Approach with Time-Splitting ki
Fourier Spectral Method for Riesz

Fractional Differential Equations

8.1 Introduction

Nonlinear partial differential equations are useful in describing various physical
phenomena. The solutions of the nonlinear evolution equations play a crucial role in
the field of nonlinear wave phenomena. It is to be noticed that the nonlinear
Schrodinger (NLS) equation is one of the most generic soliton equations. It appears in
a wide variety of fields, such as nonlinear optics, quantum field theory, weakly
nonlinear dispersive water waves, and hydrodynamics [1-4]. Nonlinear phenomena
act as a significant role in a variety of scientific fields, especially in solid-state physics,
fluid mechanics, plasma waves, plasma physics, and chemical physics [5, 6].
Determination of exact solutions, in particular, traveling wave solutions, of nonlinear
equations in mathematical physics plays an important role in soliton theory [7, 8].

As a field of applied mathematics, fractional calculus is a generalization of the
differentiation and integration of integer order to arbitrary order (real or complex
order). The usefulness of fractional calculus has been found in various areas of
science and engineering. Its application has been seen in many research areas such as
transport processes, fluid dynamics, electrochemical processes, bioengineering,
signal processing, control theory, fractal theory, porous media, viscoelastic mate-
rials, electrical circuits, plasma physics, and nuclear reactor kinetics [9-15]. Many
physical and engineering phenomena which are analyzed by fractional calculus are
considered to be best modeled by fractional differential equations (FDEs). During
the past few decades, the intensive research pursuits in the development of the theory
of FDEs have been experienced due to its capability to the accurate elucidation of
many real-life problems as nature manifests in a fractional-order dynamical manner.
Up to now, a great deal of effort has been devoted to solving the FDEs by various
analytical and numerical methods. These methods include finite difference method
[16], operational matrix method [17], (G’ /G)-expansion method [18-21], Adomian
decomposition method [22, 23], differential transform method [24, 25], first integral
method [26, 27], and fractional subequation method [28, 29], etc.
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Derivative nonlinear Schrédinger (DNLS)-type equations are significant non-
linear models that have many implementations in nonlinear optics fibers and plasma
physics [30-33]. In nonlinear optics, nonlinear effects are studied comprehensively.
To describe the nonlinear effects in optical fibers without the inclusion of loss and
gain, the nonlinear Schrédinger (NLS) equation is utilized [30]. The employed NLS
equation is a lowest order approximate model describing the nonlinear effects in
optical fibers. Nowadays, higher-order nonlinear effects are inevitable in many
optical systems due to the recent advancement of technologies in ultra-high-bit-rate
optical fiber communication and laser. Thus, it is essential to be familiar with
higher-order nonlinearity in order to have a highly satisfactory apprehension of the
higher-order nonlinear effects.

8.2 Overview of the Present Study

In this chapter, Riesz fractional coupled Schrodinger—KdV equations have been
solved by implementing a new approach, viz. time-splitting spectral method. In
order to verify the results, it has been also solved by an implicit finite difference
method by using fractional centered difference approximation for Riesz fractional
derivative. The obtained results manifest that the proposed time-splitting spectral
method is very effective and simple for obtaining approximate solutions of Riesz
fractional coupled Schrodinger—KdV equations. In order to show the reliability and
efficiency of the proposed methods, numerical solutions obtained by these methods
have been presented graphically.

Also, time-splitting spectral approximation technique has been proposed for
Chen—-Lee-Liu (CLL) equation involving Riesz fractional derivative. The proposed
numerical technique is efficient, unconditionally stable, and second-order accuracy
in time and spectral accuracy in space. Moreover, it conserves the total density in
the discretized level. In order to examine the results, with the aid of weighted
shifted Griinwald-Letnikov formula for approximating Riesz fractional derivative,
Crank—Nicolson weighted and shifted Griinwald difference (CN-WSGD) method
has been applied for Riesz fractional CLL equation. The comparison of results
reveals that the proposed time-splitting spectral method is very effective and simple
for obtaining single-soliton numerical solution of Riesz fractional CLL equation.

8.2.1 Riesz Fractional Coupled Schrodinger-KdV
Equations

In a nonlinear interaction between long and short waves, under the assumption of
weak nonlinearity, two typical types of interaction equations can be unified as the
following normalized form, namely coupled Schrédinger—-KdV(S-K) equations.
The coupled Schrodinger—-KdV equations [6, 34, 35]
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iy — Uy — uv = 0, (8.1)
Vi + 6wy + v — ([u]?), =0, (8.2)

have been used extensively to model nonlinear dynamics of one-dimensional
Langmuir and ion-acoustic waves in a system of coordinates moving at the
ion-acoustic speed. Here, u is a complex function describing the electric field of
Langmuir oscillations and v is real function describing low-frequency density per-
turbation. The coupled Schrodinger—KdV equations are known to describe various
processes in dusty plasma, such as Langmuir, dust-acoustic wave, and electro-
magnetic waves [36]. Recently, Fan [36] devised unified algebraic method, Kaya
et al. [34] used Adomian’s decomposition method, Saha Ray [37] proposed a new
technique coupled fractional reduced differential transform, and Kiicilikarslan [38]
utilized homotopy perturbation method for computing solutions to coupled S-K
equations. (8.1)—(8.2). Many important equations of mathematical physics are
rewritten in the Hirota bilinear form through dependent variable transformations
[39]. By using a transformation method, the Schrodinger—KdV equation is written as
bilinear ordinary differential equations and two solutions to describing nonlinear
interaction of traveling waves are generated. As a result of that, multiple traveling
wave solutions of the coupled Schrodinger—KdV equations are obtained in Ref. [40].

The objective of the present work is to determine the numerical solutions of the
coupled S-K equations with the Riesz space fractional derivative (1 <o <2). The
model equations for the fractional coupled Schrodinger—-KdV equations can be
presented in the following form

iu,—aaixTx—uv:O, a<x<b,0<t<T (8.3)
Vi 6w+ v — (lu*), =0, a<x<b,0<i<T (8.4)

with initial conditions
u(x,0) = up(x), v(x,0) =vo(x) (8.5)

and the Dirichlet boundary conditions
u(a,t) =u(b,t) =0, v(a,t)=v(b,t) =0. (8.6)

The Riesz space fractional derivative of order a(1 <o <2) is defined as

O Fnt) = (A f (1) = —

J|x| 2cos %

a: [ooDif (x,1) +:D% f(x,1)],  (8.7)
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where the left and right Riemann—Liouville fractional derivatives of order
o(n — 1 <o <n) on an infinite domain are defined as

D) = [ TR (88)
Dfen) = et [ e e 39

X

The Riesz fractional derivative can also be characterized as

—(=A)f (x1) = =F 7 (e F (1)), (8.10)

where F is the Fourier transform.

If f(x,7) is defined on the finite interval [a,b] and satisfies the boundary con-
ditions f(a,t) = f(b,t) = 0, we can extend the function by taking f(x,7) = 0 for
x<a and x > b. Furthermore, if f(x,r) satisfies that u'(a,t) = u/(b,1) = 0, by the
Fourier transform (8.10), it is shown in [41, 42] that the Riesz fractional derivative
on the finite interval [a, b] can be defined as

ﬁf(x, 1) = —(=AN*f(x,1) = _2c;s% [D*f (x,1) +.Dif (x,1)], l<a<2
(8.11)
where
DI (1) = ﬁ - / (= &G NdE (8.12)
. b
Dif (x,1) = %gﬂ / (& —x)""TF (€ 1)dé. (8.12b)

X

8.2.2 Riesz Fractional Chen—Lee-Liu Equation

In the theories of plasma physics, fluid dynamics, and nonlinear optics, there persist
several analogs of the NLS equation in which the appearance of second-order
dispersion and cubic nonlinearity persist. The second-type derivative nonlinear
Schrédinger (DNLSII) equation is one of these analogs of the NLS equation
introduced in 1979 [43], given by
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i + e +ilg’gx = 0, (8.13)

which is also known as the Chen-Lee-Liu (CLL) equation. Without self-phase
modulation, Moses et al. proved optical pulse propagation involving self-steepening
in 2007 [44]. This experiment well establishes the first experimental manifestation
of the DNLSII equation [30]. Alike the NLS equation, DNLSII equation is also a
real physical model in optics.

In the present chapter, numerical solutions of the CLL equation with Riesz
derivative of order o (1 <o <2) have been also determined by a new approach. The
proposed time-splitting spectral method (TSSM) is intended to discretize the CLL
equation with Riesz fractional derivative.

The model problem for pulse propagation in a single-mode optical fiber can be
described by the CLL equation involving Riesz derivative of the form:

80{
mf+5f%+ﬂﬂhxzo, a<x<b,0<t<T (8.14)
X
with initial condition
q(x,0) = po(x), a<x<b, (8.15)

and the boundary conditions
qla,t) = q(b,t), gqula,t) =q.(b,t), t>0. (8.16)

Here, g = q(x,t) is the complex wave function. In the optical fiber setting, the
cubic nonlinear term is associated with the self-steepening phenomena, while the
fractional-order term is related to dispersion.

The Riesz space fractional derivative [41] of order (1 <o <2) is defined as

o0

u(x, 1) = —(=A)u(x,1) = —

- ——[_oD%u(x,t) + D% u(x,7)], (8.17
0 ov [Pl ) HaDku 0], (517

where the left and right Riemann—Liouville fractional derivatives of order
a(n — 1 <a<n) on an infinite domain are defined as

o o 1 " A n—l—ua
_OQDXM(.X7 t) = ma‘xﬂ / (X — C) M(C, t)dC7 (818)
(-1 o

D _ulx,1) =

/‘@—@““w@g@. (8.19)

X

I'(n — o) Ox"
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The Riesz fractional derivative can also be characterized as [16]

—(=8)Pulx, 1) = —F (| "0y, 1)), (8.20)

where F is the Fourier transform.

If u(x,7) is defined on the finite interval [a,b] and satisfies the boundary con-
ditions u(a,t) = u(b,t) = 0, the function can be extended by taking u(x,7) = 0 for
x<a and x > b. Additionally, if u(x, ) satisfies that u,(a,t) = u,(b,t) = 0, by the
Fourier transform (8.20), it is proven in [41, 42] that the Riesz fractional derivative
on the finite interval [a, b] can be defined as

8|8):|“u(x7 ) = —(—A)“/zu(x, ) = —ﬁ [«D2u(x, 1)+ Diu(x,1)], 1<a<2
2
(8.21)
where
o _ 1 0" r _ \n—l-a
«Diu(x,1) = T2 8)6”/ x=20 u(¢,ndg, (8.22)
n" o /
D) = ﬁ = / (€= )" "u(C, 1), (8.23)

X

8.3 The Proposed Numerical Technique for Riesz
Fractional Coupled Schriodinger-KdV Equations

In the present study, Riesz fractional coupled S-K equations (8.3)—(8.6) have been
taken into consideration.

We choose the spatial mesh size & = Ax > 0 with h = (b — a)/m for m being an
even positive integer and the time step 1 = At > 0. We take the grid points and
time steps as

xi=a+jhj=0,1,....m; t,=nt,n=0,1,2,....

Let u! and v} be the approximation of u(x;,t,) and v(x;,t,), respectively.
Furthermore, let u” and v" be the solution vector at time ¢t =, = nt with the
components of u(x;,#,) and v(x;,1,), respectively.

In the proposed time-splitting technique, Eq. (8.3) is split into two equations.
First the following equation
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0"u

TR

(8.24)

is solved from time ¢t = ¢, to time ¢ = t,, |, and then for the same time-step length
7, we solve

iu, —uv = 0. (8.25)
Using Fourier transform, Eq. (8.24) reduces to
itl, + || it = 0. (8.26)

Now, Eq. (8.26) will be discretized in space by Fourier spectral method and
integrated in time exactly. Next, integrating (8.25) from time ¢ =1, to time
t = t,4 1, and then approximating the integral on [t,,7, ] via the rectangular rule,
we obtain

Int1
u(x,t, 1) =exp|—i [ v(x,s)ds|u(x,z,)

y

= exp [—%(v(x, thr1 +v(x,8,)) | u(x, 1) (8.27)

Now, some of the mathematical definitions should be known regarding the
discrete Fourier transform applied here.

For simplicity, let us introduce a generalized function f(x, ) and assume that
f(x,1) satisfies the periodic boundary condition f(a,t) = f(b,t) for (x,7) € R x
[0, T]. From ¢, to t, 4 1, the discrete Fourier transform of the sequence {f;} is defined
as

m—1

fule) = R 0] = i) exp(=iml —a) k= =3 ... 5 =1 (828)

=0
and the formula for the inverse discrete Fourier transform is

m_

fi(t) = E}fl[fk(t)] :% 2Zﬁ(r) exp(igy(xj —a)), j=0,1,2,....m—1, (8.29)
k=—m

where 1, is the transform parameter defined as p, = %
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8.3.1 The Strang Splitting Spectral Method

From 1, to t,., we split the Schrédinger-like Eq. (8.3) via Strang splitting. The
technique of Strang splitting is presented by the following three equations

w :exp[—ié—i(v”HJrv")} W =012 m 1, (8.30)
e
l/tj** = EkZ:mexp(i‘tuk' T)(u*)k exp(i,uk(xj - a)), .]: 07 1727 cenm— 1, (831)
n+1 __ T n+1 n Kk .
! _exp[—zz(v v )} W j=0,1,2, . m—1, (8.32)

X=Xj
where (it*), is the discrete Fourier transform of u;, defined as

m_
71

(@) = 3 (i exp(—im (s — ). (8.33)

—_m
k=—%

8.3.2 Crank—Nicolson Spectral Method for the KdV-like
Equation

For the KdV-like Eq. (8.4), spatial derivatives are approximated using the pseu-
dospectral method. Followed by application of the Crank—Nicolson spectral method
(CNSP), we obtain

n+1l_.n
!

T

= =3(O DV 4 (1= 0)V'D") 5 (0D '+ (1 = 0) D)
+ 10D (" 'w" 1) + (1 — 0)Dy(u"i")) 0<f<1

X
x:)(]» )

(8.34)

where D, and D,, spectral differential operators approximating J, and 0O, are
defined as, respectively,

]
1~ . .
Dovley=— > (i) () expliry (x — a)), (8.35)
=

m_
7—1

Dol = 3 (i) () explin 3y — ). (8.36)

—_m
k=—45
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The initial conditions (8.5) are discretized as

ujo e uo(xj)’ \)}) = Vo(Xj). (837)

8.4 Properties of the Numerical Scheme and Stability
Analysis for the Coupled Schriodinger-KdV Equations

Let u = (ug,U1,. . ,tp_1)" . Let the discrete /,-norm be defined on the interval (a, b)
as

[[al|,,= (8.38)

For the stability of the Strang time-splitting spectral schemes (8.30), (8.31), and
(8.32), the following theorem is proved, which shows that the total charge is
conserved.

Theorem 8.1 The time-splitting schemes (8.30), (8.31), and (8.32) for the coupled
Schrodinger—KdV equations are unconditionally stable and possess the following
conservative properties:

= s =012, &2

Proof For the schemes (8.30)—(8.32), using (8.28), (8.29), and (8.38), we have

—1 m—1 . 2 m—1
1 2 1% 21 it 1 2
7Hun+l|| :75 ur.H»l :75 : exp 77(v{1+l+v{1) [l - ut
b—a L m J m 4e J J m J
j=0 j=0 j=0

2

s

j=0

ZZ Jexp(ilu ) (i),

k=—t2

Z exp(il ") @) explify (3 — @)

k_——

1 &

k:—g =1

exp(—mk(x,- - a>>

ml

S

n

2
] ||lz'

(8.40)
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Here, the following identities have been used

m—1
gl2m=kj/m — 0, [I—kd#m, r is an integer (8.41)
. m, [—k=rm,
Jj=0
and
= 0, I—j
Z e/ 2r=k/m — { ’ ]7& ks an integer. (8.42)
m, |—j=rm,

o

The equality (8.39) can be obtained from Eq. (8.40) for the schemes (8.30)—
(8.32), by induction. [ |

The stability of the time-splitting spectral approximation for the Riesz fractional
coupled Schrodinger—-KdV equations manifests that the total density is conserved in
the discretized level.

Now, the stability of the scheme (8.34) has been analyzed by using the von
Neumann analysis for stability.

Theorem 8.2 When 0 = %, the numerical scheme (8.34) is unconditionally stable.
When 0<0 < %7 it is conditionally stable. The stability condition is

2

T< min 5 .
“4<k<8-1020 | (BA+ 5 (ipy)” — Sy B) (1 — 20)

Proof Plugging

into Eq. (8.34) and using the orthogonality of the Fourier function, we obtain

(v ):_(ﬁn)k — _3F, |:9vn+lFI:1 (i,uk (f)n+1)k) +(1— Q)V"Flzl (i:uk(‘;n)k)]
3 [0 ), 4 (= 067
3 O P ) (1= O)ip ().

(8.43)

In the above discretization scheme (8.43), plugging (" 1), = &(¥"), with ¢ > 0

being the amplification factor, we obtain the following equation
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(1 — 0)(=3At — L (i)’ ¢ + LipBr) + 1

VYRV (8.44)
1430At + 50(iw )"t — 510 Bt

E=

Let us take a = 1z,
where z = 347+ 1 (i)’ — Ligy Br. Without loss of generality, let us assume
that z > 0.
Then from Eq. (8.44), we have
(I-=0)(-z0)+1 (1 —=0)(—a)+1

&= 1+ 0zz - 1+ 0a ' (8.45)

From Eq. (8.45), we see that || <1 if 0 = 3. Therefore, in case of 0 =1, the
numerical scheme is unconditionally stable.
When 0<0< §, we have

a
-——|<l. 8.46
‘ 1+ Ha‘ = ( )
This implies that
a
2. 8.47
1+ 0a < ( )
From the above Eq. (8.47), we get
2
. 8.48
r= z(1 —20) (8.48)

Hence, the stability condition for the case 0 <0< % is

2
< min 5 . (8.49)
“4<k<8-120 | (3A+ L (i)™ — Sy B) (1 — 20)

8.5 Implicit Finite Difference Method for the Riesz
Fractional Coupled Schriodinger-KdV Equations

The fractional centered difference has been used to discretize the Riesz fractional
derivative. In this connection, the following property and lemma have been
presented.



346 8 A Novel Approach with Time-Splitting ...

8.5.1 Approximation of Riesz Fractional Derivative
by the Fractional Centered Difference

In [45], the fractional centered difference is defined by

VI - (=1)'T(a+1)
Nl = > TE—j+IE1j+1

==

)d)(x—jh), foro > —1
and it is shown that

lim = —
h—0  h* h—0 h“j

Aip(x) o L i (—1)T(a+1)
I

GG

represents the Riesz fractional derivative (8.21) for 1 <a <2.
Recently, Celik and Duman [45] derived the interesting result that if f*(x) be
defined as follows

* _ f(x)a DS [avb]
f(x)_{o, x & la,b)

such that f*(x) € C°(R) and all derivatives up to order five belong to L;(R), then
for the Riesz fractional derivative of order o(1 <o <2)

837;(? = i gif (x —jh) + O(K*), (8.50)

j—_b—x

h

where i =2-4 and m is the number of partitions of the interval [a, b] and

_ (=1)’T(a+1)
gj_r(“/z —j+DT(e/2+j+1)" (8.51)

Property 8.1 The coefficients g; of the fractional centered difference approxima-
tion have the following properties for j =0, F1,F2,...,and o > — 1:

» 80=0,
(i) g-j=g <0 forall|j>1,

_j=u/2
(ii1) i+t =52y r18i

(iv) g =O0(G*™").

Proof For the proof of the above properties, it may be referred to Ref. [45].
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Lemma 8.1 Let f € C°(R) and all the derivatives up to order five belong to space
Ly(R) and the fractional centered difference be

o0

Z —1)T(a+1)

=81C —J+ e 1y © M

(8.52)
Then,

ey = 4IE) o),

(8.53)
When 4 — 0% )

> d|x]”
l<a<2.

represents the Riesz derivative of fractional order o. for
Proof For proof of Lemma 8.1, it may be referred to Ref. [45]

8.5.2 Numerical Scheme for Riesz Fractional Coupled
Schriodinger—KdV Equations

The second-order implicit finite difference discretization for the coupled
Schrodinger—KdV Egs. (8.3) and (8.4) is given as

un+l Mn

i n+l n+1 n+l

i+ (Z gk + Z 8ju; _(”J vi "H‘JVJ)
k=j—m k=j—m

n+1 n+1 n n+1 )l+] /x+]

+1 - n(Vie1 Vo 1 /+2 2 A2 v
+3[” (7)+v (— +1
2h J 2h 2

23
+ sz 2v]+l+2v]"717v’7 ) _

0,

ntlonbl_ondlon+l
uj+luj+l u. u

P
-2 g W | Y
2h3

=

(8.54)
where the local truncation error R :

=0(t>+h?) and i = V1.

8.5.3 Numerical Experiments and Discussion

In the present analysis, the following initial conditions [34, 35] have been taken into
consideration for the fractional coupled S-K equations (8.3)—(8.4)
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, o+ 16k?
u(x,0) = 6v2e™k*sech? (kx), v(x,0) = — 6k* tanh? (kx). (8.55)

In this case, the problem has been solved on the interval [—40,40] with van-
ishing boundary conditions. Moreover, this problem has been solved by both
time-splitting spectral method (TSSM) and an implicit finite difference method, viz.
Crank—Nicolson finite difference (CNFD) method in order to justify the efficiency
and applicability of the proposed methods.

Figures 8.1, 8.2, and 8.3 show the comparison between the evolution of the
TSSM solution and the CNFD solution at # = 1 for various fractional orders o. The
results show that the curves of |g(x, 1)| and r(x, 1) obtained by TSSM coincide well
with the CNFD solutions, respectively. Thus, there is a good agreement of results
obtained by the proposed two methods.

Additionally, in Fig. 8.4, one-soliton 3-D solutions of |g(x, )| and the corre-
sponding 2-D solution graph at ¢t = 1 for fractional order o = 1.9 have been pre-
sented. Also, one-soliton 3-D solutions of r(x,7) and the corresponding 2-D
solution graph at # = 1 for fractional order o = 1.9 have been depicted in Fig. 8.5.
The solution graphs in Figs. 8.4 and 8.5 have been drawn by the results obtained
from TSSM.

In order to examine the accuracy of time-splitting method for the Riesz fractional
coupled S-K equations (8.3)—(8.4), the L, and L., error norms [46] have been
calculated with regard to Crank—Nicolson finite difference method in Table 8.1. The
obtained results quite establish the plausibility of the proposed methods for solving
Riesz fractional coupled S-K equations (8.3)—(8.4).

8.6 New Proposed Technique for Riesz Fractional
Chen-Lee-Liu Equation

In the present analysis, Riesz fractional CLL Eq. (8.14) has been solved by the
following proposed numerical approach.

First, it has been chosen the spatial mesh size & = Ax > 0 with h = (b — a)/m
for m being an even positive integer and the time step © = Ar > 0. Then, the mesh
points and time steps are taken as

xi=a+jhj=0,1,...mt,=nt,n=0,1,2,....

Let g} be the approximate value of q(x;, t,). Furthermore, let ¢" be the solution
vector at time 7 = #, = nt with the components of ¢(x;,1,).

In the new proposed approach, acquiring the concept of time-splitting technique
Eq. (8.14) is split into two equations. First, the following equation
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( a) laix.1.)

—  TSSMig(x.l)|
CNFD Jq(x.1.)]

A S U S U TSP, S
-40 =20 20 40

Fig. 8.1 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)—(8.4) with fractional order o = 1.75 for a the solutions of |g(x, 1)
and b the solutions of r(x, 1), respectively

0%q
] —>5=0 8.56
1qy + a|x|1 9 ( )

is solved from time ¢t =, to t = t,, |, and then for the same time-step length 7, it
solves

iq,+ilg)*qx = 0. (8.57)
With the help of Fourier transform, Eq. (8.56) reduces to
i +il|*q = 0. (8.58)

Next, Eq. (8.58) will be discretized in space by Fourier spectral method and then
integrated in time exactly. Now, from time t = ¢, to time t = ¢, Eq. (8.57) has
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(a) fatx, 1.0

—_— TSSM jg(x,1.)]
CNFD fyix, 1)l

rix,1.)

(b)

—_— TSSM r(x,1.)

CNFD rix,1.)

-40 -20 0 40

Fig. 8.2 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)—(8.4) with fractional order o. = 1.8 for a the solutions of |¢(x, 1)| and
b the solutions of r(x, 1), respectively

been integrated and has then approximated the integral on [t,,7, ] via the rect-
angular rule, yielding

Int1

g tner) = exp | — / a(x, ) (x. $)ds | q(x. 1)

In

= xp[ =3 (@0 1) (6 1) (% 1)n(5,1)) . 1)

(8.59)
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(a) .1

—  TSSM g(x.1.)|
CNFD K(x,1.)

" " " "

L i i A x
20 40

" "

=30 =20

Fig. 8.3 Comparison of results obtained from TSSM and CNFD scheme for the Riesz fractional
coupled S-K equations (8.3)—(8.4) with fractional order oo = 1.9 for a the solutions of |g(x, 1)| and
b the solutions of r(x, 1), respectively

Now, regarding the implementation of a discrete Fourier transform, some
mathematical definitions are essential for the subsequent study.

For the sake of convenience, let us consider a generalized function ¢(x,¢) and
assume that ¢(x, 1) satisfies the periodic boundary condition ¢(a,t) = ¢(b,t) for
(x,7) € R x [0, T]. From #, to t, 1, the discrete Fourier transform of the sequence
{¢;} is defined as

m—1

Du(1) = Fuly(0)] = Y (1) expl(—in(y — @)k = =5 ... 5 =1 (8.60)

J=0

and the corresponding inverse discrete Fourier transform is defined by
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(b) k(x.1)l

Fig. 8.4 a One-soliton wave 3-D solution of |g(x, #)| and b the corresponding 2-D solution graph
at + = 1.0 obtained by TSSM for the Riesz fractional coupled S-K equations (8.3)—(8.4) with
fractional order o = 1.9

Mls
—_

(g)k(t) exp(l:uk(x] - a))’ ] = Oa 1a2a cee M= 17

~
Il
|

DI

(8.61)

— 2nk

where gy is the transform parameter defined as py, = ;7.
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(a)
0.030 ¢ _
TSSMrGet) g 025 7 40
10 ¥
(b)

Fig. 8.5 a One-soliton wave 3-D solution of r(x, t) and b the corresponding 2-D solution graph at
t = 1.0 obtained by TSSM for the Riesz fractional coupled S-K equations (8.3)-(8.4) with
fractional order « = 1.9
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8.7 The Strang Splitting Spectral Method

From time ¢, to t,, ;- 1, the Schrodinger-like Eq. (8.14) is split via Strang splitting. The
proposed technique of Strang splitting is presented by the following three equations

T —n n —n n n .
exp[fz [quDx(q 1|, +Dilq )|X:Xquj’ j=0,1,2,...m—1,

(8.62)

*

9j

2
ok 1 ] “)(g* ] .
g = D Xl D@ ) explin (5 — @), J =012, om 1,
P
(8.63)
n Tlon n 7 " -
g :eXP[—Z {qﬁ'Dx(q iy 3 Dula )|x=xf”qf ’
j:Oalaza"'?m_l’

(8.64)

where ("), is the discrete Fourier transform of g; as defined earlier and D,, a
spectral differential operator approximating 0, is defined as

m_
7—1

Dagly= - 3 (i) @) explin(y — @) (8.65)
=

8.8 Stability Analysis of Proposed Time-Splitting Spectral

Scheme for Riesz Fractional Chen-Lee-Liu Equation

Let us define q = (0,415 - -»gm— l)T. Also, let the discrete L2-norm be defined on the
interval (a,b) as

lall-= (8.66)

The following lemma is proved for the stability of the proposed Strang
time-splitting spectral schemes (8.62), (8.63), and (8.64). This lemma also shows
that the total charge is conserved.
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Lemma 8.2 The time-splitting schemes (8.62), (8.63), and (8.64) for the Riesz
fractional CLL Egq. (8.14) are unconditionally stable and possess the following
conservative properties:

n+1

=43 n=0,1,2,... (8.67)

|a
Proof Using Eqgs. (8.60), (8.61), and (8.66) for the schemes (8.62)—(8.64), yielding

1
b—a

2 1 2
o = > ||
j=0

2

exp[4 {lq]"“( 4" +iq) (d)) Hq**

H%

4,

1 m—1 ﬂ*1

= 5L S expt @) explin s o)

=0 M=y

2]
p—es Z Jexp (=il 1)@ )|’

| w]

@) 1
= Z f

P 7m
lm —1
“m 29 ZO

— lm n
_EZ —H I7-

=0

m—1 2

Z exp(—ipy(x; — a))
=0

2

[ i ), +iq;~'<q;>,-]}q;f

(8.68)
In the above analysis, the following identities have been used
m—1
ei2n(=Rifm — 0, [—k7rm, r is an integer (8.69)
A m, |—k=rm,
j=0
and
51 ;
Z e/ 2I=ik/m — {O’ Z_J. 7 m, r is an integer. (8.70)
m, [—j=rm,

—_m
k=—5
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The equality (8.67) can be obtained from Eq. (8.68) for the schemes (8.62)—
(8.64), by the method of induction. |

Lemma 8.2 for the stability of time-splitting spectral approximation for the Riesz
fractional CLL equation establishes that the total density is conserved in the dis-
cretized level.

8.9 High-Order Approximations for Riemann—Liouville
Fractional Derivatives

In this section, high-order approximations for Riemann-Liouville fractional
derivatives have been presented. Let us first start with the introduction of the shifted
Griinwald difference operator.

8.9.1 Shifted Griinwald—Letnikov Formula for Riesz Space
Fractional Derivative

In [47], Meerschaert and Tadjeran reveal that standard Griinwald—Letnikov formula
is often unstable for time-dependent problems. In this regard, they had first pro-
posed the following shifted Griinwald-Letnikov formulae for the left and right
Riemann—Liouville derivatives in order to overcome the stability.

The shifted Griinwald difference operators to approximate the left and right
Riemann—Liouville fractional derivatives are given by

A2 u(x) :%iw,(f)u(x— (k — I)h), (8.71)
k=0
B u(x) = %Z o u(x — (k — b)h), (8.72)

k

Il
=}

that have the first-order accuracy, i.e.,
Aju(x) = _oDiu(x) + O(h), (8.73)
Bru(x) = D% L u(x) +O(h), (8.74)

where [; and I, are positive integers and
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o) = (—1)k<z>~ (8.75)

We know the binomial expansion of (1 —z)* as follows

(1-2)"= Z (l)k<z>zk = Zw,ﬁ“)zk,for all 7] < 1.
k=0

So, the coefficients w,(f) are the binomial coefficients of (1 — z)” and they can be

evaluated by the following recurrence relation

o o 1 o
w(g>:1,w,£)=<1—°‘: >w,§>1,k:1,2,.... (8.76)

8.9.2 Weighted Shifted Griinwald-Letnikov Formula
Jor Riesz Space Fractional Derivative

In view of the shifted Griinwald difference operators (8.71)—(8.72) and multistep
method, the following second-order approximation for the Riemann—Liouville
fractional derivatives has been derived by Tian et al. in [48].

06—212 211—0(

LDot — o o 77

i) = 3yt gy ), (577
R o—2L 20 —a

Dlhlzu(x) = 72(11 — lz)lelu(x) + —2(11 — lz)ﬂilzu(x). (8.78)

Lemma 8.3 ([19]). Suppose that 1<a<2, let u(x) € L' (R), _.D*u(x),
D* _u(x), and their Fourier transforms belong to L'(R), then the weighted and
shifted Griinwald difference operators satisfy

D}, u(x) = s Diu(x) + O(h?), (8.79)
kD u(x) = xD* cu(x) + O(h?), (8.80)

uniformly for x € R, where [; and I, are positive integers and 1, # 1.

Let u(x) be a function satisfying the assumptions in Lemma 8.3 on the bounded
interval [a, b]. If u(a) = 0 or u(b) = 0, the function u(x) can be zero extended for
x<a or x> b. Then, the o-order left and right Riemann—Liouville fractional
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derivatives of u(x) at each point x can be approximated with the second-order
accuracy as follows

[54] +0 [5] +0
WDiulx) =2 oPu(x — (k — 1)) + = oPu(x — (k — L)h) (8.81)
k=0 k=0 '
+O(K),
7] +0 7]+
N Ut () Ha (2)
«Diu(x) e @, u(x — (k—1)h) + - @, u(x — (k—L)h) (8.82)
k=0 k=0
+O(r),
where
_a—2h and 10 — 2l — o
M=o — ) ™ T o0 )

Thus, weighted shifted Griinwald-Letnikov formula for Riesz space fractional
derivative is given by

dux) 1 &HZHI o — (k1) 5 72[‘7“ +h ot k1)
d|x|* 2cos (%) |h* k h* = k
1 [b,;f]-%-ll P [”,;,"]-Hz
1 () 2 (o) 2
+ ;0 o ulx = (k = )k + 32 Z:O @ u(x — (k—Lb)h) | +0(h?),
(8.83)
where
a—2h and 1 — 2l — o
M0 =) M T — )

8.9.3 CN-WSGD Numerical Scheme

In this present analysis, consider the interval [a,b] is partitioned into a uniform
mesh with the space step & = (b — a)/M and the time step t = T/N, where M, N
are two positive integers. And the set of grid points are denoted by x; = jh and
to=nt for j=1,...M and n=0,...,N. Let t,,yp= (t,+t,+1)/2 for
n=20,1,...,N — 1, the following notations have been used
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4} = q(x,tn), and 8,47 = (¢/ "' —q}') /7. (8.84)

In space discretization, weighted shifted Grilnwald—Letnikov formula (8.83) has
been used to approximate Riesz fractional derivative and for the time discretization
using the Crank—Nicolson technique in Eq. (8.14) leads to

1 i1 M—j+1
iétq;?Jri Zcos [;w@qﬁ‘l“Jr k=0 w ]nikll
Jj+1 M—j+1
+ kz(:)wk Gt kz(:) of %+k 1 ] (8.85)

i
2

J

1
n+1‘ qu'ljl qJnJrl + g 2 q;l+1 — q](lfl —
1 2h 1 2h i

where

(1) = (1,0), 0 =0, 0f = 30 + H20f?, k> 1
)

(h,b) = (1,-1), 0" =22 o o)) =220, o) =20l + 2o, k>2;

" <E(h*+1*) andi=+/—1.

Multiplying Eq. (8.85) by 7 and separating the time layers, we have

1V‘Cj+1 IV’L'M j+1 qn+1 _qn+1
+1 (@) n+1 141 +1 j+1 J
R TS BRI DRt IR Tl C

2 2 2h
N T A 1y ML T 2 (41 — g
= g ol et g > e 3l ()
+0(th* + %),
(8.86)
where v = T Ten(@)’

Denoting g} as the numerical approximate value of g/, the CN-WSGD scheme
for Eq. (8.14) has been derived as
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~n+1 _ 1‘)‘[ i w(ﬂf) _lEM7j+lw ~n+1 T ~n+1 2 éjnrl an+1
i T e IR 2 LA 2h
n lvrj (@) =n 1ve™ jH T qﬁ] —é}l]
=q 52 ) O Gt Y qk+1 e ra—
A P 2 £ e 2h
(8.87)
j=1,2,...M—landn=1,2,.. .N—1,
é]('):’))O(xj)vjzlaZa"'vM_lv (888)
Q=09 =qy_1,n=12,...,.N—1. (8.89)

The system in Eq. (8.87) can be conveniently written into the following matrix
form

(1= (4+A0)a " = (1+ 22 (A+47))q' + 6" =12 (8.90)

2h*
where
I is an identity matrix, @" = (&}, q%y_,)"
a)g ) a)(()“)
o o off
A= 1 WP WP isa (M — 1) x (M — 1) matrix,
o o w(()oc)
o s o of
wé@ + w(()“) cu](‘;>
(o)
b wga) 1 Oy 1
=2l |@rath+ | @,
2% : 2h p
PN o®
M—1 3
o) oy + o

and
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q"+1/2 2 ?]3“/27213“/2

1 2h

nt1/2 2 7];’“/272}’:“/2
e | %2 2h

nt1/2 2 ZIX/IH/Z*‘?X;;/Z
qm-1 2h

8.10 Stability and Convergence of CN-WSGD
Scheme for Riesz Fractional Chen-Lee-Liu Equation

On the given domain [a,b] x [0,T], let us define Q,={x;=jh:j=0,
L,2,...M}, Q. ={t,=nt:n=0,1,2,..,N}, Qu =, xQ,. Suppose that,
Vie = {vj" :j=0,1,2,...,M;n=0,1,2,...,N} is a discrete function on . Let
us introduce the following notations:

X

1

<V'wW'> =h Viw?

Wi ||v”||2: <V V>
j=1

For any v € V},;, we define the pointwise maximum norm

I lloe= | max_ V7], (8.91)
and the following discrete />-norm
V'lle= (8.92)

8.10.1 Stability Analysis

In Theorem 8.3, the stability of CN-WSGD scheme (8.87) has been analyzed in
detail.

Theorem 8.3 The CN-WSGD scheme (8.87) is unconditionally stable.

Proof Let us denote B = 5% (A+A”). From Eq. (8.90), we have
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I—— (A AT)~n+1 (I — (A AT>~n n__ Fn+1/2. .
( 2h“( +A"))q n 2m( AN G+ G — 1 (8.93)
If A is a eigenvalue of matrix B, then ‘%| is the eigenvalue of matrix

(I-B)'(I+B).
Now, when 1 <a <2, for (l;,,) = (1,—1), matrix A is negative definite, and

the real parts of the eigenvalues 4 of matrix B = 3% (A +A”) are less than 0. Thus,

Re(4 )<0 which implies that ‘1“’ < 1. Therefore, the spectral radius of matrix

(I —B) '(I+B) is less than one.
Hence, the CN-WSGD scheme (8.87) is unconditionally stable. |

8.10.2 Convergence Analysis

To prove the convergence, the following lemmas are needed.

Lemma 8.4 [49, 50] The formula

—1M-1 .
( Cl—rl//rl//l> =0
I 1

1 r=
holds, where “Im” stands for the imaginary part.

E

Lemma 8.5 (Gronwall’s inequality) Let {G"|n >0} be a nonnegative sequence.
If G"*'<(1+c¢1)G"+10, n=0,1,2,..., where ¢ and ¢ are nonnegative
constants. Then, G" satisfies

Gn+1 Secm(GO—i-(T/C).

Theorem 8.4 The numerical solution g; of the finite difference scheme (8.87) is

convergent to the true solution g} with the error O(t® + h?) in the discrete L*>-norm.

Proof Let q} = q(x;,t), ) = q(x;,10), €} = q} — 4,

p e p MIL ) q+l ‘11
: +1/2 +1/2 +1 +
=’5t‘17+h—z ’ Jnk+/1+ﬁ wka qzn+k/1+ q; / ‘ : o ’ ’
k=0 k=0
(8.94)
T T
V:—200:(%),e”:(e’l’,e’zl,...,e”M_l) and &" = (¢}, ¢4, ...,¢5 ;) .

From Eq. (8.94), we can write
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j+1 M—j+1

v () n+1/2 Y () n+1/2 n4+t
? —15t€ +hxzwk% Jk<~»/1+ﬁ Z (,()koc j+kl+H 2 (895)
k=0 k=0
where
1 5 qn+% qn+% ) C] n+3 E]n-&-l
n+i n+1/2‘ i+1 — 4j—1 n+1/2’ ]+1 /j—
H '*=|q; -] - -], 8.96
f q; 7 q; T (8.96)
Now,
ST 12
72| < (maxf g 12, [ 2| (8.97)
It follows from Eq. (8.97) that there exists a constant C; > 0 such that
n+1/2 n+1/2 n+l 2
’H ’<c( e ‘+ /D (8.98)

which implies that there exists a constant C3 > 0 such that

HHn+l/2H <C <2Hen+l/2H +h( n+1/2

n+l/2’ —hle

[+

n+1/2‘ ’ n+1/2’2)>
~|eM-1 :

(8.99)
From Eq. (8.99), it further follows that there exists a constant M > 0 such that
[H12)|* < cam|en 12 (8.100)

Now, computing the inner product <g" e*+!+e? >, taking the imaginary
part, and using Lemma 8.4, we have

(lle* 1P~ er])

T

Im<g", 2e"+1/2 > +Im<iH""Y2 2en+1/2 > | (8.101)

Therefore,

(e | 1)) -
— Im<£"’2en+l/2 > +Im< — iHn+l/2,2en+1/2 >

T
< (P 2= 727) + (Je 2 22 )
(8.102)
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Using Egs. (8.100), (8.102) leads to
e P = NetP < e (11" + 2]l 27 ) + 2 (comlfer 2 + 2 )
sf|s"||2+2r<1+ %) (Ile I+ 11" )
Sr(b—a)é‘z(h2+fz)2+2r<l+ C—)(H e+ et ).
(8.103)

Therefore, there exists a constant 7p: 0<t9 <1/ (2+ %) such that when
0<1 <710, We have

T\ —a C2(h? ’L'22
e P <<1+ o4+ CM) >|en||2+ (b~ a)C* (1 + )

_ C3M‘L’0 — — C?_IWTO
— 2719 =5 (1 219 > )
Let
44 CM b—a)C* ;
o, = % and ¢y = %, we then obtain
-4 (EPRLO)

2
le" " < (1 +ai7)|€"]]* + ot (h? + %) (8.104)
Now, using Gronwall’s inequality, we obtain

HenJrle < %GGIT(}Y? +‘L'2)2,n =0,1,2,... (8105)
1

Hence, it is proved. |

8.10.3 Numerical Experiments and Discussion

In this section, some numerical results concerning the solitary wave solutions for
the Riesz fractional CLL Eq. (8.14) have been presented. The initial condition is
chosen such that g(x,0) = y,(x) decays to zero sufficiently fast as |x| tending to the
two boundary points. An appropriately long interval [a, b] has been chosen for the
computations such that the periodic boundary conditions do not introduce a sig-
nificant error relative to the whole space problem.

In the present numerical experiment, the following initial condition [51] has
been taken into consideration for the Riesz fractional CLL Eq. (8.14)
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lax,1.)
14}

. TSSM jqix.1.)
—a— CN-WSGD jg(x,1.)|

=20 =10 10 20

Fig. 8.6 Comparison of results for the solution of |g(x, 1)| obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order o = 1.75

q(x,0) = 7,(x) = 2iA3By, (8.106)

where

Ar = exp{2(2 = Dif () + (& + )& —nd) g1}, p=1/4
A = —olx & (& + ni) sinh(2X1)

T00 = 800 (& — ) cosh(2K)

g(x) = arctan[¢] ', tanh (X, )]

By — 2i¢,n, exp(iY1)
7 g cosh(X1) + in, sinh(X;)

Xp =4 mx+ 0
Yi=—2(& —npx+

In this case, the problem has been solved on the interval [—20,20] with van-
ishing boundary conditions. The Riesz fractional CLL Eq. (8.14) along with the
above initial condition (8.106) has been solved by both time-splitting spectral
method (TSSM) and an implicit finite difference method, viz. CN-WSGD scheme,
in order to justify the efficiency and applicability of the proposed methods.

Figures 8.6, 8.7, and 8.8 show the comparison between the evolutions of the
TSSM solution and the CN-WSGD solution at ¢ = 1 for various fractional orders o.
The results show that the solution curves of |g(x, 1)| obtained by TSSM coincide
well with the CN-WSGD solution curves, respectively. Thus, there is a good
agreement of results obtained by the proposed two methods.
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lax.1.)

14F

TSSM kix,1.)]
CN-WSGD y(x,1.)]

L — X
=20 -10 10 20

Fig. 8.7 Comparison of results for the solution of |g(x, 1)| obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order o = 1.8

TSSM faix.1.)
CN-WSGD lqfx,1.)

x

-20 -10 ! 10 20

Fig. 8.8 Comparison of results for the solution of |g(x, 1)| obtained from TSSM and CN-WSGD
scheme for the Riesz fractional CLL Eq. (8.14) with fractional order o = 1.9

In addition, in Fig. 8.9, the dynamic evolution of single-soliton 3-D solution of
|g(x,7)| and the corresponding 2-D solution graph at + = 1 for fractional order
o = 1.9 have been presented. Also, single-soliton 3-D surface solution of |g(x, 7)|
and the corresponding 2-D solution graph at ¢ = 1 for fractional order o = 1.75
have been depicted in Fig. 8.10. The solution graphs in Figs. 8.9 and 8.10 have
been drawn by the results obtained from TSSM.
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(a)

(b) 14}

‘— TSSM Jo(x.1.)| I

A 1 i " i " . i " A 1 x
=20 =10 10 20

Fig. 8.9 a Dynamic evolution of single-soliton 3-D wave solution of |g(x,7)| and b the
corresponding 2-D solution graph at + = 1.0 obtained by TSSM for the Riesz fractional CLL
Eq. (8.14) with fractional order a = 1.9

To examine the accuracy of the time-splitting method for the Riesz fractional
CLL Eq. (8.14), the L, and Ly, error norms [46] for the results of TSSM have been
calculated with regard to CN-WSGD results in Table 8.2. The comparison of
results quite establishes the plausibility of the proposed methods for solving Riesz
fractional CLL Eq. (8.14).
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(b)

—e—  TSSM jgix,1.)

" i 1 i " =
-20 -10 10 20
Fig. 8.10 a Dynamic evolution of single-soliton 3-D wave solution of |g(x,7)| and b the
corresponding 2-D solution graph at ¢ = 1.0 obtained by TSSM for the Riesz fractional CLL
Eq. (8.14) with fractional order o = 1.75
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8.11 Conclusion

In this chapter, a new approach, viz. time-splitting spectral method, has been
proposed for solving Riesz fractional coupled S-K equations. The proposed
time-splitting spectral method is highly well suited for solving Riesz fractional
coupled S-K equations. In addition, with the aid of fractional centered difference
approximation for Riesz fractional derivative, an implicit finite difference tech-
nique, viz. Crank—Nicolson finite difference method, has been applied for Riesz
fractional coupled S-K equations in order to assess the results of these proposed
methods. It is found that there is a fine agreement between the results of both the
techniques. In comparison with the implicit finite difference method, the proposed
TSSM is also an efficient and simple tool to determine the approximate solution of
Riesz fractional coupled S-K equations. The obtained results ascertain the reliability
of the proposed methods and its applicability in solving Riesz fractional coupled
S-K equations. The implementations of the proposed methods for the solutions of
Riesz fractional coupled S-K equations quite well justify their applicability and
efficiency.

A new approach, viz. time-splitting spectral method, has been proposed for
solving Riesz fractional CLL equation. The TSSM is based on Strang splitting
method in time coupled with trigonometric spectral approximation in space. In
addition, with the aid of weighted shifted Griinwald—Letnikov formula for
approximating Riesz fractional derivative, Crank—Nicolson implicit finite difference
method has been applied for Riesz fractional CLL equation in order to examine the
comparison results for these proposed methods. The numerical results obtained by
the proposed TSSM highly agree with those obtained by CN-WSGD method. The
obtained results ascertain the reliability of the proposed methods and its applica-
bility in solving the Riesz fractional CLL equation. The successful implementations
of the proposed methods for the solutions of Riesz fractional CLL equation quite
well justify their applicability and efficiency. The numerical solutions obtained by
TSSM for the Riesz fractional equations will be useful to analyze wave pattern in
quantum mechanics, nonlinear optics, fluid mechanics, plasma physics, and mag-
netohydrodynamic wave equations [52, 53].
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Chapter 9 M)
Numerical Simulation of Stochastic ki
Point Kinetics Equation in the Dynamical

System of Nuclear Reactor

9.1 Introduction

In nuclear reactor dynamics, the point kinetics equations are the coupled differential
equations for the neutron density and for the delayed neutron precursor concen-
trations. The point kinetics equations are the most vital model in nuclear engi-
neering, and these equations model the time-dependent behavior of a nuclear
reactor [1-4]. The time-dependent parameters in this system are the reactivity
function and neutron source term. The dynamical process described by the point
kinetics equations is stochastic in nature, and the neutron density and delayed
neutron precursor concentrations vary randomly with time. At high power levels,
random behavior is negligible. But at low power levels, such as at the beginning,
random fluctuation in the neutron density and neutron precursor concentrations can
be significant.

The point kinetics equations model a system of interacting populations,
specifically the populations of neutrons and delayed neutron precursors. In this
chapter, the physical dynamical system identified as a population process and the
point kinetics equations have been analyzed to transform into a stochastic differ-
ential equation system that accurately models the random behavior of the process.

In the present chapter, the Euler-Maruyama method and Taylor 1.5 strong order
approximation method have been applied efficiently and conveniently for the
solution of stochastic point kinetics equation. The resulting systems of stochastic
differential equations are solved over each time-step size in the partition. In the
present investigation, the main attractive advantage, of these computational
numerical methods, is their elegant applicability for solving stochastic point kinetics
equations in a simple and efficient way.
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9.2 Outline of the Present Study

In the present chapter, the numerical approximation methods, applied to efficiently
calculate the solution for stochastic point kinetics equations [1, 3] in nuclear reactor
dynamics, are investigated. A system of Itd stochastic differential equations has
been analyzed to model the neutron density and the delayed neutron precursors in a
point nuclear reactor. The resulting system of Ito stochastic differential equations is
solved over each time-step size. The methods are verified by considering different
initial conditions, experimental data, and over-constant reactivities. The computa-
tional results indicate that the methods are simple and worthy for solving stochastic
point kinetics equations. In this work, a numerical investigation is made in order to
observe the random oscillations in neutron and precursor population dynamics in
subcritical and critical reactors.

9.3 Strong and Weak Convergence

In this section, a brief discussion on strong convergence and week convergence has
been presented.

9.3.1 Strong Convergence

A discrete-time approximation method is said to converge strongly to the solution X
(1) at time ¢ if

Jim E X(t)—)A((t)‘ -0 (9.1)

where )A((t) is the approximate solution computed with constant step size Ar and
E denotes expected value.

A SDE method converges strongly with order « if the expected value of the error
is of ath order in the step size, i.e., if for any time ¢

E‘X(r) - ;?(z)] — O((Ar)*) (9.2)

for sufficiently small step size Az [5].
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9.3.2 Weak Convergence

A discrete-time approximation X () with constant step size At is said to converge
weakly to the solution X(z) at time ¢ if

lim [E(F(X(1) ~ E(£(X ()| =0 93)

At—>0

for all smooth functions f in some class.
A SDE method converges weakly with order « if the error in the moments is of
oth order in the step size

E(F(X(1)) - E(f(X (1) | = o((ar*) (9.4)
for sufficiently small step size Az [5].
In other words, for a given time discretization 7y <t} <...<t, =T,

e A method is said to have strong order of convergence « if there is a constant
K > 0 such that

X, — X, | <K(An)"

supE
173

e A method is said to have weak order of convergence o if there is a constant
K > 0 such that

sup ‘E[X,k] _EX,]| <k(An),
73

where Aty =t — ty_y, X,, and )A(,A, represents the exact solution and approximate
solution at time #.

The Euler—-Maruyama method has strong convergence of order o = 1/2, which is
poorer of the convergence for the Euler method in the deterministic case, which is
order oo = 1. However, the Euler—Maruyama method has week convergence of order
oa=1.

9.4 Evolution of Stochastic Neutron Point Kinetics Model

It is the most vital part of nuclear reactor dynamics, to derive the point kinetics
equations in order to separate the birth and death process of neutron population. It
will help us to form a stochastic model. The deterministic time-dependent equations
satisfied by the neutron density and the delayed neutron precursors are as follows [1]
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65_7 = DVVAN = (%4 = ZWN +[(1 = BkaoZa = TN + 3 S 4iCi+ 50, (95)
% = ﬂikooZaVN — )viCi? i= 17 27 e, (96)

where N(r,t) is the neutron density at a point r at time 7. The coefficients
D, v, 2, and Xy are, respectively, diffusion constants, the neutron speed, the
macroscopic neutron absorption, and fission cross sections. The capture cross
section is X, — Xp. If =", f; is the delayed neutron fraction, the prompt
neutron contribution to the source is [(1 — ff)ks 2, — Zf]vN and the prompt neutron
fraction is (1 — f8). The number of neutrons produced per neutrons absorbed is ko
(also called infinite-medium reproduction factor). The rate of transformations from
neutron precursors to the neutron population is Y " | 4;C; where the delayed con-
stant is 4; and C;(r, 1) is the density of the ith type of precursor for i = 1,2,...,m.
Sources of neutrons extraneous to the fission process are represented by So(r,?).

In the present analysis, captures (or leakages) of neutrons are considered as
deaths. The fission process is considered a pure birth process where v(1 — ) — 1
neutrons are born in each fission along with precursor fraction vf.

Let us assume that N = f(r)n(f) and C; = g;(r)c;(¢) are separable in time and
space where n(t) and ¢;(¢) are the total number of neutrons and precursors of the ith
type at time ¢, respectively.

Using these, Hetrick [1] and Hayes et al. [4] derived the deterministic point
kinetics equation as

dn —p+1—a 1 —a— L
P _{pl}njt {lﬂnJr ZAici+q, (9.7a)
d i=1
dCi i N .
E:%n—/ﬁci, i=1,2,...,m, (9.7b)
where g(t) = S}E:’)’), p is reactivity, neutron generation time / = ﬁ, o is defined as
o= % ~ %, and v is the average number of neutrons per fission. Here, n(f) is the

population size of neutrons and c¢;(¢) is the population size of the ith neutron
precursor. The neutron reactions can be separated into three terms as follows:

dn —p+1—0 1 —o— LN
|: p :|I’l+ |: ﬁ:|n+ Z/Lici +4q,
=1

dr [ [
. —
deaths births transformations
dC,’ ﬂ a
—=—tn—Ac;, i=12,...m.

dr 1
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The neutron birth rate due to fission is b = %, where the denominator
has the term (—1+ (1 — f§)v) which represents the number of neutrons (newborn)

produced in each fission process. The neutron death rate due to captures or leakage
isd = %1_7 The transformation rate /;c; represents the rate that the ith precursor
is transformed into neutrons and g represents the rate that source neutrons are
produced.

To derive the stochastic dynamical system, we consider for simplicity only one
precursor, i.e., f = f;, where [ is the total delayed neutron fraction for one
precursor.

The point kinetics equations for one precursor are as follows

%:[—p+l—o¢}n+[l—o¢— dey By

’l+)\.6 +q _—_’l_ic.

dr l l

Now, we consider in the small duration of time interval Az where probability of
more than one occurred event is small. There are four different possibilities for an

event at this small time Ar. Let [An, Ac;]" be the change of n and ¢, in time At
where the changes are assumed approximately normally distributed. The four

possibilities for [An, Ac,]" are

where the first event E; denotes a death, the second event E, represents birth of
(=14 (1 — B)v) neutrons and f;v delayed neutron precursors produced in the
fission process, the third event E3 represents a transformation of a delayed neutron
precursor to a neutron, and the last one E4 event represents a neutron source. The
respective probabilities of these events are

P(El) = nAud,
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l—a—p B
S = py M= 5

1
P(E;) = nAtb = WnAt, since b =

P(E3) = C]At)b],
P(E4) = qu

In this present analysis, it is assumed that the extraneous source randomly
produces neutrons following Poisson process with intensity g.

According to our earlier assumption, the changes in neutron population and
precursor concentration are approximately normally distributed with mean

An ) An
E and variance Var .

Acl Ac1
Here, the mean change in the small interval of time At

An 4 An /3n+ﬂlcl+q
E = P,
<[Acl]) Z k{Acl} [ﬁ‘n—ﬂlﬁ

k=1

At

7

and the variance of change in small time At

vl [ ]) = [ aen) - (e([22]))

4
Z ACI] [An  Ac,],= BA,

where

B— [/g mthetq ﬁTl(_H'(l —ﬁ)V)n—im]
o

-1+ =p)v)n—lic /}1 n+ic
where

1= p+28+(1-B)y
- !
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Now, by central limit theorem, the random variate
A
]
Acy Acy
An
va( |30 ])

follows standard normal distribution. The above result implies

[ﬁﬂ:;@( >+ Var({fﬂ)“j where 1,1, ~N(0,1) (9.8)

Thus, we have

An
Ac 1

p;ﬂl’l—f—)»lcl
+ Ar+

%n—l—llcl

n(t+ Ar)
ci(t+ Ar)

T ar+ B2V ™
0 M

(9.9)

where B'/2 is the square root of the matrix B. Dividing both sides of Eq. (9.9) by A¢
and then taking limit Ar — 0, we achieve the following Itd stochastic differential
equation system

_
d| n ~| n q|  51pdW
S =A | TB 9.10
df[m] ¢ 0 dr (9.-10)

where

il b el
bo—h]
3o m+dicr+q b1+ (1= Byv)n— ke
- 2 ’
%(—1 + (1= B)v)n — Zicy ﬁT‘n—i-/hcl
and
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where Wi (r) and W,(¢) are Wiener processes. Equation (9.10) represents the
stochastic point kinetics equations for one precursor. Now generalizing the above
argument to m precursors, we can obtain the following Itd stochastic differential
equation system for m precursors

n n q
(&1 C1 0
d - 0l . wipdW
—| 2| =A@ B2 — 9.11
dr * * dt ( )
L Cm | Lem ] LO
In Eq. (9.11), A and B are as follows
(el G e ]
by 0o o0
R i O T (9.12)
: : L0
(b0 0 <2
C ag an e ap
a r by e bymt1
E = | a b3.’2 r y (913)
: . . . bm,erl
am bm+1,2 bm+l,m I'm

where

{=yn+ Zijcj‘f'c]»
=

1l p+2B+(1-B)y
y_ l )

g =Dt e,

Bioy -1V

bl}/ = I n,
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and

2
ﬁlévn + l,’Ci.

ri =

Equation (9.11) represents the generalization of the standard point kinetics model
since for B = 0, it reduces to the standard deterministic point kinetics model [3].

9.5 Application of Euler-Maruyama Method and Strong
Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

The stochastic point kinetics equations for m delayed groups are as follows

dx dw
L AT HB()T+ F()+B2ED (9.14)
det dr
where B is given in Eq. (9.13),
.
1
T=2], (9.15)
LCm |
_%ﬁ A 12 lm ]
b o0 0
A= L o ) ; (9.16)
: L0
K 0 —Jum
2o o 0
0 0 0 0
Bit)=10 0 : (9.17)
o o
0 0 0 0
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and

Fo=1] 9. (9.18)

It can be noticed that A = A + B().

9.5.1 Euler—-Maruyama Method for the Solution
of Stochastic Point Kinetics Model

This method is also known as order 0.5 strong It6—Taylor approximation. By
applying Euler—-Maruyama method in Eq. (1.142) of Chap. 1 into Eq. (9.14), we
obtain

?i+1 = ?,+(A+B,)?,h+?(l1)h+31/2\/ﬁ—>” (919)

— — —
where dW; =W, - W, = \/Eﬁl and h=t;, —t. Here, 71‘ 1S a vector
whose components are random numbers chosen from N(0,1).

9.5.2 Strong Order 1.5 Taylor Method for the Solution
of Stochastic Point Kinetics Model

We apply strong order 1.5 Taylor approximation method in Eq. (1.143) of Chap. 1
into Eq. (9.14) yielding

_ ~ 1
= Rt ((A LB+ ?,»>h+ B'VIT + (A+B)BAZ + 5 ((A LB)T i+ F’,») (A+B)R,

(9.20)

where AZ; = Lh(AW; + AV;/V/3) and AV; = VA N(0, 1).
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9.5.3 Numerical Results and Discussion

In the present analysis, we consider the first example of nuclear reactor problem
with the following parameters A, =0.1, f,=005=pf, v=25 v=25,
neutron source ¢ =200, [=2/3 and p(t)=—1/3 for +>0. The initial
condition is X'(0) = [400 300]". We observe through 5000 trails, the good
agreement between two methods with other available methods for 40 time intervals
attime ¢t = 2 s. The means and standard deviation of n(2) and ¢ (2) are presented in
Table 9.1.
In the second example, we assume the initial condition as

1
B
Al

_ B,
¥ (0) = 100| 7;

ﬂ m
Aml

The following parameters are used in this example [1, 3] f = 0.007, v =
2.5, 1=0.00002, ¢ =0, 4; =[0.0127, 0.0317, 0.115, 0.311, 1.4,3.87] and
B; = [0.000266, 0.001491, 0.001316, 0.002849, 0.000896, 0.000182] with m =
6 delayed groups. The computational results at + = 0.1 and r = 0.001 are given in
Tables 9.2 and 9.3, respectively, for Monte Carlo, stochastic PCA [4], Euler—
Maruyama, and Taylor 1.5 strong order. It can be seen that there exist approxi-
mately close agreements between the three approaches in consideration of different
step reactivities p = 0.003 and p = 0.007. The mean neutron density and two
individual neutron samples are cited in Fig. 9.1. The mean precursor density and
two precursor sample paths are cited in Fig. 9.2. For these calculations, we used
5000 trials in both Euler—Maruyama and Taylor 1.5 strong order method.

Table 9.1 Comparison of numerical computational methods for one precursor

Monte Stochastic Euler—Maruyama Strong order 1.5 Taylor
Carlo PCA [4] approximation approximation

E(n(2)) 400.03 395.32 412.23 412.10

a(n(2)) 27.311 29.411 34.391 34.519

E(c1(2)) 300.00 300.67 315.96 315.93

a(c1(2)) 7.8073 8.3564 8.2656 8.3158
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Table 9.2 Comparison for subcritical step reactivity p = 0.003

Monte Stochastic PCA Euler— Taylor 1.5 strong
Carlo [4] Maruyama order
E(n(0.1)) 183.04 186.31 208.599 199.408
a(n(0.1)) 168.79 164.16 255.954 168.547
E(c1(0.1)) [4.478 x 10° 4.491 x 10° 4.498 x 10° 4.497 x 10°
a(c1(0.1)) 1495.7 1917.2 1233.38 1218.82

Table 9.3 Comparison for critical step reactivity p = 0.007

Monte Stochastic PCA Euler— Taylor 1.5 strong
Carlo [4] Maruyama order
E(n(0.001)) 135.67 134.55 139.568 139.569
a(n(0.001)) 93.376 91.242 92.042 92.047
E(c1(0.001)) |4.464 x 10° 4.464 x 10° 4.463 x 10° 4.463 x 10°
a(c1(0.001)) 16.226 19.444 6.071 18.337
(a)
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- ' _1 III
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Fig. 9.1 a Neutron density obtained by Euler—Maruyama method using a subcritical step
reactivity p = 0.003 and b neutron density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity p = 0.003
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Fig. 9.2 a Precursor density obtained by Euler-Maruyama method using a subcritical step
reactivity p = 0.003 and b precursor density obtained by strong 1.5 order Taylor method using a
subcritical step reactivity p = 0.003

9.6 Conclusion

In this present research work, the stochastic point kinetics equations have been
solved by using Euler—-Maruyama and strong order 1.5 Taylor numerical methods
having easier and efficient calculation in comparison with stochastic PCA method.
The methods, in this investigation, are clearly effective numerical methods for
solving the stochastic point kinetics equations. The methods are simple, efficient to
calculate, and accurate with fewer round-off error. The derivation of stochastic
point kinetics equations may be complicated but numerical solutions obtained more
conveniently. The behavior of the stochastic neutron and precursor distributions
within a reactor can be explicitly described by the stochastic point kinetics equa-
tions. The obvious reason seems to be that the intrinsic stochastic dynamic phe-
nomena in the reactor system can be properly treated with the stochastic point
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kinetics equations. In this chapter, a numerical investigation was performed in order
to observe the random fluctuations in neutron and precursor population dynamics in
subcritical and critical reactors.
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